Skip to content

Abdellatif Moudafi, Byrne’s extended CQ-algorithms in the light of Moreau-Yosida regularization

Full Text: PDF
DOI: 10.23952/asvao.3.2021.1.03
Volume 3, Issue 1, 30 April 2021, Pages 21-26

 

Abstract. Given a real m\times n matrix A, a maximal monotone operator S: I\!\!R^n\rightarrow 2^{I\!\!R^n} and a maximal monotone operator T: I\!\!R^m\rightarrow 2^{I\!\!R^m}, the split feasibility null-point problem is to find \bar x satisfying \bar x\in S^{-1}(0) with A\bar x\in T^{-1}(0). Based on a regularization point of view of a Byrne’s idea, by replacing the operators by their Yosida approximates, we propose to consider the problem of finding \bar x such that (P_{\alpha^{-1}, (1-\alpha)^{-1}}) 0=S_{\alpha^{-1}}(\bar x)+A^tT_{(1-\alpha)^{-1}}(A\bar x), and then to introduce the following extended CQ-Algorithm
x_k=\frac{1}{1+\gamma\alpha}(I+\gamma\alpha J^T_{\alpha^{-1}(1+\alpha\gamma)})(I-\gamma (1-\alpha) A^t(I-J^S_{(1-\alpha)^{-1}})A)x_{k-1},

where \alpha\in (0,1) and 0\textless \gamma \textless \frac{2}{(1-\alpha)L} with L=\rho(A^tA) being the largest eigenvalue of A^tA. In the context of split feasibility problems, this clearly reduces to Byrne’s extended CQ-algorithm, namely, x_k=\frac{1}{1+\gamma\alpha}(I+\gamma\alpha P_C)(I-\gamma (1-\alpha) A^t(I-P_Q)A)x_{k-1}, where P_C and P_Q are the orthogonal projections onto the nonempty closed convex sets C and Q, respectively.

 

How to Cite this Article:
Abdellatif Moudafi, Byrne’s extended CQ-algorithms in the light of Moreau-Yosida regularization, Appl. Set-Valued Anal. Optim. 3 (2021), 21-26.