PARALLEL COMPUTING PROXIMAL METHOD FOR NONSMOOTH CONVEX OPTIMIZATION WITH FIXED POINT CONSTRAINTS OF QUASI-NONEXPANSIVE MAPPINGS

KENGO SHIMIZU ${ }^{1}$, KAZUHIRO HISHINUMA ${ }^{1}$, HIDEAKI IIDUKA ${ }^{2, *}$
${ }^{1}$ Computer Science Course, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
${ }^{2}$ Department of Computer Science, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan

Abstract

We present a parallel computing proximal method for solving the problem of minimizing the sum of convex functions over the intersection of fixed point sets of quasi-nonexpansive mappings in a real Hilbert space. We also provide a convergence analysis of the method for constant and diminishing step sizes under certain assumptions as well as a convergence-rate analysis for a diminishing step size. Numerical comparisons show that the performance of the algorithm is comparable with existing subgradient methods.

Keywords. Fixed point; Nonsmooth convex optimization; Parallel computing; Proximal method; Quasinonexpansive mapping.

1. Introduction

In this paper, we consider the following problem [7, Problem 2.1] (see [3, 9, 10] for applications of Problem 1.1):

Problem 1.1. Let H be a real Hilbert space. Suppose that
(A1) $Q_{i}: H \rightarrow H(i \in \mathscr{I}:=\{1,2, \ldots, I\})$ is quasi-firmly nonexpansive;
(A2) $f_{i}: H \rightarrow \mathbb{R}(i \in \mathscr{I})$ is convex and continuous with $\operatorname{dom}\left(f_{i}\right):=\left\{x \in H: f_{i}(x)<+\infty\right\}=$ H.

Then,

$$
\operatorname{minimize} f(x):=\sum_{i \in \mathscr{I}} f_{i}(x) \text { subject to } x \in X:=\bigcap_{i \in \mathscr{I}} \operatorname{Fix}\left(Q_{i}\right),
$$

where one assumes that there exists a solution of Problem 1.1 (see Sections 2 and 4 for the details).

[^0]Algorithms for solving this problem were proposed in [7, 9]. Reference [7] proposed parallel and incremental subgradient methods for solving Problem 1.1 and provided convergence as well as convergence-rate analyses. Reference [9,10] proposed stochastic fixed point optimization algorithms for solving a convex stochastic optimization problem that minimizes the expectation of f_{i} s over Fix $\left(Q_{1}\right)$. The stochastic fixed point optimization algorithms can be applied to the classifier ensemble problem.

There are methods for solving Problem 1.1, where Q_{i} is taken to be a nonexpansive mapping, which is a stronger assumption than a quasi-nonexpansive mapping. Subgradient methods were presented in $[4,5,6,11]$, while proximal methods were presented in $[8,16]$.

In this paper, we present a parallel method for solving Problem 1.1. The method is obtained by combining the parallel method in [7] with the proximal method in [8]. We also present a convergence analysis for a constant step size and a diminishing step size. The analysis shows that the proposed method with a small constant step size may approximate a solution to Problem 1.1 (Theorem 3.1) and that with a diminishing step size it converges to a solution under certain assumptions (Theorem 3.2). We also provide a convergence-rate analysis with a diminishing step size (Theorem 3.3). Finally, we numerically compare the proposed method with the existing subgradient methods.

This paper is organized as follows. Section 2 gives the mathematical preliminaries. Section 3 presents the parallel proximal method for solving Problem 1.1 and analyzes its convergence. Section 4 numerically compares the behaviors of the proposed method and the existing ones. Section 5 concludes the paper with a brief summary.

2. Mathematical Preliminaries

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and its induced norm $\|\cdot\|$. We use the standard notation \mathbb{N} for the natural numbers including zero and \mathbb{R}^{N} for the N-dimensional Euclidean space.
2.1. Quasi-nonexpansivity and demiclosedness. The fixed point set of a mapping $Q: H \rightarrow H$ is denoted by

$$
\operatorname{Fix}(Q):=\{x \in H: Q(x)=x\}
$$

Q is said to be quasi-nonexpansive [2, Definition 4.1(iii)] if $\|Q(x)-y\| \leq\|x-y\|$ for all $x \in H$ and for all $y \in \operatorname{Fix}(Q)$. When a quasi-nonexpansive mapping has one fixed point, its fixed point set is closed and convex [2, Proposition 2.6]. Q is said to be quasi-firmly nonexpansive [1, Section 3] if, for all $x \in H$ and for all $y \in \operatorname{Fix}(Q)$,

$$
\|Q(x)-y\|^{2}+\|(\operatorname{Id}-Q)(x)\|^{2} \leq\|x-y\|^{2}
$$

where $\operatorname{Id}(x):=x(x \in H)$. Any quasi-firmly nonexpansive mapping satisfies the quasi nonexpansivity condition. Moreover, Q is quasi-firmly nonexpansive if and only if $R:=2 Q$ - Id is quasi-nonexpansive [2, Proposition 4.2], which implies that $(1 / 2)(\operatorname{Id}+R)$ is quasi-firmly nonexpansive when R is quasi-nonexpansive. Let $x, u \in H$ and $\left(x_{n}\right)_{n \in \mathbb{N}} \subset H$. Id $-Q$ is said to be demiclosed if a weak convergence of $\left(x_{n}\right)$ to x and $\lim _{n \rightarrow+\infty}\left\|x_{n}-Q\left(x_{n}\right)-u\right\|=0 \mathrm{im}-$ ply $x-Q(x)=u$. Id $-Q$ is demiclosed when Q is nonexpansive, i.e., $\|Q(x)-Q(y)\| \leq\|x-y\|$ $(x, y \in H)$ [2, Theorem 4.17]. The metric projection P_{C} onto a nonempty, closed convex subset C
of H is firmly nonexpansive, i.e., $\left\|P_{C}(x)-P_{C}(y)\right\|^{2}+\left\|\left(\operatorname{Id}-P_{C}\right)(x)-\left(\operatorname{Id}-P_{C}\right)(y)\right\|^{2} \leq\|x-y\|^{2}$ $(x, y \in H)$. Moreover, $\operatorname{Fix}\left(P_{C}\right)=C$ [2, Proposition 4.8, (4.8)].
2.2. Convexity, proximal point, and subdifferentiability. A function $f: H \rightarrow \mathbb{R}$ is said to be convex if, for all $x, y \in H$ and for all $\alpha \in[0,1], f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$. A function f is said to be strictly convex [2, Definition 8.6] if, for all $x, y \in H$ and for all $\alpha \in(0,1)$, $x \neq y$ implies $f(\alpha x+(1-\alpha) y)<\alpha f(x)+(1-\alpha) f(y) . f$ is strongly convex with constant β [2, Definition 10.5] if there exists $\beta>0$ such that, for all $x, y \in H$ and for all $\alpha \in(0,1)$,

$$
f(\alpha x+(1-\alpha) y)+\frac{\beta \alpha(1-\alpha)}{2}\|x-y\|^{2} \leq \alpha f(x)+(1-\alpha) f(y)
$$

Let $f: H \rightarrow(-\infty,+\infty]$ be proper, lower semicontinuous, and convex. Then, the proximity operator of f [2, Definition 12.23], [14], denoted by Prox_{f}, maps every $x \in H$ to the unique minimizer of $f(\cdot)+(1 / 2)\|x-\cdot\|^{2}$; i.e.,

$$
\left\{\operatorname{Prox}_{f}(x)\right\}=\underset{y \in H}{\operatorname{argmin}}\left[f(y)+\frac{1}{2}\|x-y\|^{2}\right](x \in H) .
$$

The uniqueness and existence of $\operatorname{Prox}_{f}(x)$ are guaranteed for all $x \in H$ [2, Definition 12.23], [13]. We call $\operatorname{Prox}_{f}(x)$ the proximal point of f at x. Let $\operatorname{dom}(f):=\{x \in H: f(x)<+\infty\}$ be the domain of a function $f: H \rightarrow(-\infty,+\infty]$.

The subdifferential [2, Definition 16.1] of f is defined by

$$
\partial f(x):=\{u \in H: f(y) \geq f(x)+\langle y-x, u\rangle(y \in H)\} \quad(x \in H) .
$$

We call $u \in \partial f(x)$ the subgradient of f at x.
Proposition 2.1. [2, Propositions 12.26, 12.27, 12.28, and 16.14] Let $f: H \rightarrow(-\infty,+\infty$] be proper, lower semicontinuous, and convex. Then, the following conclusions hold:
(i) Let $x, p \in H . p=\operatorname{Prox}_{f}(x)$ if and only if $x-p \in \partial f(p)$ (i.e., $\langle y-p, x-p\rangle+f(p) \leq f(y)$ for all $y \in H$).
(ii) Prox_{f} is firmly nonexpansive with $\operatorname{Fix}\left(\operatorname{Prox}_{f}\right)=\operatorname{argmin}_{x \in H} f(x)$.
(iii) If f is continuous at $x \in \operatorname{dom}(f), \partial f(x)$ is nonempty. Moreover, there exists $\delta>0$ such that $\partial f(B(x ; \delta))$ is bounded, where $B(x ; \boldsymbol{\delta})$ stands for a closed ball with center x and radius δ.

The following propositions will be used to prove the main theorems in this paper.
Proposition 2.2. [15, Lemma 3.1] Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}} \subset H$ weakly converges to $\hat{x} \in H$ and $\bar{x} \neq \hat{x}$. Then, $\liminf _{n \rightarrow+\infty}\left\|x_{n}-\hat{x}\right\|<\liminf _{n \rightarrow+\infty}\left\|x_{n}-\bar{x}\right\|$.

Proposition 2.3. [2, Theorem 9.1] When $f: H \rightarrow \mathbb{R}$ is convex, f is weakly lower semicontinuous if and only if f is lower semicontinuous.

Proposition 2.4. [12, Lemma 2.1] Let $\left(\Gamma_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}$ and suppose that $\left(\Gamma_{n_{j}}\right)_{j \in \mathbb{N}}\left(\subset\left(\Gamma_{n}\right)_{n \in \mathbb{N}}\right)$ exists such that $\Gamma_{n_{j}}<\Gamma_{n_{j}+1}$ for all $j \in \mathbb{N}$. Define $(\tau(n))_{n \geq n_{0}} \subset \mathbb{N}$ by $\tau(n):=\max \left\{k \leq n: \Gamma_{k}<\right.$ $\left.\Gamma_{k+1}\right\}$ for some $n_{0} \in \mathbb{N}$. Then, $(\tau(n))_{n \geq n_{0}}$ is increasing and $\lim _{n \rightarrow+\infty} \tau(n)=+\infty$. Moreover, $\Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}$ and $\Gamma_{n} \leq \Gamma_{\tau(n)+1}$ for all $n \geq n_{0}$.

```
Algorithm 1 Parallel Proximal Method for solving Problem 1.1
Require: \(\left(\gamma_{n}\right)_{n \in \mathbb{N}} \subset(0,+\infty)\)
    \(n \leftarrow 0, x_{0} \in H\)
    loop
        for \(i=1\) to \(i=I\) do
            \(x_{n, i}:=Q_{i}\left(\operatorname{Prox}_{\gamma_{n} f_{i}}\left(x_{n}\right)\right)\)
        end for
        \(x_{n+1}:=\frac{1}{I} \sum_{i \in \mathscr{I}} x_{n, i}\)
        \(n \leftarrow n+1\)
    end loop
```


3. The Parallel Proximal Method

Algorithm 1 is the proposed algorithm for solving Problem 1.1.
Let us consider a network system with I users and assume that user i has its own private objective function f_{i} and mapping Q_{i} and tries to minimize f_{i} over Fix $\left(Q_{i}\right)$. Moreover, let us assume that each user can communicate with other users. Then, at iteration n, each user can have x_{n} in common. Since user i has its own objective function f_{i}, it computes $y_{n, i}:=\operatorname{Prox} \gamma_{n} f_{i}\left(x_{n}\right)$. Moreover, user i has its own constraint set $\operatorname{Fix}\left(Q_{i}\right)$, with which it tries to find a fixed point of Q_{i} by using $x_{n, i}:=Q_{i}\left(y_{n, i}\right)$. Since the users can communicate with each other, user i can receive all $x_{n, i}$, and hence, user i can compute $x_{n+1}:=(1 / I) \sum_{i \in \mathscr{I}} x_{n, i}$.

Let us compare Algorithm 1 with the existing parallel subgradient method [7, Algorithm 3.1] for solving Problem 1.1. The parallel subgradient method [7, Algorithm 3.1] is as follows:

$$
\begin{align*}
& Q_{\alpha, i}:=\alpha \mathrm{Id}+(1-\alpha) Q_{i}, \\
& g_{n, i} \in \partial f_{i}\left(Q_{\alpha, i}\left(x_{n}\right)\right) \\
& x_{n, i}:=Q_{\alpha, i}\left(x_{n}\right)-\lambda_{n} g_{n, i}, \tag{3.1}\\
& x_{n+1}:=\frac{1}{I} \sum_{i \in \mathscr{I}} x_{n, i} .
\end{align*}
$$

The difference between Algorithms 1 and (3.1) is the form of $x_{n, i}$, i.e., Algorithm 1 uses $x_{n, i}=$ $Q_{i}\left(\operatorname{Prox}_{\gamma_{n} f_{i}}\left(x_{n}\right)\right)$, while algorithm (3.1) uses $x_{n, i}:=Q_{\alpha, i}\left(x_{n}\right)-\lambda_{n} g_{n, i}$. Section 4 compares the behaviors of Algorithm 1 and algorithm (3.1) for concrete optimization problems.

First, we prove the following lemma.
Lemma 3.1. Suppose that (A1) and (A2) hold and define $y_{n, i}:=\operatorname{Prox}_{\gamma_{n} f_{i}}\left(x_{n}\right)$ for all $i \in \mathscr{I}$ and for all $n \in \mathbb{N}$. Then, Algorithm 1 satisfies that, for all $x \in X$ and for all $n \in \mathbb{N}$,

$$
\left\|x_{n+1}-x\right\|^{2} \leq\left\|x_{n}-x\right\|^{2}-\frac{1}{I} \sum_{i \in \mathscr{I}}\left\{\left\|x_{n}-y_{n, i}\right\|^{2}+\left\|x_{n, i}-y_{n, i}\right\|^{2}\right\}+\frac{2}{I} \gamma_{n} \sum_{i \in \mathscr{I}}\left(f_{i}(x)-f_{i}\left(y_{n, i}\right)\right) .
$$

Proof. Let $x \in X$ and $n \in \mathbb{N}$ be fixed arbitrarily. The definition of $y_{n, i}:=\operatorname{Prox} \gamma_{n} f_{i}\left(x_{n}\right)$ and Proposition 2.1(i) ensure that, for all $i \in \mathscr{I}$,

$$
\left\langle x-y_{n, i}, x_{n}-y_{n, i}\right\rangle \leq \gamma_{n}\left(f_{i}(x)-f_{i}\left(y_{n, i}\right)\right),
$$

which, together with $2\langle x, y\rangle=\|x\|^{2}+\|y\|^{2}-\|x-y\|^{2}(x, y \in H)$, implies that

$$
2 \gamma_{n}\left(f_{i}(x)-f_{i}\left(y_{n, i}\right)\right) \geq\left\|x-y_{n, i}\right\|^{2}+\left\|x_{n}-y_{n, i}\right\|^{2}-\left\|x-x_{n}\right\|^{2} .
$$

Accordingly, for all $i \in \mathscr{I}$,

$$
\begin{equation*}
\left\|y_{n, i}-x\right\|^{2} \leq\left\|x_{n}-x\right\|^{2}-\left\|x_{n}-y_{n, i}\right\|^{2}+2 \gamma_{n}\left(f_{i}(x)-f_{i}\left(y_{n, i}\right)\right) . \tag{3.2}
\end{equation*}
$$

The definition of $x_{n, i}:=Q_{i}\left(y_{n, i}\right)$ and (A1) guarantee that, for all $i \in \mathscr{I}$,

$$
\begin{equation*}
\left\|x_{n, i}-x\right\|^{2} \leq\left\|y_{n, i}-x\right\|^{2}-\left\|x_{n, i}-y_{n, i}\right\|^{2} . \tag{3.3}
\end{equation*}
$$

Hence, (3.2) and (3.3) imply that

$$
\left\|x_{n, i}-x\right\|^{2} \leq\left\|x_{n}-x\right\|^{2}-\left\|x_{n}-y_{n, i}\right\|^{2}-\left\|x_{n, i}-y_{n, i}\right\|^{2}+2 \gamma_{n}\left(f_{i}(x)-f_{i}\left(y_{n, i}\right)\right) .
$$

Summing the above inequality from $i=1$ to $i=I$ and the convexity of $\|\cdot\|^{2}$ ensure that

$$
\begin{aligned}
I\left\|x_{n+1}-x\right\|^{2} & \leq \sum_{i \in \mathscr{I}}\left\|x_{n, i}-x\right\|^{2} \\
& \leq I\left\|x_{n}-x\right\|^{2}-\sum_{i \in \mathscr{I}}\left\{\left\|x_{n}-y_{n, i}\right\|^{2}+\left\|x_{n, i}-y_{n, i}\right\|^{2}\right\}+2 \gamma_{n} \sum_{i \in \mathscr{I}}\left(f_{i}(x)-f_{i}\left(y_{n, i}\right)\right)
\end{aligned}
$$

which completes the proof.
The convergence analysis of Algorithm 1 depends on the following.
Assumpion 3.1. The sequence $\left(y_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ is bounded.
Assume that, for all $i \in \mathscr{I}, \operatorname{argmin}_{x \in H} f_{i}(x)\left(=\operatorname{Fix}\left(\operatorname{Prox}_{f_{i}}\right)\right) \neq \emptyset$ and $\operatorname{Fix}\left(Q_{i}\right)$ is bounded. Then, we can choose in advance of running the algorithm a bounded, closed convex set C_{i} (e.g., C_{i} is a closed ball with a large enough radius) satisfying $C_{i} \supset \operatorname{Fix}\left(Q_{i}\right)$. Accordingly, we can compute

$$
\begin{equation*}
x_{n, i}:=P_{C_{i}}\left[Q_{i}\left(y_{n, i}\right)\right] \in C_{i} \tag{3.4}
\end{equation*}
$$

instead of $x_{n, i}$ in Algorithm 1. The boundedness of $C_{i}(i \in \mathscr{I})$ implies that $\left(x_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ is bounded. Accordingly, $\left(x_{n}\right)_{n \in \mathbb{N}}$ is also bounded. Moreover, Proposition 2.1(ii) ensures that, for all $i \in \mathscr{I}$, for all $n \in \mathbb{N}$, and for all $x \in \operatorname{Fix}\left(\operatorname{Prox}_{f_{i}}\right),\left\|y_{n, i}-x\right\| \leq\left\|x_{n}-x\right\|$. Hence, the boundedness of $\left(x_{n}\right)_{n \in \mathbb{N}}$ guarantees that $\left(y_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ is bounded. Hence, it can be assumed that $\left(x_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ in Algorithm 1 is as in (3.4) in place of Assumption 3.1.

We also have the following lemma.
Lemma 3.2. Suppose that (A1), (A2), and Assumption 3.1 hold. Then, $\left(x_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ and $\left(x_{n}\right)_{n \in \mathbb{N}}$ are bounded.

Proof. Assumption (A1) ensures that, for all $x \in X$, for all $i \in \mathscr{I}$, and for all $n \in \mathbb{N}$,

$$
\left\|x_{n, i}-x\right\| \leq\left\|y_{n, i}-x\right\|
$$

which, together with Assumption 3.1, implies that $\left(x_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ is bounded. Hence, the definition of x_{n} implies that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is also bounded.
3.1. Constant step-size rule. The following is a convergence analysis of Algorithm 1 with a constant step size, which indicates that Algorithm 1 with a small constant step size may approximate a solution of Problem 1.1.

Theorem 3.1. Suppose that (A1), (A2), and Assumption 3.1 hold. Then, Algorithm 1 with $\gamma_{n}:=\gamma>0$ satisfies that

$$
\liminf _{n \rightarrow+\infty} \sum_{i \in \mathscr{I}}\left\|y_{n, i}-Q_{i}\left(y_{n, i}\right)\right\|^{2} \leq I M_{1} \gamma \quad \text { and } \quad \liminf _{n \rightarrow+\infty} \sum_{i \in \mathscr{I}} f_{i}\left(y_{n, i}\right) \leq f^{\star}
$$

where $M_{1}:=\sup \left\{(2 / I) \sum_{i \in \mathscr{I}}\left(f_{i}(x)-f_{i}\left(y_{n, i}\right)\right): n \in \mathbb{N}\right\}<+\infty$ for some $x \in X$ and f^{\star} is the optimal value of Problem 1.1.
Proof. Let $x \in X$ be fixed arbitrarily. The definition of $\partial f_{i}(x)$ and the Cauchy-Schwarz inequality imply that, for all $i \in \mathscr{I}$, for all $n \in \mathbb{N}$, and for all $u_{i} \in \partial f_{i}(x)$,

$$
f_{i}(x)-f_{i}\left(y_{n, i}\right) \leq\left\langle x-y_{n, i}, u_{i}\right\rangle \leq\left\|y_{n, i}-x\right\|\left\|u_{i}\right\|,
$$

which, together with $\tilde{B}:=\max _{i \in \mathscr{I}} \sup \left\{\left\|y_{n, i}-x\right\|: n \in \mathbb{N}\right\}<+\infty$ (by Assumption 3.1), implies that

$$
\begin{equation*}
M_{1}:=\sup \left\{\frac{2}{I} \sum_{i \in \mathscr{I}}\left(f_{i}(x)-f_{i}\left(y_{n, i}\right)\right): n \in \mathbb{N}\right\} \leq 2 \tilde{B} \max _{i \in \mathscr{I}}\left\|u_{i}\right\|<+\infty . \tag{3.5}
\end{equation*}
$$

We first show that

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} \sum_{i \in \mathscr{I}} \underbrace{\left\{\left\|x_{n}-y_{n, i}\right\|^{2}+\left\|x_{n, i}-y_{n, i}\right\|^{2}\right\}}_{X_{n, i}} \leq I M_{1} \gamma \tag{3.6}
\end{equation*}
$$

If (3.6) does not hold, there exists $\delta>0$ such that

$$
\liminf _{n \rightarrow+\infty} \sum_{i \in \mathscr{I}} X_{n, i}>I M_{1} \gamma+2 \delta
$$

Accordingly, the property of the limit inferior of $\left(\sum_{i \in \mathscr{I}}\left\{\left\|x_{n}-y_{n, i}\right\|^{2}+\left\|x_{n, i}-y_{n, i}\right\|^{2}\right\}\right)_{n \in \mathbb{N}}$ ensures that $n_{0} \in \mathbb{N}$ exists such that, for all $n \geq n_{0}$,

$$
\begin{equation*}
\sum_{i \in \mathscr{I}} X_{n, i}>I M_{1} \gamma+\delta \tag{3.7}
\end{equation*}
$$

Accordingly, Lemma 3.1 with $\gamma_{n}:=\gamma(n \in \mathbb{N})$ guarantees that, for all $n \geq n_{0}$,

$$
\begin{aligned}
\left\|x_{n+1}-x\right\|^{2} & \leq\left\|x_{n}-x\right\|^{2}-\frac{1}{I} \sum_{i \in \mathscr{I}} X_{n, i}+\frac{2}{I} \gamma \sum_{i \in \mathscr{I}}\left(f_{i}(x)-f_{i}\left(y_{n, i}\right)\right) \\
& <\left\|x_{n}-x\right\|^{2}-\frac{1}{I}\left(I M_{1} \gamma+\delta\right)+M_{1} \gamma \\
& =\left\|x_{n}-x\right\|^{2}-\frac{\delta}{I} \\
& <\left\|x_{n_{0}}-x\right\|^{2}-\frac{\delta}{I}\left(n+1-n_{0}\right) .
\end{aligned}
$$

The right side of the above inequality approaches minus infinity as n diverges. Hence, we have a contradiction. This implies that (3.6) holds. Therefore,

$$
\liminf _{n \rightarrow+\infty} \sum_{i \in \mathscr{I}}\left\|y_{n, i}-x_{n, i}\right\|^{2}=\liminf _{n \rightarrow+\infty} \sum_{i \in \mathscr{I}}\left\|y_{n, i}-Q_{i}\left(y_{n, i}\right)\right\|^{2} \leq I M_{1} \gamma .
$$

Next, we show that

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} \sum_{i \in \mathscr{I}} f_{i}\left(y_{n, i}\right) \leq f^{\star} \tag{3.8}
\end{equation*}
$$

Assume that (3.8) does not hold. An argument similar to the one for obtaining (3.7) implies that there exist $\zeta>0$ and $m_{0} \in \mathbb{N}$ such that, for all $n \geq m_{0}$,

$$
\sum_{i \in \mathscr{I}} f_{i}\left(y_{n, i}\right)-f^{\star}>\zeta
$$

Lemma 3.1 thus ensures that, for all $n \geq m_{0}$ and for all $x^{\star} \in X^{\star}:=\left\{x^{\star} \in X: f\left(x^{\star}\right)=f^{\star}=\right.$ $\left.\inf _{x \in X} f(x)\right\}$,

$$
\begin{aligned}
\left\|x_{n+1}-x^{\star}\right\|^{2} & \leq\left\|x_{n}-x^{\star}\right\|^{2}+\frac{2}{I} \gamma\left(f^{\star}-\sum_{i \in \mathscr{I}} f_{i}\left(y_{n, i}\right)\right) \\
& <\left\|x_{n}-x^{\star}\right\|^{2}-\frac{2}{I} \gamma \zeta \\
& <\left\|x_{m_{0}}-x^{\star}\right\|^{2}-\frac{2}{I} \gamma \zeta\left(n+1-m_{0}\right),
\end{aligned}
$$

which is a contradiction. Accordingly, (3.8) holds. This completes the proof.
3.2. Diminishing step-size rule. The following is a convergence analysis of Algorithm 1 with a diminishing step size.

Theorem 3.2. Suppose that (A1), (A2), and Assumption 3.1 hold and $\mathrm{Id}-Q_{i}(i \in \mathscr{I})$ is demiclosed. ${ }^{*}$ Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be the sequence generated by Algorithm 1 with $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ satisfying $\lim _{n \rightarrow+\infty} \gamma_{n}=0$ and $\sum_{n=0}^{+\infty} \gamma_{n}=+\infty$. Then, there exists a subsequence of each of $\left(x_{n}\right)_{n \in \mathbb{N}}$, $\left(x_{n, i}\right)_{n \in \mathbb{N}}$, and $\left(y_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ that weakly converges to a solution of Problem 1.1. Moreover, $\left(x_{n}\right)_{n \in \mathbb{N}},\left(x_{n, i}\right)_{n \in \mathbb{N}}$, and $\left(y_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ strongly converge to a unique solution of Problem 1.1 if one of the following holds:
(i) One f_{i} is strongly convex;
(ii) H is finite-dimensional, and one f_{i} is strictly convex.

Proof. We consider two cases.
Case 1: Suppose that there exists $m_{0} \in \mathbb{N}$ such that, for all $n \in \mathbb{N}$ and for all $x^{\star} \in X^{\star}, n \geq m_{0}$ implies $\left\|x_{n+1}-x^{\star}\right\| \leq\left\|x_{n}-x^{\star}\right\|$, where $X^{\star}:=\left\{x^{\star} \in X: f\left(x^{\star}\right)=f^{\star}=\inf _{x \in X} f(x)\right\}$. Then, there exists $c:=\lim _{n \rightarrow+\infty}\left\|x_{n}-x^{\star}\right\|$. Let $x^{\star} \in X^{\star}$ be fixed arbitrarily. Lemma 3.1, together with a discussion similar to that of (3.5), guarantees that there exists

$$
M_{2}:=\sup \left\{\frac{2}{I} \sum_{i \in \mathscr{I}}\left(f_{i}\left(x^{\star}\right)-f_{i}\left(y_{n, i}\right)\right): n \in \mathbb{N}\right\}<+\infty
$$

such that, for all $n \geq m_{0}$,

$$
\begin{equation*}
\frac{1}{I} \sum_{i \in \mathscr{I}}\left\{\left\|x_{n}-y_{n, i}\right\|^{2}+\left\|x_{n, i}-y_{n, i}\right\|^{2}\right\} \leq\left\|x_{n}-x^{\star}\right\|^{2}-\left\|x_{n+1}-x^{\star}\right\|^{2}+M_{2} \gamma_{n} \tag{3.9}
\end{equation*}
$$

[^1]Accordingly, the conditions $\lim _{n \rightarrow+\infty} \gamma_{n}=0$ and $c:=\lim _{n \rightarrow+\infty}\left\|x_{n}-x^{\star}\right\|$ mean that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|x_{n}-y_{n, i}\right\|=0 \text { and } \lim _{n \rightarrow+\infty}\left\|x_{n, i}-y_{n, i}\right\|=0(i \in \mathscr{I}) . \tag{3.10}
\end{equation*}
$$

From Lemma 3.1, for all $x \in X$ and for all $k \in \mathbb{N}$, we have

$$
\begin{equation*}
\frac{2}{I} \gamma_{k} \underbrace{\sum_{i \in \mathscr{I}}\left(f_{i}\left(y_{k, i}\right)-f_{i}(x)\right)}_{N_{k}(x)} \leq\left\|x_{k}-x\right\|^{2}-\left\|x_{k+1}-x\right\|^{2} \tag{3.11}
\end{equation*}
$$

which implies that, for all $n \in \mathbb{N}$ and for all $x \in X$,

$$
\frac{2}{I} \sum_{k=0}^{n} \gamma_{k} N_{k}(x) \leq\left\|x_{0}-x\right\|^{2}-\left\|x_{n+1}-x\right\|^{2} \leq\left\|x_{0}-x\right\|^{2}
$$

Accordingly, for all $x \in X$,

$$
\begin{equation*}
\frac{2}{I} \sum_{k=0}^{+\infty} \gamma_{k} N_{k}(x)<+\infty \tag{3.12}
\end{equation*}
$$

Here, we show that, for all $x \in X$,

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} N_{n}(x) \leq 0 \tag{3.13}
\end{equation*}
$$

Assume that (3.13) does not hold; i.e., there exists $x_{0} \in X$ such that $\liminf _{n \rightarrow+\infty} N_{n}\left(x_{0}\right)>0$. Then, $m_{1} \in \mathbb{N}$ and $\theta>0$ exist such that, for all $n \geq m_{1}, N_{n}\left(x_{0}\right) \geq \theta$. From (3.12) and $\sum_{n=0}^{+\infty} \gamma_{n}=$ $+\infty$, we have

$$
+\infty=\frac{2 \theta}{I} \sum_{k=m_{1}}^{+\infty} \gamma_{k} \leq \frac{2}{I} \sum_{k=m_{1}}^{+\infty} \gamma_{k} N_{k}\left(x_{0}\right)<+\infty
$$

which is a contradiction. Hence, (3.13) holds, i.e., for all $x \in X$,

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} \sum_{i \in \mathscr{I}} f_{i}\left(y_{n, i}\right) \leq \sum_{i \in \mathscr{I}} f_{i}(x)=: f(x) \tag{3.14}
\end{equation*}
$$

The definition of $u_{n, i} \in \partial f_{i}\left(x_{n}\right)$ and the Cauchy-Schwarz inequality ensure that, for all $i \in \mathscr{I}$ and for all $n \in \mathbb{N}$,

$$
f_{i}\left(x_{n}\right)-f_{i}\left(y_{n, i}\right) \leq\left\langle x_{n}-y_{n, i}, u_{n, i}\right\rangle \leq\left\|x_{n}-y_{n, i}\right\|\left\|u_{n, i}\right\| .
$$

Proposition 2.1(iii) and the boundedness of $\left(x_{n}\right)_{n \in \mathbb{N}}$ (see also Lemma 3.2) guarantee that there exists $B_{1}:=\max _{i \in \mathscr{I}} \sup \left\{\left\|u_{n, i}\right\|: n \in \mathbb{N}\right\}<+\infty$ such that, for all $n \in \mathbb{N}$,

$$
f\left(x_{n}\right)=\sum_{i \in \mathscr{I}} f_{i}\left(x_{n}\right) \leq B_{1} \sum_{i \in \mathscr{I}}\left\|x_{n}-y_{n, i}\right\|+\sum_{i \in \mathscr{I}} f_{i}\left(y_{n, i}\right) .
$$

Therefore, (3.10) and (3.14) lead to the finding that, for all $x \in X$,

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} f\left(x_{n}\right) \leq B_{1} \lim _{n \rightarrow+\infty} \sum_{i \in \mathscr{I}}\left\|x_{n}-y_{n, i}\right\|+\liminf _{n \rightarrow+\infty} \sum_{i \in \mathscr{I}} f_{i}\left(y_{n, i}\right) \leq f(x) \tag{3.15}
\end{equation*}
$$

Accordingly, a subsequence $\left(x_{n_{l}}\right)_{l \in \mathbb{N}}$ of $\left(x_{n}\right)_{n \in \mathbb{N}}$ exists such that, for all $x \in X$,

$$
\begin{equation*}
\lim _{l \rightarrow+\infty} f\left(x_{n_{l}}\right)=\liminf _{n \rightarrow+\infty} f\left(x_{n}\right) \leq f(x) \tag{3.16}
\end{equation*}
$$

Since $\left(x_{n_{l}}\right)_{l \in \mathbb{N}}$ is bounded (see also Lemma 3.2), there exists $\left(x_{n_{l_{m}}}\right)_{m \in \mathbb{N}}\left(\subset\left(x_{n_{l}}\right)_{l \in \mathbb{N}}\right)$ such that $\left(x_{l_{m}}\right)_{m \in \mathbb{N}}$ weakly converges to $x_{*} \in H$. From (3.10), $\left(y_{n_{l_{m}}, i}\right)(i \in \mathscr{I})$ weakly converges to x_{*}.

Hence, (3.10) and the demiclosedness of Id $-Q_{i}$ ensure that $x_{*} \in \operatorname{Fix}\left(Q_{i}\right)(i \in \mathscr{I})$, i.e., $x_{*} \in X$. Proposition 2.3 ensures that the continuity and convexity of f (by (A2)) imply that f is weakly lower semicontinuous, which means that

$$
f\left(x_{*}\right) \leq \liminf _{m \rightarrow+\infty} f\left(x_{l_{l m}}\right) .
$$

Therefore, (3.16) leads to the finding that, for all $x \in X$,

$$
f\left(x_{*}\right) \leq \liminf _{m \rightarrow+\infty} f\left(x_{n_{l_{m}}}\right)=\lim _{m \rightarrow+\infty} f\left(x_{n_{l_{m}}}\right) \leq f(x),
$$

that is, $x_{*} \in X^{\star}$. Let us take another subsequence $\left(x_{n_{l_{k}}}\right)_{k \in \mathbb{N}}\left(\subset\left(x_{n_{l}}\right)_{l \in \mathbb{N}}\right)$ such that $\left(x_{n_{l_{k}}}\right)_{k \in \mathbb{N}}$ weakly converges to $x_{* *} \in H$. A discussion similar to the one for obtaining $x_{*} \in X^{\star}$ guarantees that $x_{* *} \in X^{\star}$. Here, it is proven that $x_{*}=x_{* *}$. Now, let us assume that $x_{*} \neq x_{* *}$. Then, the existence of $c:=\lim _{n \rightarrow+\infty}\left\|x_{n}-x^{\star}\right\|\left(x^{\star} \in X^{\star}\right)$ and Proposition 2.2 imply that

$$
\begin{aligned}
c & =\lim _{m \rightarrow+\infty}\left\|x_{n_{l_{m}}}-x_{*}\right\|<\lim _{m \rightarrow+\infty}\left\|x_{n_{l_{m}}}-x_{* *}\right\| \\
& =\lim _{n \rightarrow+\infty}\left\|x_{n}-x_{* *}\right\|=\lim _{k \rightarrow+\infty}\left\|x_{n_{l_{k}}}-x_{* *}\right\|<\lim _{k \rightarrow+\infty}\left\|x_{n_{l_{k}}}-x_{*}\right\| \\
& =c,
\end{aligned}
$$

which is a contradiction. Hence, $x_{*}=x_{* *}$. Accordingly, any subsequence of $\left(x_{n_{l}}\right)_{l \in \mathbb{N}}$ converges weakly to $x_{*} \in X^{\star}$; i.e., $\left(x_{n_{l}}\right)_{l \in \mathbb{N}}$ converges weakly to $x_{*} \in X^{\star}$. This means that x_{*} is a weak cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ and belongs to X^{\star}. A discussion similar to the one for obtaining $x_{*}=x_{* *}$ guarantees that there is only one weak cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$, so we can conclude that, in Case $1,\left(x_{n}\right)_{n \in \mathbb{N}}$ weakly converges to a point in X^{\star}.

Case 2: Suppose that, for all $m \in \mathbb{N}$, there exist $n \in \mathbb{N}$ and $x_{0}^{\star} \in X^{\star}$ such that $n \geq m$ and

$$
\left\|x_{n+1}-x_{0}^{\star}\right\|>\left\|x_{n}-x_{0}^{\star}\right\| .
$$

This implies that $\left(x_{n_{j}}\right)_{j \in \mathbb{N}}\left(\subset\left(x_{n}\right)_{n \in \mathbb{N}}\right)$ exists such that, for all $j \in \mathbb{N}$,

$$
\left\|x_{n_{j}+1}-x_{0}^{\star}\right\|>\left\|x_{n_{j}}-x_{0}^{\star}\right\|=: \Gamma_{n_{j}} .
$$

Proposition 2.4 thus guarantees that $m_{1} \in \mathbb{N}$ exists such that, for all $n \geq m_{1}, \Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}$, where $\tau(n)$ is defined as in Proposition 2.4. From Lemma 3.1 (see also (3.9)), for all $n \geq m_{1}$, we have

$$
\begin{aligned}
\frac{1}{I} \sum_{i \in \mathscr{I}}\left\{\left\|x_{\tau(n)}-y_{\tau(n), i}\right\|^{2}+\left\|x_{\tau(n), i}-y_{\tau(n), i}\right\|^{2}\right\} & \leq \Gamma_{\tau(n)}^{2}-\Gamma_{\tau(n)+1}^{2}+\tilde{M}_{2} \gamma_{\tau(n)} \\
& \leq \tilde{M}_{2} \gamma_{\tau(n)}
\end{aligned}
$$

where

$$
\tilde{M}_{2}:=\sup \left\{\frac{2}{I} \sum_{i \in \mathscr{I}}\left(f_{i}\left(x^{\star}\right)-f_{i}\left(y_{\tau(n), i}\right)\right): n \in \mathbb{N}\right\}
$$

is finite by Assumption 3.1 (see also (3.5)). Hence, the condition $\lim _{n \rightarrow+\infty} \gamma_{\tau(n)}=0$ implies that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|x_{\tau(n)}-y_{\tau(n), i}\right\|=0 \text { and } \lim _{n \rightarrow+\infty}\left\|x_{\tau(n), i}-y_{\tau(n), i}\right\|=0(i \in \mathscr{I}) . \tag{3.17}
\end{equation*}
$$

From (3.11), for all $n \geq m_{1}$,

$$
\frac{2}{I} \gamma_{\tau(n)} N_{\tau(n)}\left(x_{0}^{\star}\right) \leq \Gamma_{\tau(n)}^{2}-\Gamma_{\tau(n)+1}^{2} \leq 0
$$

which, together with $\gamma_{\tau(n)} \geq 0\left(n \geq m_{1}\right)$, implies that $N_{\tau(n)}\left(x_{0}^{\star}\right) \leq 0$. Accordingly,

$$
\limsup _{n \rightarrow+\infty} \sum_{i \in \mathscr{I}} f_{i}\left(y_{\tau(n), i}\right) \leq f^{\star}
$$

An argument, which is similar to the one for obtaining (3.15), together with (3.17), implies that

$$
\limsup _{n \rightarrow+\infty} f\left(x_{\tau(n)}\right) \leq f^{\star}
$$

Choose a subsequence $\left(x_{\tau\left(n_{k}\right)}\right)_{k \in \mathbb{N}}$ of $\left(x_{\tau(n)}\right)_{n \geq m_{1}}$ arbitrarily. Then,

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} f\left(x_{\tau\left(n_{k}\right)}\right) \leq \limsup _{n \rightarrow+\infty} f\left(x_{\tau(n)}\right) \leq f^{\star} \tag{3.18}
\end{equation*}
$$

The boundedness of $\left(x_{\tau\left(n_{k}\right)}\right)_{k \in \mathbb{N}}$ ensures that $\left(x_{\tau\left(n_{k_{l}}\right)}\right)_{l \in \mathbb{N}}\left(\subset\left(x_{\tau\left(n_{k}\right)}\right)_{k \in \mathbb{N}}\right)$ exists such that $\left(x_{\tau\left(n_{k_{l}}\right)}\right)_{l \in \mathbb{N}}$ weakly converges to $x_{\star} \in H$. Then, (3.17) and the demiclosedness of Id $-Q_{i}$ ensure that $x_{\star} \in X$. Moreover, Proposition 2.3 and (3.18) guarantee that

$$
f\left(x_{\star}\right) \leq \liminf _{l \rightarrow+\infty} f\left(x_{\tau\left(n_{k_{l}}\right)}\right) \leq \limsup _{l \rightarrow+\infty} f\left(x_{\tau\left(n_{k_{l}}\right)}\right) \leq f^{\star}
$$

that is, $x_{\star} \in X^{\star}$. Therefore, $\left(x_{\tau\left(n_{k_{l}}\right)}\right)_{l \in \mathbb{N}}$ weakly converges to $x_{\star} \in X^{\star}$. From Cases 1 and 2 , there exists a subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$ that weakly converges to a point in X^{\star}.

Suppose that assumption (i) in Theorem 3.2 holds. The strong convexity of $f:=\sum_{i \in \mathscr{I}} f^{(i)}$ implies that X^{\star} consists of one point, denoted by x^{\star}. In Case 1 , the strong convexity of f guarantees that there exists $\beta>0$ such that, for all $\alpha \in(0,1)$ and for all $l \in \mathbb{N}$,

$$
(\beta / 2) \alpha(1-\alpha)\left\|x_{n_{l}}-x^{\star}\right\|^{2} \leq \alpha f\left(x_{n_{l}}\right)+(1-\alpha) f^{\star}-f\left(\alpha x_{n_{l}}+(1-\alpha) x^{\star}\right) .
$$

Accordingly, from the existence of $c:=\lim _{n \rightarrow+\infty}\left\|x_{n}-x^{\star}\right\|$ and (3.16), we have

$$
\begin{aligned}
\frac{\beta}{2} \alpha(1-\alpha) \lim _{l \rightarrow+\infty}\left\|x_{n_{l}}-x^{\star}\right\|^{2} \leq & \lim _{l \rightarrow+\infty}\left(\alpha f\left(x_{n_{l}}\right)+(1-\alpha) f^{\star}\right) \\
& +\limsup _{l \rightarrow+\infty}\left(-f\left(\alpha x_{n_{l}}+(1-\alpha) x^{\star}\right)\right) \\
\leq & f^{\star}-\liminf _{l \rightarrow+\infty} f\left(\alpha x_{n_{l}}+(1-\alpha) x^{\star}\right)
\end{aligned}
$$

which, together with the weak convergence of $\left(x_{n_{l}}\right)_{l \in \mathbb{N}}$ to x^{\star} and Proposition 2.3, implies that

$$
\frac{\beta}{2} \alpha(1-\alpha) \lim _{l \rightarrow+\infty}\left\|x_{n_{l}}-x^{\star}\right\|^{2} \leq f^{\star}-f\left(\alpha x^{\star}+(1-\alpha) x^{\star}\right)=0 .
$$

Hence, $\left(x_{n_{l}}\right)_{l \in \mathbb{N}}$ strongly converges to x^{\star}. Therefore, from [2, Theorem 5.11], the whole sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ strongly converges to x^{\star}. From (3.10), $\left(x_{n, i}\right)_{n \in \mathbb{N}}$ and $\left(y_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ strongly converge to x^{\star}. In Case 2, the strong convexity of f leads to the deduction that, for all $\alpha \in(0,1)$ and for all $l \in \mathbb{N}$,

$$
\begin{aligned}
\frac{\beta}{2} \alpha(1-\alpha) \limsup _{l \rightarrow+\infty}\left\|x_{\tau\left(n_{k_{l}}\right)}-x^{\star}\right\|^{2} \leq & \alpha \limsup _{l \rightarrow+\infty} f\left(x_{\tau\left(n_{k_{l}}\right)}\right)+(1-\alpha) f^{\star} \\
& -\liminf _{l \rightarrow+\infty} f\left(\alpha x_{\tau\left(n_{k_{l}}\right)}+(1-\alpha) x^{\star}\right) .
\end{aligned}
$$

The weak convergence of $\left(x_{\tau\left(n_{k_{l}}\right)}\right)_{l \in \mathbb{N}}$ to x^{\star}, the weakly lower semicontinuity of f (by Proposition 2.3), and (3.18) imply that

$$
\frac{\beta}{2} \alpha(1-\alpha) \limsup _{l \rightarrow+\infty}\left\|x_{\tau\left(n_{k_{l}}\right)}-x^{\star}\right\|^{2} \leq f^{\star}-f\left(\alpha x^{\star}+(1-\alpha) x^{\star}\right)=0
$$

which implies that $\left(x_{\tau\left(n_{k_{l}}\right)}\right)_{l \in \mathbb{N}}$ strongly converges to x^{\star}. When another subsequence $\left(x_{\tau\left(n_{k_{m}}\right)}\right)_{m \in \mathbb{N}}$ $\left(\subset\left(x_{\tau\left(n_{k}\right)}\right)_{k \in \mathbb{N}}\right)$ can be chosen, a discussion similar to the one for showing the weak convergence of $\left(x_{\tau\left(n_{k_{l}}\right)}\right)_{l \in \mathbb{N}}$ to a point in X^{\star} guarantees that $\left(x_{\tau\left(n_{k_{m}}\right)}\right)_{m \in \mathbb{N}}$ also weakly converges to a point in X^{\star}. Furthermore, a discussion similar to the one for showing the strong convergence of $\left(x_{\tau\left(n_{k_{l}}\right)}\right)_{l \in \mathbb{N}}$ to x^{\star} ensures that $\left(x_{\tau\left(n_{\left.k_{m}\right)}\right)}\right)_{m \in \mathbb{N}}$ strongly converges to the same x^{\star}. Hence, it is guaranteed that $\left(x_{\tau\left(n_{k}\right)}\right)_{k \in \mathbb{N}}$ strongly converges to x^{\star}. Since $\left(x_{\tau\left(n_{k}\right)}\right)_{k \in \mathbb{N}}$ is an arbitrary subsequence of $\left(x_{\tau(n)}\right)_{n \geq m_{1}},\left(x_{\tau(n)}\right)_{n \geq m_{1}}$ strongly converges to x^{\star}; i.e.,

$$
\lim _{n \rightarrow+\infty} \Gamma_{\tau(n)}=\lim _{n \rightarrow+\infty}\left\|x_{\tau(n)}-x^{\star}\right\|=0
$$

Accordingly, Proposition 2.4 ensures that

$$
\limsup _{n \rightarrow+\infty}\left\|x_{n}-x^{\star}\right\| \leq \limsup _{n \rightarrow+\infty} \Gamma_{\tau(n)+1}=0
$$

which implies that, in Case 2, the whole sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to x^{\star}. Moreover, Lemma 3.1 and $\lim _{n \rightarrow+\infty} \gamma_{n}=0$ imply that

$$
\lim _{n \rightarrow+\infty}\left\|x_{n}-y_{n, i}\right\|=\lim _{n \rightarrow+\infty}\left\|x_{n, i}-y_{n, i}\right\|=0,(i \in \mathscr{I})
$$

Therefore, $\left(x_{n, i}\right)_{n \in \mathbb{N}}$ and $\left(y_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ converge to x^{\star}.
Suppose that assumption (ii) in Theorem 3.2 holds. Let $x^{\star} \in X^{\star}$ be the unique solution to Problem 1.1. In Case 1, it is guaranteed that $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to $x^{\star} \in X^{\star}$. From (3.10), $\left(x_{n, i}\right)_{n \in \mathbb{N}}$ and $\left(y_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ strongly converge to x^{\star}. Moreover, in Case 2, the convergence of $\left(x_{\tau\left(n_{k_{l}}\right)}\right)_{l \in \mathbb{N}}$ to x^{\star} is guaranteed. A discussion similar to the one for showing the strong convergence of $\left(x_{\tau(n)}\right)_{n \geq m_{1}}$ to x^{\star} ensures that $\left(x_{\tau(n)}\right)_{n \geq m_{1}}$ converges to $x^{\star} \in X^{\star}$. Proposition 2.4 thus guarantees that the whole sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to x^{\star}. Lemma 3.1 and $\lim _{n \rightarrow+\infty} \gamma_{n}=$ 0 imply that

$$
\lim _{n \rightarrow+\infty}\left\|x_{n}-y_{n, i}\right\|=\lim _{n \rightarrow+\infty}\left\|x_{n, i}-y_{n, i}\right\|=0,(i \in \mathscr{I})
$$

Therefore, $\left(x_{n, i}\right)_{n \in \mathbb{N}}$ and $\left(y_{n, i}\right)_{n \in \mathbb{N}}(i \in \mathscr{I})$ converge to x^{\star}. This completes the proof.
The following is a convergence-rate analysis of Algorithm 1 with a diminishing step size.
Theorem 3.3. Suppose that the assumptions in Theorem 3.1 hold and a monotone decreasing sequence $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ satisfies $\lim _{n \rightarrow+\infty} \gamma_{n}=0, \lim _{n \rightarrow+\infty}\left(n \gamma_{n}\right)^{-1}=0, \sum_{n=0}^{+\infty} \gamma_{n}=+\infty$, and $\lim _{n \rightarrow+\infty} n^{-1}$ $\sum_{k=0}^{n-1} \gamma_{k}=0$. Then, Algorithm 1 satisfies that, for all $n \geq 1$,

$$
\sum_{i \in \mathscr{I}}\left(\frac{1}{n} \sum_{k=0}^{n-1}\left\|y_{k, i}-Q_{i}\left(y_{k, i}\right)\right\|^{2}\right) \leq \frac{I\left\|x_{0}-x\right\|^{2}}{n}+\frac{\tilde{M}_{1}}{n} \sum_{k=0}^{n-1} \gamma_{k},
$$

and

$$
\sum_{i \in \mathscr{I}} f_{i}\left(\frac{1}{n} \sum_{k=0}^{n-1} y_{k, i}\right) \leq f^{\star}+\frac{I B}{2 n \gamma_{n}}
$$

where x^{\star} is a solution of Problem 1.1,

$$
\tilde{M}_{1}:=\sup \left\{2 \sum_{i \in \mathscr{I}}\left(f_{i}\left(x^{\star}\right)-f_{i}\left(y_{n, i}\right)\right): n \in \mathbb{N}\right\}<+\infty
$$

and

$$
B:=\sup \left\{\left\|x_{n}-x^{\star}\right\|^{2}: n \in \mathbb{N}\right\}<+\infty .
$$

Proof. Let $x^{\star} \in X^{\star}$. Lemma 3.1 implies that, for all $n \geq 1$,

$$
\frac{1}{I} \sum_{i \in \mathscr{I}} \sum_{k=0}^{n-1}\left\{\left\|x_{k}-y_{k, i}\right\|^{2}+\left\|x_{k, i}-y_{k, i}\right\|^{2}\right\} \leq\left\|x_{0}-x\right\|^{2}+\frac{\tilde{M}_{1}}{I} \sum_{k=0}^{n-1} \gamma_{k}
$$

which in turn implies that

$$
\begin{aligned}
\sum_{i \in \mathscr{I}}\left(\frac{1}{n} \sum_{k=0}^{n-1}\left\|x_{k, i}-y_{k, i}\right\|^{2}\right) & \leq \frac{1}{n} \sum_{i \in \mathscr{I}} \sum_{k=0}^{n-1}\left\{\left\|x_{k}-y_{k, i}\right\|^{2}+\left\|x_{k, i}-y_{k, i}\right\|^{2}\right\} \\
& \leq \frac{I\left\|x_{0}-x\right\|^{2}}{n}+\frac{\tilde{M}_{1}}{n} \sum_{k=0}^{n-1} \gamma_{k}
\end{aligned}
$$

Lemma 3.1 indicates that, for all $k \in \mathbb{N}$,

$$
\sum_{i \in \mathscr{I}} f_{i}\left(y_{k, i}\right)-f^{\star} \leq \frac{I}{2 \gamma_{k}}\left\{\left\|x_{k}-x^{\star}\right\|^{2}-\left\|x_{k+1}-x^{\star}\right\|^{2}\right\}
$$

Summing the above inequality from $k=0$ to $k=n-1$ implies that, for all $n \geq 1$,

$$
\frac{1}{n} \sum_{k=0}^{n-1} \sum_{i \in \mathscr{I}} f_{i}\left(y_{k, i}\right)-f^{\star} \leq \frac{I}{2 n} \underbrace{\sum_{k=0}^{n-1} \frac{1}{\gamma_{k}}\left\{\left\|x_{k}-x^{\star}\right\|^{2}-\left\|x_{k+1}-x^{\star}\right\|^{2}\right\}}_{X_{n}}
$$

The definition of X_{n} means that

$$
X_{n}=\frac{\left\|x_{0}-x^{\star}\right\|}{\gamma_{0}}+\sum_{k=1}^{n-1}\left\{\frac{\left\|x_{k}-x^{\star}\right\|^{2}}{\gamma_{k}}-\frac{\left\|x_{k}-x^{\star}\right\|^{2}}{\gamma_{k-1}}\right\}-\frac{\left\|x_{n}-x^{\star}\right\|^{2}}{\gamma_{n-1}},
$$

which, together with $\gamma_{n} \leq \gamma_{n-1}(n \geq 1)$ and $B:=\sup \left\{\left\|x_{n}-x^{\star}\right\|^{2}: n \in \mathbb{N}\right\}<+\infty$ (by Lemma 3.2), implies that

$$
X_{n} \leq \frac{B}{\gamma_{0}}+B \sum_{k=1}^{n-1}\left(\frac{1}{\gamma_{k}}-\frac{1}{\gamma_{k-1}}\right)=\frac{B}{\gamma_{n-1}} \leq \frac{B}{\gamma_{n}}
$$

The convexity of f_{i} thus ensures that, for all $n \geq 1$,

$$
\sum_{i \in \mathscr{I}} f_{i}\left(\frac{1}{n} \sum_{k=0}^{n-1} y_{k, i}\right)-f^{\star} \leq \frac{I B}{2 n \gamma_{n}}
$$

which completes the proof.

Let us consider the rate of convergence of Algorithm 1 with $\gamma_{n}:=n^{-1 / 2}(n \geq 1)$. The step size $\left(\gamma_{n}\right)_{n \geq 1}$ is monotone decreasing and satisfies $\lim _{n \rightarrow+\infty} \gamma_{n}=0, \lim _{n \rightarrow+\infty}\left(n \gamma_{n}\right)^{-1}=0$, and $\sum_{n=0}^{+\infty} \gamma_{n}=+\infty$. Moreover, the Cauchy-Schwarz inequality and $\sum_{k=0}^{n-1} k^{-1} \leq 1+\ln n$ mean that

$$
\frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{\sqrt{k}} \leq \frac{\sqrt{n}}{n} \sqrt{\sum_{k=0}^{n-1} \frac{1}{k}} \leq \sqrt{\frac{1+\ln n}{n}}
$$

which implies that

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{k=0}^{n-1} \gamma_{k}=0
$$

Theorem 3.3 indicates that Algorithm 1 with $\gamma_{n}:=n^{-1 / 2}$ satisfies that, for all $n \geq 1$,

$$
\sum_{i \in \mathscr{I}}\left(\frac{1}{n} \sum_{k=0}^{n-1}\left\|y_{k, i}-Q_{i}\left(y_{k, i}\right)\right\|^{2}\right)=\mathscr{O}\left(\sqrt{\frac{1+\ln n}{n}}\right)
$$

and

$$
\sum_{i \in \mathscr{I}} f_{i}\left(\frac{1}{n} \sum_{k=0}^{n-1} y_{k, i}\right) \leq f^{\star}+\frac{I B}{2 \sqrt{n}}
$$

where \mathscr{O} stands for the Landau notation (see [10] for a convergence rate analysis of stochastic approximation methods).

4. NumERICAL COMPARISONS

Let us compare the performance of Algorithm 1 with the one of the existing parallel subgradient method (PSM) [7, Algorithm 3.1] (see (3.1)) and incremental subgradient method (ISM) [7, Algorithm 4.1] for the following problem (see also [7, Problem 5.1]): Let $a_{i, j}>0, b_{i, j}, d_{i} \in \mathbb{R}$ $(i \in \mathscr{I}, j=1,2, \ldots, N)$, and $c_{i}:=\left(c_{i, j}\right)_{j=1}^{N} \in \mathbb{R}^{N}(i \in \mathscr{I})$ with $c_{i, j}>0$. Then,

$$
\begin{equation*}
\operatorname{minimize} f(x):=\sum_{i \in \mathscr{I}} f_{i}(x) \text { subject to } x \in X:=\bigcap_{i \in \mathscr{I}} \operatorname{Fix}\left(Q_{i}\right)=\bigcap_{i \in \mathscr{I}} \operatorname{lev}_{\leq 0} g_{i}, \tag{4.1}
\end{equation*}
$$

where $f_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $Q_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ are defined for all $x:=\left(x_{j}\right)_{j=1}^{N} \in \mathbb{R}^{N}$ by

$$
f_{i}(x):=\sum_{j=1}^{N} a_{i, j}\left|x_{j}-b_{i, j}\right|
$$

and

$$
Q_{i}(x):= \begin{cases}x-\frac{g_{i}(x)}{\left\|z_{i}(x)\right\|^{2}} z_{i}(x), & \text { if } g_{i}(x)>0 \\ x, & \text { if } x \in \operatorname{lev}_{\leq 0} g_{i}:=\left\{x \in \mathbb{R}^{N}: g_{i}(x) \leq 0\right\}\end{cases}
$$

$g_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is defined for all $x \in \mathbb{R}^{N}$ by

$$
g_{i}(x):= \begin{cases}\left\langle c_{i}, x\right\rangle+d_{i}, & \text { if }\left\langle c_{i}, x\right\rangle>-d_{i} \\ 0, & \text { otherwise }\end{cases}
$$

and $z_{i}(x)$ is any vector in $\partial g_{i}(x)$. The above mapping Q_{i} is called the subgradient projection related to g_{i}. Q_{i} satisfies quasi-firm nonexpnasivity, and Id $-Q_{i}$ satisfies the demiclosedness condition [1, Lemma 3.1].

The experiment was conducted on a MacBook Air (13-inch, 2017) with a 1.8 GHz Intel (R) Core (TM) i5 CPU processor, $8 \mathrm{~GB}, 1600 \mathrm{MHz}$ DDR3 memory, and Mac OS Catalina (Version 10.15) operating system. PSM, ISM, and Algorithm 1 were written in Python 3.7 .4 with the NumPy 1.17.2 package. We set $I=256$ and $N=1000$ and randomly chose $a_{i, j} \in(0,100]$, $b_{i, j} \in[-100,100), d_{i} \in[-1,0)$, and $c_{i, j} \in[-0.5,0.5)$. The stopping condition was $n=10000$. The step sizes were as follows:

$$
\begin{aligned}
& \text { Constant step sizes: } \gamma_{n}:=10^{-1}, 10^{-3} \\
& \text { Diminishing step sizes: } \gamma_{n}:=\frac{10^{-1}}{n+1}, \frac{10^{-3}}{n+1} .
\end{aligned}
$$

The performance measures were as follows: for $n \in \mathbb{N}$,

$$
F_{n}:=\frac{1}{10} \sum_{s=1}^{10} \sum_{i \in \mathscr{I}} f_{i}\left(x_{n}(s)\right)
$$

and

$$
D_{n}:=\frac{1}{10} \sum_{s=1}^{10} \sum_{i \in \mathscr{I}}\left\|x_{n}(s)-Q_{i}\left(x_{n}(s)\right)\right\|
$$

where $\left(x_{n}(s)\right)_{n \in \mathbb{N}}$ is the sequence generated by each of the three algorithms with the randomly chosen initial point $x_{0}(s) \in[0,1)^{N}(s=1,2, \ldots, 10)$. If $\left(D_{n}\right)_{n \in \mathbb{N}}$ converges to 0 , the algorithms converge to a point in X.

Figure 1 shows that the algorithms with $\gamma_{n}=\lambda_{n}=10^{-1}$ did not converge to a point in X. Figure 2 indicates that, although the values of D_{10000} generated by the algorithms with $\gamma_{n}=\lambda_{n}=$ 10^{-3} were less than those generated by the algorithms with $\gamma_{n}=\lambda_{n}=10^{-1}$, the algorithms with $\gamma_{n}=\lambda_{n}=10^{-3}$ did not converge to a point in X. These results imply that it would be difficult to set an appropriate constant step size in advance.

Figure 1. Behaviors of F_{n} and D_{n} for Algorithm 1, PSM, and ISM with $\gamma_{n}=$ $\lambda_{n}=10^{-1}$

Figure 2. Behaviors of F_{n} and D_{n} for Algorithm 1, PSM, and ISM with $\gamma_{n}=$ $\lambda_{n}=10^{-3}$

Meanwhile, Figures 3 and 4 show that Algorithm 1 with diminishing step sizes $\gamma_{n}=10^{-1} /(n+$ 1), $10^{-3} /(n+1)$ converged to a point in X, as guaranteed by Theorem 3.2. These figures also show that F_{n} remains stable. Accordingly, from Theorem 3.2, Algorithm 1 converged to a solution of problem (4.1). Figures 3 and 4 also indicate that Algorithm 1 performs comparably to PSM and ISM.

Figure 3. Behaviors of F_{n} and D_{n} for Algorithm 1, PSM, and ISM with $\gamma_{n}=$ $\lambda_{n}=10^{-1} /(n+1)$

Figure 4. Behaviors of F_{n} and D_{n} for Algorithm 1, PSM, and ISM with $\gamma_{n}=$ $\lambda_{n}=10^{-3} /(n+1)$

5. The Conclusion

This paper presented a parallel proximal method for solving the minimization problem of the sum of convex functions over the intersection of fixed point sets of quasi-nonexpansive mappings in a real Hilbert space. It also provided convergence and convergence-rate analyses. Numerical comparisons showed that the performance of the algorithm is almost the same as those of the existing methods.

Acknowledgments

The authors would like to thank Professor Xiaolong Qin for giving us a chance to submit our paper to this journal. This work was supported by JSPS KAKENHI Grant Numbers, JP18K11184 and JP17J09220.

REFERENCES

[1] H. H. Bauschke, J. Chen, A projection method for approximating fixed points of quasinonexpansive mappings without the usual demiclosedness condition, J. Nonlinear Convex Anal. 15 (2014), 129-135.
[2] H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, (2011), Springer, New York.
[3] Y. Hayashi, H. Iiduka, Optimality and convergence for convex ensemble learning with sparsity and diversity based on fixed point optimization, Neurocomputing 273 (2018), 367-372.
[4] H. Iiduka, Fixed point optimization algorithms for distributed optimization in networked systems, SIAM J. Optim. 23 (2013), 1-26.
[5] H. Iiduka, Parallel computing subgradient method for nonsmooth convex optimization over the intersection of fixed point sets of nonexpansive mappings, Fixed Point Theory Appl. 2015 (2015), Article ID 72.
[6] H. Iiduka, Incremental subgradient method for nonsmooth convex optimization with fixed point constraints, Optim. Method Softw. 31 (2016), 931-951.
[7] H. Iiduka, Convergence analysis of iterative methods for nonsmooth convex optimization over fixed point sets of quasi-nonexpansive mappings, Math. Program. 159 (2016), 509-538.
[8] H. Iiduka, Proximal point algorithms for nonsmooth convex optimization with fixed point constraints, Eur. J. Oper. Res. 253 (2016), 503-513.
[9] H. Iiduka, Stochastic fixed point optimization algorithm for classifier ensemble, IEEE Trans. Cybernetics (2019).
[10] H. Iiduka, Stochastic approximation methods using diagonal positive definite matrices for convex optimization with fixed point constraints, submitted.
[11] H. Iiduka, K. Hishinuma, Acceleration method combining broadcast and incremental distributed optimization algorithms, SIAM J. Optim. 24 (2014), 1840-1863.
[12] P. E. Maingé, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Comput. Math. Appl. 59 (2010), 74-79.
[13] G. J. Minty, A theorem on maximal monotonic sets in Hilbert space, J. Math. Anal. Appl. 11 (1965), 434-439.
[14] J. J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris Sér. A Math. 255 (1962), 2897-2899.
[15] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
[16] K. Sakurai, T. Jimba, H. Iiduka, Iterative methods for parallel convex optimization with fixed point constraints, J. Nonlinear Var. Anal. 3 (2019), 115-126.

[^0]: *Corresponding author.
 E-mail addresses: kengo@cs.meiji.ac.jp (K. Shimizu), kaz@cs.meiji.ac.jp (K. Hishinuma), iiduka@cs.meiji.ac. jp (H. Iiduka).

 Received October 31, 2019; Accepted January 26, 2020.

[^1]: * See Section 4 for an example in which Q_{i} is quasi-firmly nonexpansive and Id $-Q_{i}$ is demiclosed.

