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Abstract. We present a parallel computing proximal method for solving the problem of minimizing the
sum of convex functions over the intersection of fixed point sets of quasi-nonexpansive mappings in a
real Hilbert space. We also provide a convergence analysis of the method for constant and diminish-
ing step sizes under certain assumptions as well as a convergence-rate analysis for a diminishing step
size. Numerical comparisons show that the performance of the algorithm is comparable with existing
subgradient methods.
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1. INTRODUCTION

In this paper, we consider the following problem [7, Problem 2.1] (see [3, 9, 10] for applica-
tions of Problem 1.1):

Problem 1.1. Let H be a real Hilbert space. Suppose that

(A1) Qi : H→ H (i ∈I := {1,2, . . . , I}) is quasi-firmly nonexpansive;
(A2) fi : H→ R (i ∈I ) is convex and continuous with dom( fi) := {x ∈ H : fi(x)<+∞}=

H.

Then,

minimize f (x) := ∑
i∈I

fi(x) subject to x ∈ X :=
⋂

i∈I
Fix(Qi),

where one assumes that there exists a solution of Problem 1.1 (see Sections 2 and 4 for the
details).
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Algorithms for solving this problem were proposed in [7, 9]. Reference [7] proposed parallel
and incremental subgradient methods for solving Problem 1.1 and provided convergence as well
as convergence-rate analyses. Reference [9, 10] proposed stochastic fixed point optimization
algorithms for solving a convex stochastic optimization problem that minimizes the expectation
of fis over Fix(Q1). The stochastic fixed point optimization algorithms can be applied to the
classifier ensemble problem.

There are methods for solving Problem 1.1, where Qi is taken to be a nonexpansive mapping,
which is a stronger assumption than a quasi-nonexpansive mapping. Subgradient methods were
presented in [4, 5, 6, 11], while proximal methods were presented in [8, 16].

In this paper, we present a parallel method for solving Problem 1.1. The method is obtained
by combining the parallel method in [7] with the proximal method in [8]. We also present a
convergence analysis for a constant step size and a diminishing step size. The analysis shows
that the proposed method with a small constant step size may approximate a solution to Prob-
lem 1.1 (Theorem 3.1) and that with a diminishing step size it converges to a solution under
certain assumptions (Theorem 3.2). We also provide a convergence-rate analysis with a dimin-
ishing step size (Theorem 3.3). Finally, we numerically compare the proposed method with the
existing subgradient methods.

This paper is organized as follows. Section 2 gives the mathematical preliminaries. Section
3 presents the parallel proximal method for solving Problem 1.1 and analyzes its convergence.
Section 4 numerically compares the behaviors of the proposed method and the existing ones.
Section 5 concludes the paper with a brief summary.

2. MATHEMATICAL PRELIMINARIES

Let H be a real Hilbert space with inner product 〈·, ·〉 and its induced norm ‖ · ‖. We use
the standard notation N for the natural numbers including zero and RN for the N-dimensional
Euclidean space.

2.1. Quasi-nonexpansivity and demiclosedness. The fixed point set of a mapping Q : H→H
is denoted by

Fix(Q) := {x ∈ H : Q(x) = x}.

Q is said to be quasi-nonexpansive [2, Definition 4.1(iii)] if ‖Q(x)− y‖ ≤ ‖x− y‖ for all x ∈ H
and for all y ∈ Fix(Q). When a quasi-nonexpansive mapping has one fixed point, its fixed point
set is closed and convex [2, Proposition 2.6]. Q is said to be quasi-firmly nonexpansive [1,
Section 3] if, for all x ∈ H and for all y ∈ Fix(Q),

‖Q(x)− y‖2 +‖(Id−Q)(x)‖2 ≤ ‖x− y‖2 ,

where Id(x) := x (x ∈ H). Any quasi-firmly nonexpansive mapping satisfies the quasi non-
expansivity condition. Moreover, Q is quasi-firmly nonexpansive if and only if R := 2Q− Id
is quasi-nonexpansive [2, Proposition 4.2], which implies that (1/2)(Id+R) is quasi-firmly
nonexpansive when R is quasi-nonexpansive. Let x,u ∈ H and (xn)n∈N ⊂ H. Id−Q is said
to be demiclosed if a weak convergence of (xn) to x and limn→+∞ ‖xn−Q(xn)− u‖ = 0 im-
ply x−Q(x) = u. Id−Q is demiclosed when Q is nonexpansive, i.e., ‖Q(x)−Q(y)‖ ≤ ‖x− y‖
(x,y∈H) [2, Theorem 4.17]. The metric projection PC onto a nonempty, closed convex subset C
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of H is firmly nonexpansive, i.e., ‖PC(x)−PC(y)‖2+‖(Id−PC)(x)− (Id−PC)(y)‖2 ≤ ‖x−y‖2

(x,y ∈ H). Moreover, Fix(PC) =C [2, Proposition 4.8, (4.8)].

2.2. Convexity, proximal point, and subdifferentiability. A function f : H→R is said to be
convex if, for all x,y ∈ H and for all α ∈ [0,1], f (αx+(1−α)y) ≤ α f (x)+ (1−α) f (y). A
function f is said to be strictly convex [2, Definition 8.6] if, for all x,y∈H and for all α ∈ (0,1),
x 6= y implies f (αx+(1−α)y) < α f (x)+ (1−α) f (y). f is strongly convex with constant β

[2, Definition 10.5] if there exists β > 0 such that, for all x,y ∈ H and for all α ∈ (0,1),

f (αx+(1−α)y)+
βα(1−α)

2
‖x− y‖2 ≤ α f (x)+(1−α) f (y).

Let f : H → (−∞,+∞] be proper, lower semicontinuous, and convex. Then, the proximity
operator of f [2, Definition 12.23], [14], denoted by Prox f , maps every x ∈ H to the unique
minimizer of f (·)+(1/2)‖x−·‖2; i.e.,{

Prox f (x)
}
= argmin

y∈H

[
f (y)+

1
2
‖x− y‖2

]
(x ∈ H) .

The uniqueness and existence of Prox f (x) are guaranteed for all x ∈ H [2, Definition 12.23],
[13]. We call Prox f (x) the proximal point of f at x. Let dom( f ) := {x ∈H : f (x)<+∞} be the
domain of a function f : H→ (−∞,+∞].

The subdifferential [2, Definition 16.1] of f is defined by

∂ f (x) := {u ∈ H : f (y)≥ f (x)+ 〈y− x,u〉 (y ∈ H)} (x ∈ H) .

We call u ∈ ∂ f (x) the subgradient of f at x.

Proposition 2.1. [2, Propositions 12.26, 12.27, 12.28, and 16.14] Let f : H → (−∞,+∞] be
proper, lower semicontinuous, and convex. Then, the following conclusions hold:

(i) Let x, p∈H. p = Prox f (x) if and only if x− p∈ ∂ f (p) (i.e., 〈y− p,x− p〉+ f (p)≤ f (y)
for all y ∈ H).

(ii) Prox f is firmly nonexpansive with Fix(Prox f ) = argminx∈H f (x).
(iii) If f is continuous at x ∈ dom( f ), ∂ f (x) is nonempty. Moreover, there exists δ > 0 such

that ∂ f (B(x;δ )) is bounded, where B(x;δ ) stands for a closed ball with center x and
radius δ .

The following propositions will be used to prove the main theorems in this paper.

Proposition 2.2. [15, Lemma 3.1] Suppose that (xn)n∈N ⊂ H weakly converges to x̂ ∈ H and
x̄ 6= x̂. Then, liminfn→+∞ ‖xn− x̂‖< liminfn→+∞ ‖xn− x̄‖.

Proposition 2.3. [2, Theorem 9.1] When f : H→R is convex, f is weakly lower semicontinuous
if and only if f is lower semicontinuous.

Proposition 2.4. [12, Lemma 2.1] Let (Γn)n∈N ⊂ R and suppose that (Γn j) j∈N (⊂ (Γn)n∈N)
exists such that Γn j < Γn j+1 for all j ∈ N. Define (τ(n))n≥n0 ⊂ N by τ(n) := max{k ≤ n : Γk <
Γk+1} for some n0 ∈ N. Then, (τ(n))n≥n0 is increasing and limn→+∞ τ(n) = +∞. Moreover,
Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1 for all n≥ n0.
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Algorithm 1 Parallel Proximal Method for solving Problem 1.1

Require: (γn)n∈N ⊂ (0,+∞)
1: n← 0, x0 ∈ H
2: loop
3: for i = 1 to i = I do
4: xn,i := Qi(Proxγn fi(xn))
5: end for
6: xn+1 :=

1
I ∑

i∈I
xn,i

7: n← n+1
8: end loop

3. THE PARALLEL PROXIMAL METHOD

Algorithm 1 is the proposed algorithm for solving Problem 1.1.
Let us consider a network system with I users and assume that user i has its own private

objective function fi and mapping Qi and tries to minimize fi over Fix(Qi). Moreover, let us
assume that each user can communicate with other users. Then, at iteration n, each user can have
xn in common. Since user i has its own objective function fi, it computes yn,i := Proxγn fi(xn).
Moreover, user i has its own constraint set Fix(Qi), with which it tries to find a fixed point of Qi
by using xn,i := Qi(yn,i). Since the users can communicate with each other, user i can receive
all xn,i, and hence, user i can compute xn+1 := (1/I)∑i∈I xn,i.

Let us compare Algorithm 1 with the existing parallel subgradient method [7, Algorithm 3.1]
for solving Problem 1.1. The parallel subgradient method [7, Algorithm 3.1] is as follows:

Qα,i := αId+(1−α)Qi,

gn,i ∈ ∂ fi (Qα,i(xn)) ,

xn,i := Qα,i(xn)−λngn,i,

xn+1 :=
1
I ∑

i∈I
xn,i.

(3.1)

The difference between Algorithms 1 and (3.1) is the form of xn,i, i.e., Algorithm 1 uses xn,i =
Qi(Proxγn fi(xn)), while algorithm (3.1) uses xn,i := Qα,i(xn)−λngn,i. Section 4 compares the
behaviors of Algorithm 1 and algorithm (3.1) for concrete optimization problems.

First, we prove the following lemma.

Lemma 3.1. Suppose that (A1) and (A2) hold and define yn,i := Proxγn fi(xn) for all i ∈I and
for all n ∈ N. Then, Algorithm 1 satisfies that, for all x ∈ X and for all n ∈ N,

‖xn+1− x‖2 ≤ ‖xn− x‖2− 1
I ∑

i∈I

{
‖xn− yn,i‖2 +‖xn,i− yn,i‖2

}
+

2
I

γn ∑
i∈I

( fi(x)− fi(yn,i)).

Proof. Let x ∈ X and n∈N be fixed arbitrarily. The definition of yn,i := Proxγn fi(xn) and Propo-
sition 2.1(i) ensure that, for all i ∈I ,

〈x− yn,i,xn− yn,i〉 ≤ γn( fi(x)− fi(yn,i)),
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which, together with 2〈x,y〉= ‖x‖2 +‖y‖2−‖x− y‖2 (x,y ∈ H), implies that

2γn( fi(x)− fi(yn,i))≥ ‖x− yn,i‖2 +‖xn− yn,i‖2−‖x− xn‖2 .

Accordingly, for all i ∈I ,

‖yn,i− x‖2 ≤ ‖xn− x‖2−‖xn− yn,i‖2 +2γn( fi(x)− fi(yn,i)). (3.2)

The definition of xn,i := Qi(yn,i) and (A1) guarantee that, for all i ∈I ,

‖xn,i− x‖2 ≤ ‖yn,i− x‖2−‖xn,i− yn,i‖2 . (3.3)

Hence, (3.2) and (3.3) imply that

‖xn,i− x‖2 ≤ ‖xn− x‖2−‖xn− yn,i‖2−‖xn,i− yn,i‖2 +2γn( fi(x)− fi(yn,i)).

Summing the above inequality from i = 1 to i = I and the convexity of ‖ · ‖2 ensure that

I ‖xn+1− x‖2 ≤ ∑
i∈I
‖xn,i− x‖2

≤ I ‖xn− x‖2− ∑
i∈I

{
‖xn− yn,i‖2 +‖xn,i− yn,i‖2

}
+2γn ∑

i∈I
( fi(x)− fi(yn,i)),

which completes the proof. �

The convergence analysis of Algorithm 1 depends on the following.

Assumpion 3.1. The sequence (yn,i)n∈N (i ∈I ) is bounded.

Assume that, for all i ∈ I , argminx∈H fi(x)(= Fix(Prox fi)) 6= /0 and Fix(Qi) is bounded.
Then, we can choose in advance of running the algorithm a bounded, closed convex set Ci (e.g.,
Ci is a closed ball with a large enough radius) satisfying Ci ⊃ Fix(Qi). Accordingly, we can
compute

xn,i := PCi [Qi(yn,i)] ∈Ci (3.4)

instead of xn,i in Algorithm 1. The boundedness of Ci (i ∈ I ) implies that (xn,i)n∈N (i ∈ I )
is bounded. Accordingly, (xn)n∈N is also bounded. Moreover, Proposition 2.1(ii) ensures that,
for all i ∈ I , for all n ∈ N, and for all x ∈ Fix(Prox fi), ‖yn,i− x‖ ≤ ‖xn− x‖. Hence, the
boundedness of (xn)n∈N guarantees that (yn,i)n∈N (i ∈I ) is bounded. Hence, it can be assumed
that (xn,i)n∈N (i ∈I ) in Algorithm 1 is as in (3.4) in place of Assumption 3.1.

We also have the following lemma.

Lemma 3.2. Suppose that (A1), (A2), and Assumption 3.1 hold. Then, (xn,i)n∈N (i ∈ I ) and
(xn)n∈N are bounded.

Proof. Assumption (A1) ensures that, for all x ∈ X , for all i ∈I , and for all n ∈ N,

‖xn,i− x‖ ≤ ‖yn,i− x‖ ,

which, together with Assumption 3.1, implies that (xn,i)n∈N (i ∈ I ) is bounded. Hence, the
definition of xn implies that (xn)n∈N is also bounded. �
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3.1. Constant step-size rule. The following is a convergence analysis of Algorithm 1 with
a constant step size, which indicates that Algorithm 1 with a small constant step size may
approximate a solution of Problem 1.1.

Theorem 3.1. Suppose that (A1), (A2), and Assumption 3.1 hold. Then, Algorithm 1 with
γn := γ > 0 satisfies that

liminf
n→+∞

∑
i∈I
‖yn,i−Qi(yn,i)‖2 ≤ IM1γ and liminf

n→+∞
∑

i∈I
fi(yn,i)≤ f ?,

where M1 := sup{(2/I)∑i∈I ( fi(x)− fi(yn,i)) : n ∈ N} < +∞ for some x ∈ X and f ? is the
optimal value of Problem 1.1.

Proof. Let x ∈ X be fixed arbitrarily. The definition of ∂ fi(x) and the Cauchy-Schwarz inequal-
ity imply that, for all i ∈I , for all n ∈ N, and for all ui ∈ ∂ fi(x),

fi(x)− fi(yn,i)≤ 〈x− yn,i,ui〉 ≤ ‖yn,i− x‖‖ui‖ ,

which, together with B̃ := maxi∈I sup{‖yn,i− x‖ : n ∈ N}<+∞ (by Assumption 3.1), implies
that

M1 := sup

{
2
I ∑

i∈I
( fi(x)− fi(yn,i)) : n ∈ N

}
≤ 2B̃max

i∈I
‖ui‖<+∞. (3.5)

We first show that

liminf
n→+∞

∑
i∈I

{
‖xn− yn,i‖2 +‖xn,i− yn,i‖2

}
︸ ︷︷ ︸

Xn,i

≤ IM1γ. (3.6)

If (3.6) does not hold, there exists δ > 0 such that

liminf
n→+∞

∑
i∈I

Xn,i > IM1γ +2δ .

Accordingly, the property of the limit inferior of (∑i∈I {‖xn− yn,i‖2 + ‖xn,i− yn,i‖2})n∈N en-
sures that n0 ∈ N exists such that, for all n≥ n0,

∑
i∈I

Xn,i > IM1γ +δ . (3.7)

Accordingly, Lemma 3.1 with γn := γ (n ∈ N) guarantees that, for all n≥ n0,

‖xn+1− x‖2 ≤ ‖xn− x‖2− 1
I ∑

i∈I
Xn,i +

2
I

γ ∑
i∈I

( fi(x)− fi(yn,i))

< ‖xn− x‖2− 1
I
(IM1γ +δ )+M1γ

= ‖xn− x‖2− δ

I

< ‖xn0− x‖2− δ

I
(n+1−n0).

The right side of the above inequality approaches minus infinity as n diverges. Hence, we have
a contradiction. This implies that (3.6) holds. Therefore,

liminf
n→+∞

∑
i∈I
‖yn,i− xn,i‖2 = liminf

n→+∞
∑

i∈I
‖yn,i−Qi(yn,i)‖2 ≤ IM1γ.
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Next, we show that

liminf
n→+∞

∑
i∈I

fi(yn,i)≤ f ?. (3.8)

Assume that (3.8) does not hold. An argument similar to the one for obtaining (3.7) implies that
there exist ζ > 0 and m0 ∈ N such that, for all n≥ m0,

∑
i∈I

fi(yn,i)− f ? > ζ .

Lemma 3.1 thus ensures that, for all n ≥ m0 and for all x? ∈ X? := {x? ∈ X : f (x?) = f ? =
infx∈X f (x)},

‖xn+1− x?‖2 ≤ ‖xn− x?‖2 +
2
I

γ

(
f ?− ∑

i∈I
fi(yn,i)

)

< ‖xn− x?‖2− 2
I

γζ

< ‖xm0− x?‖2− 2
I

γζ (n+1−m0),

which is a contradiction. Accordingly, (3.8) holds. This completes the proof. �

3.2. Diminishing step-size rule. The following is a convergence analysis of Algorithm 1 with
a diminishing step size.

Theorem 3.2. Suppose that (A1), (A2), and Assumption 3.1 hold and Id−Qi (i ∈ I ) is
demiclosed.∗ Let (xn)n∈N be the sequence generated by Algorithm 1 with (γn)n∈N satisfying
limn→+∞ γn = 0 and ∑

+∞

n=0 γn = +∞. Then, there exists a subsequence of each of (xn)n∈N,
(xn,i)n∈N, and (yn,i)n∈N (i ∈I ) that weakly converges to a solution of Problem 1.1. Moreover,
(xn)n∈N, (xn,i)n∈N, and (yn,i)n∈N (i ∈I ) strongly converge to a unique solution of Problem 1.1
if one of the following holds:

(i) One fi is strongly convex;
(ii) H is finite-dimensional, and one fi is strictly convex.

Proof. We consider two cases.
Case 1: Suppose that there exists m0 ∈ N such that, for all n ∈ N and for all x? ∈ X?, n≥ m0

implies ‖xn+1−x?‖ ≤ ‖xn−x?‖, where X? := {x? ∈ X : f (x?) = f ? = infx∈X f (x)}. Then, there
exists c := limn→+∞ ‖xn− x?‖. Let x? ∈ X? be fixed arbitrarily. Lemma 3.1, together with a
discussion similar to that of (3.5), guarantees that there exists

M2 := sup

{
2
I ∑

i∈I
( fi(x?)− fi(yn,i)) : n ∈ N

}
<+∞

such that, for all n≥ m0,

1
I ∑

i∈I

{
‖xn− yn,i‖2 +‖xn,i− yn,i‖2

}
≤ ‖xn− x?‖2−‖xn+1− x?‖2 +M2γn. (3.9)

* See Section 4 for an example in which Qi is quasi-firmly nonexpansive and Id−Qi is demiclosed.
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Accordingly, the conditions limn→+∞ γn = 0 and c := limn→+∞ ‖xn− x?‖ mean that

lim
n→+∞

‖xn− yn,i‖= 0 and lim
n→+∞

‖xn,i− yn,i‖= 0 (i ∈I ). (3.10)

From Lemma 3.1, for all x ∈ X and for all k ∈ N, we have
2
I

γk ∑
i∈I

( fi(yk,i)− fi(x))︸ ︷︷ ︸
Nk(x)

≤ ‖xk− x‖2−‖xk+1− x‖2 , (3.11)

which implies that, for all n ∈ N and for all x ∈ X ,

2
I

n

∑
k=0

γkNk(x)≤ ‖x0− x‖2−‖xn+1− x‖2 ≤ ‖x0− x‖2 .

Accordingly, for all x ∈ X ,

2
I

+∞

∑
k=0

γkNk(x)<+∞. (3.12)

Here, we show that, for all x ∈ X ,

liminf
n→+∞

Nn(x)≤ 0. (3.13)

Assume that (3.13) does not hold; i.e., there exists x0 ∈ X such that liminfn→+∞ Nn(x0) > 0.
Then, m1 ∈N and θ > 0 exist such that, for all n≥m1, Nn(x0)≥ θ . From (3.12) and ∑

+∞

n=0 γn =
+∞, we have

+∞ =
2θ

I

+∞

∑
k=m1

γk ≤
2
I

+∞

∑
k=m1

γkNk(x0)<+∞,

which is a contradiction. Hence, (3.13) holds, i.e., for all x ∈ X ,

liminf
n→+∞

∑
i∈I

fi(yn,i)≤ ∑
i∈I

fi(x) =: f (x). (3.14)

The definition of un,i ∈ ∂ fi(xn) and the Cauchy-Schwarz inequality ensure that, for all i ∈ I
and for all n ∈ N,

fi(xn)− fi(yn,i)≤ 〈xn− yn,i,un,i〉 ≤ ‖xn− yn,i‖‖un,i‖ .

Proposition 2.1(iii) and the boundedness of (xn)n∈N (see also Lemma 3.2) guarantee that there
exists B1 := maxi∈I sup{‖un,i‖ : n ∈ N}<+∞ such that, for all n ∈ N,

f (xn) = ∑
i∈I

fi(xn)≤ B1 ∑
i∈I
‖xn− yn,i‖+ ∑

i∈I
fi(yn,i).

Therefore, (3.10) and (3.14) lead to the finding that, for all x ∈ X ,

liminf
n→+∞

f (xn)≤ B1 lim
n→+∞

∑
i∈I
‖xn− yn,i‖+ liminf

n→+∞
∑

i∈I
fi(yn,i)≤ f (x). (3.15)

Accordingly, a subsequence (xnl)l∈N of (xn)n∈N exists such that, for all x ∈ X ,

lim
l→+∞

f (xnl) = liminf
n→+∞

f (xn)≤ f (x). (3.16)

Since (xnl)l∈N is bounded (see also Lemma 3.2), there exists (xnlm
)m∈N (⊂ (xnl)l∈N) such that

(xnlm
)m∈N weakly converges to x∗ ∈ H. From (3.10), (ynlm ,i) (i ∈ I ) weakly converges to x∗.
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Hence, (3.10) and the demiclosedness of Id−Qi ensure that x∗ ∈ Fix(Qi) (i ∈I ), i.e., x∗ ∈ X .
Proposition 2.3 ensures that the continuity and convexity of f (by (A2)) imply that f is weakly
lower semicontinuous, which means that

f (x∗)≤ liminf
m→+∞

f (xnlm
).

Therefore, (3.16) leads to the finding that, for all x ∈ X ,

f (x∗)≤ liminf
m→+∞

f
(
xnlm

)
= lim

m→+∞
f
(
xnlm

)
≤ f (x),

that is, x∗ ∈ X?. Let us take another subsequence (xnlk
)k∈N (⊂ (xnl)l∈N) such that (xnlk

)k∈N
weakly converges to x∗∗ ∈ H. A discussion similar to the one for obtaining x∗ ∈ X? guarantees
that x∗∗ ∈ X?. Here, it is proven that x∗ = x∗∗. Now, let us assume that x∗ 6= x∗∗. Then, the
existence of c := limn→+∞ ‖xn− x?‖ (x? ∈ X?) and Proposition 2.2 imply that

c = lim
m→+∞

∥∥xnlm
− x∗

∥∥< lim
m→+∞

∥∥xnlm
− x∗∗

∥∥
= lim

n→+∞
‖xn− x∗∗‖= lim

k→+∞

∥∥∥xnlk
− x∗∗

∥∥∥< lim
k→+∞

∥∥∥xnlk
− x∗

∥∥∥
= c,

which is a contradiction. Hence, x∗ = x∗∗. Accordingly, any subsequence of (xnl)l∈N converges
weakly to x∗ ∈ X?; i.e., (xnl)l∈N converges weakly to x∗ ∈ X?. This means that x∗ is a weak
cluster point of (xn)n∈N and belongs to X?. A discussion similar to the one for obtaining x∗= x∗∗
guarantees that there is only one weak cluster point of (xn)n∈N, so we can conclude that, in Case
1, (xn)n∈N weakly converges to a point in X?.

Case 2: Suppose that, for all m ∈ N, there exist n ∈ N and x?0 ∈ X? such that n≥ m and

‖xn+1− x?0‖> ‖xn− x?0‖.
This implies that (xn j) j∈N (⊂ (xn)n∈N) exists such that, for all j ∈ N,

‖xn j+1− x?0‖> ‖xn j − x?0‖=: Γn j .

Proposition 2.4 thus guarantees that m1 ∈ N exists such that, for all n ≥ m1, Γτ(n) ≤ Γτ(n)+1,
where τ(n) is defined as in Proposition 2.4. From Lemma 3.1 (see also (3.9)), for all n ≥ m1,
we have

1
I ∑

i∈I

{∥∥xτ(n)− yτ(n),i
∥∥2

+
∥∥xτ(n),i− yτ(n),i

∥∥2
}
≤ Γ

2
τ(n)−Γ

2
τ(n)+1 + M̃2γτ(n)

≤ M̃2γτ(n),

where

M̃2 := sup

{
2
I ∑

i∈I
( fi(x?)− fi(yτ(n),i)) : n ∈ N

}
is finite by Assumption 3.1 (see also (3.5)). Hence, the condition limn→+∞ γτ(n) = 0 implies that

lim
n→+∞

∥∥xτ(n)− yτ(n),i
∥∥= 0 and lim

n→+∞

∥∥xτ(n),i− yτ(n),i
∥∥= 0 (i ∈I ). (3.17)

From (3.11), for all n≥ m1,
2
I

γτ(n)Nτ(n)(x
?
0)≤ Γ

2
τ(n)−Γ

2
τ(n)+1 ≤ 0,
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which, together with γτ(n) ≥ 0 (n≥ m1), implies that Nτ(n)(x?0)≤ 0. Accordingly,

limsup
n→+∞

∑
i∈I

fi
(
yτ(n),i

)
≤ f ?.

An argument, which is similar to the one for obtaining (3.15), together with (3.17), implies that

limsup
n→+∞

f
(
xτ(n)

)
≤ f ?.

Choose a subsequence (xτ(nk))k∈N of (xτ(n))n≥m1 arbitrarily. Then,

limsup
k→+∞

f
(
xτ(nk)

)
≤ limsup

n→+∞

f
(
xτ(n)

)
≤ f ?. (3.18)

The boundedness of (xτ(nk))k∈N ensures that (xτ(nkl )
)l∈N (⊂ (xτ(nk))k∈N) exists such that (xτ(nkl )

)l∈N
weakly converges to x? ∈H. Then, (3.17) and the demiclosedness of Id−Qi ensure that x? ∈ X .
Moreover, Proposition 2.3 and (3.18) guarantee that

f (x?)≤ liminf
l→+∞

f
(

x
τ(nkl)

)
≤ limsup

l→+∞

f
(

x
τ(nkl)

)
≤ f ?,

that is, x? ∈ X?. Therefore, (xτ(nkl )
)l∈N weakly converges to x? ∈ X?. From Cases 1 and 2, there

exists a subsequence of (xn)n∈N that weakly converges to a point in X?.
Suppose that assumption (i) in Theorem 3.2 holds. The strong convexity of f := ∑i∈I f (i)

implies that X? consists of one point, denoted by x?. In Case 1, the strong convexity of f
guarantees that there exists β > 0 such that, for all α ∈ (0,1) and for all l ∈ N,

(β/2)α(1−α)‖xnl − x?‖2 ≤ α f (xnl)+(1−α) f ?− f (αxnl +(1−α)x?).

Accordingly, from the existence of c := limn→+∞ ‖xn− x?‖ and (3.16), we have

β

2
α (1−α) lim

l→+∞

‖xnl − x?‖2 ≤ lim
l→+∞

(α f (xnl)+(1−α) f ?)

+ limsup
l→+∞

(− f (αxnl +(1−α)x?))

≤ f ?− liminf
l→+∞

f (αxnl +(1−α)x?) ,

which, together with the weak convergence of (xnl)l∈N to x? and Proposition 2.3, implies that

β

2
α (1−α) lim

l→+∞

‖xnl − x?‖2 ≤ f ?− f (αx?+(1−α)x?) = 0.

Hence, (xnl)l∈N strongly converges to x?. Therefore, from [2, Theorem 5.11], the whole se-
quence (xn)n∈N strongly converges to x?. From (3.10), (xn,i)n∈N and (yn,i)n∈N (i ∈I ) strongly
converge to x?. In Case 2, the strong convexity of f leads to the deduction that, for all α ∈ (0,1)
and for all l ∈ N,

β

2
α (1−α) limsup

l→+∞

∥∥∥xτ(nkl )
− x?

∥∥∥2
≤ α limsup

l→+∞

f
(

xτ(nkl )

)
+(1−α) f ?

− liminf
l→+∞

f
(

αxτ(nkl )
+(1−α)x?

)
.
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The weak convergence of (xτ(nkl )
)l∈N to x?, the weakly lower semicontinuity of f (by Proposi-

tion 2.3), and (3.18) imply that

β

2
α (1−α) limsup

l→+∞

∥∥∥xτ(nkl )
− x?

∥∥∥2
≤ f ?− f (αx?+(1−α)x?) = 0,

which implies that (xτ(nkl )
)l∈N strongly converges to x?. When another subsequence (xτ(nkm)

)m∈N
(⊂ (xτ(nk))k∈N) can be chosen, a discussion similar to the one for showing the weak conver-
gence of (xτ(nkl )

)l∈N to a point in X? guarantees that (xτ(nkm)
)m∈N also weakly converges to a

point in X?. Furthermore, a discussion similar to the one for showing the strong convergence of
(xτ(nkl )

)l∈N to x? ensures that (xτ(nkm)
)m∈N strongly converges to the same x?. Hence, it is guar-

anteed that (xτ(nk))k∈N strongly converges to x?. Since (xτ(nk))k∈N is an arbitrary subsequence
of (xτ(n))n≥m1 , (xτ(n))n≥m1 strongly converges to x?; i.e.,

lim
n→+∞

Γτ(n) = lim
n→+∞

‖xτ(n)− x?‖= 0.

Accordingly, Proposition 2.4 ensures that

limsup
n→+∞

‖xn− x?‖ ≤ limsup
n→+∞

Γτ(n)+1 = 0,

which implies that, in Case 2, the whole sequence (xn)n∈N converges to x?. Moreover, Lemma
3.1 and limn→+∞ γn = 0 imply that

lim
n→+∞

‖xn− yn,i‖= lim
n→+∞

‖xn,i− yn,i‖= 0, (i ∈I ).

Therefore, (xn,i)n∈N and (yn,i)n∈N (i ∈I ) converge to x?.
Suppose that assumption (ii) in Theorem 3.2 holds. Let x? ∈ X? be the unique solution to

Problem 1.1. In Case 1, it is guaranteed that (xn)n∈N converges to x? ∈ X?. From (3.10),
(xn,i)n∈N and (yn,i)n∈N (i ∈I ) strongly converge to x?. Moreover, in Case 2, the convergence
of (xτ(nkl )

)l∈N to x? is guaranteed. A discussion similar to the one for showing the strong
convergence of (xτ(n))n≥m1 to x? ensures that (xτ(n))n≥m1 converges to x? ∈ X?. Proposition 2.4
thus guarantees that the whole sequence (xn)n∈N converges to x?. Lemma 3.1 and limn→+∞ γn =
0 imply that

lim
n→+∞

‖xn− yn,i‖= lim
n→+∞

‖xn,i− yn,i‖= 0, (i ∈I ).

Therefore, (xn,i)n∈N and (yn,i)n∈N (i ∈I ) converge to x?. This completes the proof. �

The following is a convergence-rate analysis of Algorithm 1 with a diminishing step size.

Theorem 3.3. Suppose that the assumptions in Theorem 3.1 hold and a monotone decreasing
sequence (γn)n∈N satisfies limn→+∞ γn = 0, limn→+∞(nγn)

−1 = 0, ∑
+∞

n=0 γn =+∞, and limn→+∞ n−1

∑
n−1
k=0 γk = 0. Then, Algorithm 1 satisfies that, for all n≥ 1,

∑
i∈I

(
1
n

n−1

∑
k=0

∥∥yk,i−Qi(yk,i)
∥∥2

)
≤ I ‖x0− x‖2

n
+

M̃1

n

n−1

∑
k=0

γk,

and

∑
i∈I

fi

(
1
n

n−1

∑
k=0

yk,i

)
≤ f ?+

IB
2nγn

,
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where x? is a solution of Problem 1.1,

M̃1 := sup

{
2 ∑

i∈I
( fi(x?)− fi(yn,i)) : n ∈ N

}
<+∞,

and

B := sup
{
‖xn− x?‖2 : n ∈ N

}
<+∞.

Proof. Let x? ∈ X?. Lemma 3.1 implies that, for all n≥ 1,

1
I ∑

i∈I

n−1

∑
k=0

{∥∥xk− yk,i
∥∥2

+
∥∥xk,i− yk,i

∥∥2
}
≤ ‖x0− x‖2 +

M̃1

I

n−1

∑
k=0

γk,

which in turn implies that

∑
i∈I

(
1
n

n−1

∑
k=0

∥∥xk,i− yk,i
∥∥2

)
≤ 1

n ∑
i∈I

n−1

∑
k=0

{∥∥xk− yk,i
∥∥2

+
∥∥xk,i− yk,i

∥∥2
}

≤ I ‖x0− x‖2

n
+

M̃1

n

n−1

∑
k=0

γk.

Lemma 3.1 indicates that, for all k ∈ N,

∑
i∈I

fi(yk,i)− f ? ≤ I
2γk

{
‖xk− x?‖2−‖xk+1− x?‖2

}
.

Summing the above inequality from k = 0 to k = n−1 implies that, for all n≥ 1,

1
n

n−1

∑
k=0

∑
i∈I

fi(yk,i)− f ? ≤ I
2n

n−1

∑
k=0

1
γk

{
‖xk− x?‖2−‖xk+1− x?‖2

}
︸ ︷︷ ︸

Xn

.

The definition of Xn means that

Xn =
‖x0− x?‖

γ0
+

n−1

∑
k=1

{
‖xk− x?‖2

γk
− ‖xk− x?‖2

γk−1

}
− ‖xn− x?‖2

γn−1
,

which, together with γn ≤ γn−1 (n ≥ 1) and B := sup{‖xn− x?‖2 : n ∈ N} < +∞ (by Lemma
3.2), implies that

Xn ≤
B
γ0

+B
n−1

∑
k=1

(
1
γk
− 1

γk−1

)
=

B
γn−1

≤ B
γn
.

The convexity of fi thus ensures that, for all n≥ 1,

∑
i∈I

fi

(
1
n

n−1

∑
k=0

yk,i

)
− f ? ≤ IB

2nγn
,

which completes the proof. �
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Let us consider the rate of convergence of Algorithm 1 with γn := n−1/2 (n ≥ 1). The step
size (γn)n≥1 is monotone decreasing and satisfies limn→+∞ γn = 0, limn→+∞(nγn)

−1 = 0, and
∑
+∞

n=0 γn =+∞. Moreover, the Cauchy-Schwarz inequality and ∑
n−1
k=0 k−1 ≤ 1+ lnn mean that

1
n

n−1

∑
k=0

1√
k
≤
√

n
n

√√√√n−1

∑
k=0

1
k
≤
√

1+ lnn
n

,

which implies that

lim
n→+∞

1
n

n−1

∑
k=0

γk = 0.

Theorem 3.3 indicates that Algorithm 1 with γn := n−1/2 satisfies that, for all n≥ 1,

∑
i∈I

(
1
n

n−1

∑
k=0

∥∥yk,i−Qi(yk,i)
∥∥2

)
= O

(√
1+ lnn

n

)
and

∑
i∈I

fi

(
1
n

n−1

∑
k=0

yk,i

)
≤ f ?+

IB
2
√

n
,

where O stands for the Landau notation (see [10] for a convergence rate analysis of stochastic
approximation methods).

4. NUMERICAL COMPARISONS

Let us compare the performance of Algorithm 1 with the one of the existing parallel subgradi-
ent method (PSM) [7, Algorithm 3.1] (see (3.1)) and incremental subgradient method (ISM) [7,
Algorithm 4.1] for the following problem (see also [7, Problem 5.1]): Let ai, j > 0, bi, j,di ∈ R
(i ∈I , j = 1,2, . . . ,N), and ci := (ci, j)

N
j=1 ∈ RN (i ∈I ) with ci, j > 0. Then,

minimize f (x) := ∑
i∈I

fi(x) subject to x ∈ X :=
⋂

i∈I
Fix(Qi) =

⋂
i∈I

lev≤0gi, (4.1)

where fi : RN → R and Qi : RN → RN are defined for all x := (x j)
N
j=1 ∈ RN by

fi(x) :=
N

∑
j=1

ai, j
∣∣x j−bi, j

∣∣
and

Qi(x) :=

x− gi(x)
‖zi(x)‖2 zi(x), if gi(x)> 0,

x, if x ∈ lev≤0gi := {x ∈ RN : gi(x)≤ 0},

gi : RN → R is defined for all x ∈ RN by

gi(x) :=

{
〈ci,x〉+di, if 〈ci,x〉>−di,

0, otherwise,
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and zi(x) is any vector in ∂gi(x). The above mapping Qi is called the subgradient projection
related to gi. Qi satisfies quasi-firm nonexpnasivity, and Id−Qi satisfies the demiclosedness
condition [1, Lemma 3.1].

The experiment was conducted on a MacBook Air (13-inch, 2017) with a 1.8 GHz Intel (R)
Core (TM) i5 CPU processor, 8 GB, 1600 MHz DDR3 memory, and Mac OS Catalina (Version
10.15) operating system. PSM, ISM, and Algorithm 1 were written in Python 3.7.4 with the
NumPy 1.17.2 package. We set I = 256 and N = 1000 and randomly chose ai, j ∈ (0,100],
bi, j ∈ [−100,100), di ∈ [−1,0), and ci, j ∈ [−0.5,0.5). The stopping condition was n = 10000.
The step sizes were as follows:

Constant step sizes: γn := 10−1,10−3,

Diminishing step sizes: γn :=
10−1

n+1
,

10−3

n+1
.

The performance measures were as follows: for n ∈ N,

Fn :=
1
10

10

∑
s=1

∑
i∈I

fi(xn(s))

and

Dn :=
1

10

10

∑
s=1

∑
i∈I
‖xn(s)−Qi(xn(s))‖ ,

where (xn(s))n∈N is the sequence generated by each of the three algorithms with the randomly
chosen initial point x0(s) ∈ [0,1)N (s = 1,2, . . . ,10). If (Dn)n∈N converges to 0, the algorithms
converge to a point in X .

Figure 1 shows that the algorithms with γn = λn = 10−1 did not converge to a point in X .
Figure 2 indicates that, although the values of D10000 generated by the algorithms with γn = λn =
10−3 were less than those generated by the algorithms with γn = λn = 10−1, the algorithms with
γn = λn = 10−3 did not converge to a point in X . These results imply that it would be difficult
to set an appropriate constant step size in advance.

 6.36x10
8

 6.38x10
8

 6.4x10
8

 6.42x10
8

 6.44x10
8

 6.46x10
8

 6.48x10
8

 6.5x10
8

 6.52x10
8

 6.54x10
8

 1  10  100  1000  10000

F
n

Number of iterations (log scale)

Algorithm 1 (10
-1

)
PSM (10

-1
)

ISM (10
-1

)

(A) Evaluation of Fn

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

D
n
 (

lo
g

 s
c
a

le
)

Number of iterations (log scale)

Algorithm 1 (10
-1

)
PSM (10

-1
)

ISM (10
-1

)

(B) Evaluation of Dn

FIGURE 1. Behaviors of Fn and Dn for Algorithm 1, PSM, and ISM with γn =
λn = 10−1
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FIGURE 2. Behaviors of Fn and Dn for Algorithm 1, PSM, and ISM with γn =
λn = 10−3

Meanwhile, Figures 3 and 4 show that Algorithm 1 with diminishing step sizes γn = 10−1/(n+
1),10−3/(n+ 1) converged to a point in X , as guaranteed by Theorem 3.2. These figures also
show that Fn remains stable. Accordingly, from Theorem 3.2, Algorithm 1 converged to a solu-
tion of problem (4.1). Figures 3 and 4 also indicate that Algorithm 1 performs comparably to
PSM and ISM.
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FIGURE 3. Behaviors of Fn and Dn for Algorithm 1, PSM, and ISM with γn =
λn = 10−1/(n+1)
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FIGURE 4. Behaviors of Fn and Dn for Algorithm 1, PSM, and ISM with γn =
λn = 10−3/(n+1)

5. THE CONCLUSION

This paper presented a parallel proximal method for solving the minimization problem of
the sum of convex functions over the intersection of fixed point sets of quasi-nonexpansive
mappings in a real Hilbert space. It also provided convergence and convergence-rate analyses.
Numerical comparisons showed that the performance of the algorithm is almost the same as
those of the existing methods.
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