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Abstract. In this work we survey recent results on the structure of approximate optimal programs for
the Robinson-Solow-Srinivasan model. We discuss turnpike properties of approximate solutions as well
as the existence of solutions of the corresponding infinite horizon problems.
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1. INTRODUCTION

The study of the existence and the structure of solutions of optimal control problems defined
on infinite intervals and on sufficiently large intervals has recently been a rapidly growing area
of research; see, e.g., [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 34, 36, 38, 41, 42, 44, 50, 77, 79]
and the references mentioned therein. These problems arise in engineering [61], in models
of economic growth [9, 13, 19, 30, 31, 32, 33, 37, 40, 47, 51, 58, 59, 60, 61, 65, 67, 71, 75,
76, 81], in the game theory [46, 78], in optimal control with PDE [14, 45, 57, 80] in infinite
discrete models of solid-state physics related to dislocations in one-dimensional crystals [2] and
in the theory of thermodynamical equilibrium for materials [35, 39]. In this paper we survey
recent results on the structure of approximate solutions of optimal control problems arising
in mathematical economics, related to the Robinson-Solow-Srinivasan model (RSS model),
which was introduced in the sixties by Robinson, Solow and Srinivasan [48, 52, 53] and was
studied by Robinson, Okishio and Stiglitz [43, 49, 54, 55, 56]. Recently, the Robinson-Solow-
Srinivasan model was studied by Khan and Mitra [19, 20, 21, 22, 23, 24, 25, 26], Khan and
Piazza [27, 28, 29], Khan and Zaslavski [30, 31, 32, 33] and Zaslavski [62, 64, 65, 66, 68, 69,
70, 71, 72, 73, 74, 75]. As usual, for the Robinson-Solow-Srinivasan model the existence of
optimal solutions over infinite horizon and the structure of solutions on finite intervals are under
consideration. We discuss turnpike properties of approximate solutions as well as the existence
of solutions of the corresponding infinite horizon problems.

Our paper has the following structure. In Section 2, we present the description of the Robin-
son-Solow-Srinivasan model and consider its basic properties. In particular, we discuss the
existence of weakly optimal programs and good programs, and an average turnpike property.
Infinite horizon optimal control problems, related to the Robinson-Solow-Srinivasan model, are
considered in Section 3, where we discuss a convergence of good programs to the golden-rule
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stock, the existence of overtaking optimal programs and their convergence to the golden-rule
stock, and some properties of good programs. Turnpike properties for the Robinson-Solow-
Srinivasan model are discussed in Section 4. To have these properties means that the approx-
imate solutions of the problems are essentially independent of the choice of an interval and
endpoint conditions. It is shown that these turnpike properties hold and that they are stable
under perturbations of an objective function. In Section 5, we study infinite horizon optimal
control problems related to the Robinson-Solow-Srinivasan model with a nonconcave utility
function. In particular, we show the existence of good programs and optimal programs us-
ing different optimality criterions. In Section 6, we consider infinite horizon optimal control
problems with noautonomous optimality criterions. The utility functions, which determine the
optimality criterion, are nonconcave. The class of models contains, as a particular case, the
Robinson-Solow-Srinivasan model. We show the existence of good programs and optimal pro-
grams. Section 7 contains turnpike results for a class of discrete-time optimal control problems.
These control problems arise in economic dynamics and describe the one-dimensional nonsta-
tionary Robinson-Solow-Srinivasan model.

2. THE ROBINSON-SOLOW-SRINIVASAN MODEL

In this paper we use the following notation.
Let R1 (R1

+) be the set of real (non-negative) numbers and let Rn be the n-dimensional Eu-
clidean space with the non-negative orthant

Rn
+ = {x = (x1, . . . ,xn) ∈ Rn : xi ≥ 0, i = 1, . . . ,n}.

For every pair of vectors x = (x1, . . . ,xn), y = (y1, . . . ,yn) ∈ Rn, define their inner product by

xy =
n

∑
i=1

xiyi

and let x >> y, x > y, x ≥ y have their usual meaning. Namely, for a given pair of vectors
x = (x1, . . . ,xn), y = (y1, . . . ,yn) ∈ Rn, we say that x ≥ y, if xi ≥ yi for all i = 1, . . . ,n, x > y if
x≥ y and x 6= y, and x >> y if xi > yi for all i = 1, . . . ,n.

Let e(i), i = 1, . . . ,n, be the ith unit vector in Rn, and e be an element of Rn
+ all of whose

coordinates are unity. For every x ∈ Rn, denote by ‖x‖ its Euclidean norm in Rn.
Let a = (a1, . . . ,an)>> 0, b = (b1, . . . ,bn)>> 0, d ∈ (0,1), ci = bi/(1+dai), i = 1, . . . ,n.
These parameters define an economy capable of producing a finite number n of alternative

types of machines. For every i = 1, . . . ,n, one unit of machine of type i requires ai > 0 units of
labor to construct it, and together with one unit of labor, each unit of it can produce bi > 0 units
of a single consumption good. Thus, the production possibilities of the economy are represented
by an (labor) input-coefficients vector, a = (a1, . . . ,an)>> 0 and an output-coefficients vector,
b = (b1, . . . ,bn) >> 0. Without loss of generality we assume that the types of machines are
numbered such that b1 ≥ b2 · · · ≥ bn.

We assume that all machines depreciate at a rate d ∈ (0,1). Thus the effective labor cost of
producing a unit of output on a machine of type i is given by (1+dai)/bi: the direct labor cost
of producing unit output, and the indirect cost of replacing the depreciation of the machine in
this production. We consider the reciprocal of the effective labor cost, the effective output that
takes the depreciation into account, and denote it by ci for the machine of type i.
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In this section we assume that there is a unique machine type σ at which effective labor cost
(1+dai)/bi is minimal, or at which the effective output per man bi/(1+dai) is maximal. Thus
assume the following:

there exists σ ∈ {1, . . . ,n} such that for all

i ∈ {1, . . . ,n}\{σ}, cσ > ci.

For each nonnegative integer t let x(t) = (x1(t), . . . ,xn(t)) ≥ 0 denote the amounts of the n
types of machines that are available in time-period t, and let z(t + 1) = (z1(t + 1), . . . ,zn(t +
1)) ≥ 0 be the gross investments in the n types of machines during period t + 1. Hence,
z(t + 1) = (x(t + 1)− x(t))+ dx(t), the sum of net investment and of depreciation. Let y(t) =
(y1(t), . . . ,yn(t)) be the amounts of the n types of machines used for production of the consump-
tion good, by(t), during period t +1. Let the total labor force of the economy be stationary and
positive. We normalize it to be unity. It is clear that gross investment, z(t +1) representing the
production of new machines of the various types, requires az(t + 1) units of labor in period t.
Also y(t) representing the use of available machines for manufacture of the consumption good,
requires ey(t) units of labor in period t. Thus, the availability of labor constrains employment
in the consumption and investment sectors is descried by az(t + 1)+ ey(t) ≤ 1. Note that the
flow of consumption and of investment (new machines) are in gestation during the period and
available at the end of it. We now give a formal description of this technological structure.

A sequence {x(t),y(t)}∞
t=0 is called a program if, for each integer t ≥ 0,

(x(t),y(t)) ∈ Rn
+×Rn

+, x(t +1)≥ (1−d)x(t), 0≤ y(t)≤ x(t),

a(x(t +1)− (1−d)x(t))+ ey(t)≤ 1. (2.1)
Let T1,T2 be integers such that 0≤ T1 < T2. A pair of sequences

({x(t)}T2
t=T1

,{y(t)}T2−1
t=T1

)

is called a program if x(T2) ∈ Rn
+ and, for each integer t with T1 ≤ t < T2, relations (2.1) hold.

We associate with every program {x(t),y(t)}∞
t=0 its gross investment sequence {z(t +1)}∞

t=0
such that

z(t +1) = x(t +1)− (1−d)x(t), t = 0,1, . . .
and a consumption sequence {by(t)}∞

t=0.
The results presented in this section were obtained in [19].

Proposition 2.1. For every program {x(t),y(t)}∞
t=0 there exists a constant m(x(0)) > 0, de-

pending only on x(0), such that x(t)≤ m(x(0))e for all nonnegative integers t.

Let w : [0,∞)→ R1 be a continuous strictly increasing concave and differentiable function
which represents the preferences of the planner.

We use the following optimality criterion.
A program {x∗(t),y∗(t)}∞

t=0 is weakly optimal if

liminf
T→∞

T

∑
t=0

[w(by(t))−w(by∗(t))]≤ 0

for every program {x(t),y(t)}∞
t=0 satisfying x(0) = x∗(0).

Set
Ω = {(x,x′) ∈ Rn

+×Rn
+ : x′− (1−d)x≥ 0
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and a(x′− (1−d)x)≤ 1}.
We have a correspondence Λ : Ω→ Rn

+ given by

Λ(x,x′) = {y ∈ Rn
+ : 0≤ y≤ x and ey≤ 1−a(x′− (1−d)x)}, (x,x′) ∈Ω.

For any (x,x′) ∈Ω, define

u(x,x′) = max{w(by) : y ∈ Λ(x,x′)}.
A golden-rule stock is x̂ ∈ Rn

+ such that (x̂, x̂) is a solution to the problem:
maximize u(x,x′) subject to
(i) x′ ≥ x; (ii) (x,x′) ∈Ω.
For i = 1, . . . ,n, set

q̂i = aibi/(1+dai), p̂i = w′(bσ (1+daσ )
−1)q̂i, ŷ = (1+daσ )

−1e(σ).

The following useful lemma plays an important role in our study.

Lemma 2.1. w(bŷ)≥ w(by)+ p̂x′− p̂x for any (x,x′) ∈Ω and for any y ∈ Λ(x,x′).

Theorem 2.1. There exists a unique golden-rule stock x̂ = (1+daσ )
−1e(σ).

We use the following notion of good programs introduced by Gale [13] and used in optimal
control [9, 61, 76].

A program {x(t),y(t)}∞
t=0 is called good if there exists M ∈ R1 such that

T

∑
t=0

(w(by(t))−w(bŷ))≥M for all integers T ≥ 0.

A program is called bad if

lim
T→∞

T

∑
t=0

(w(by(t))−w(bŷ)) =−∞.

Proposition 2.2. Let x0 ∈ Rn
+. Then there exists a good program

{x(t),y(t)}∞
t=0,

which satisfies x(0) = x0.

Proposition 2.3. Let {x(t),y(t)}∞
t=0 be a program. Then there exists a constant M(x(0)) ≥ 0

such that, for every pair of nonnegative integers t1 ≤ t2,
t2

∑
t=t1

(w(by(t))−w(bŷ))≤M(x(0)).

Proposition 2.3 easily implies the following result.

Proposition 2.4. Every program, which is not good, is bad.

For any (x,x′) ∈Ω and any y ∈ Λ(x,x′), set

δ (x,y,x′) = p̂(x− x′)− (w(by)−w(bŷ)). (2.2)

We say that a program {x(t),y(t)}∞
t=0 has the average turnpike property if

lim
T→∞

T−1
T−1

∑
t=0

(x(t),y(t)) = (x̂, ŷ).
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Proposition 2.5. Assume that a program {x(t),y(t)}∞
t=0 is good. Then it has the average turn-

pike property.

The next result easily follows from Lemma 2.1 and (2.2).

Proposition 2.6. Assume that {x(t),y(t)}∞
t=0 is a program. Then, for every integer t ≥ 0,

δ (x(t),y(t),x(t +1))≥ 0

and, for every natural number T ,

T

∑
t=0

(w(by(t))−w(bŷ)) = p̂(x(0)− x(T +1))−
T

∑
t=0

δ (x(t),y(t),x(t +1)).

Proposition 2.6 implies the following result.

Proposition 2.7. A program {x(t),y(t)}∞
t=0 is good if and only if

∞

∑
t=0

δ (x(t),y(t),x(t +1))< ∞.

For every x0 ∈ Rn
+ define

∆(x0) = inf{
∞

∑
t=0

δ (x(t),y(t),x(t +1)) : {x(t),y(t)}∞
t=0

is a program such that x(0) = x0}.

Proposition 2.8. Let x0 ∈ Rn
+. Then

0≤ ∆(x0)< ∞

and there exists a program {x′(t),y′(t)}∞
t=0 such that

x′(0) = x0, ∆(x0) =
∞

∑
t=0

δ (x′(t),y′(t),x′(t +1)).

Proposition 2.9. Assume that a program {x(t),y(t)}∞
t=0 satisfies

∆(x(0)) =
∞

∑
t=0

δ (x(t),y(t),x(t +1)).

Then it is weakly optimal.

Propositions 2.8 and 2.9 and (2.2) imply the following result.

Theorem 2.2. Let x0 ∈ Rn
+. Then there exists a weakly optimal program {x(t),y(t)}∞

t=0 satisfy-
ing x(0) = x0. If x0 = x̂, then the program {x(t),y(t)}∞

t=0 satisfying

x(t) = y(t) = x̂, t = 0,1, . . .

is weakly optimal.

The following auxiliary result plays an important role in our study of the RSS model.
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Lemma 2.2. Let
ξσ = 1−d−a−1

σ .

The von Neumann facet

{(x,x′) ∈Ω : there exists y ∈ Λ(x,x′) such that δ (x,y,x′) = 0}
is a subset of the set

{(x,x′) ∈Ω : x′i = xi = 0, i ∈ {1, . . . ,n}\{σ}, x′σ = a−1
σ +ξσ xσ}

with the equality if the function w is linear. If the function w is strictly concave, then the face is
the singleton {(x̂, x̂)}.

The next result easily follows from Proposition 2.2.

Proposition 2.10. Any weakly optimal program is good.

3. OVERTAKING OPTIMAL PROGRAMS

In this section we continue to use the assumptions introduced in Section 2. The following
three theorems were obtained in [59].

Theorem 3.1. Assume that the function w is strictly concave. Then, for every good program
{x(t),y(t)}∞

t=0,
lim
t→∞

(x(t),y(t)) = (x̂, x̂).

Set
ξσ = 1−d− (1/aσ ).

Theorem 3.2. Assume that ξσ 6=−1. Then

lim
t→∞

(x(t),y(t)) = (x̂, x̂)

for every good program {x(t),y(t)}∞
t=0.

In this paper we use a notion of an overtaking optimal program introduced by Gale [13], von
Weizsacker [58]. This optimality criterion is used in optimal control [9, 61, 76].

A program {x∗(t),y∗(t)}∞
t=0 is overtaking optimal if

limsup
T→∞

T

∑
t=0

[w(by(t))−w(by∗(t))]≤ 0

for every program {x(t),y(t)}∞
t=0, which satisfies x(0) = x∗(0).

Theorem 3.3. Assume that for every good program {x(t),y(t)}∞
t=0,

lim
t→∞

(x(t),y(t)) = (x̂, x̂).

Then, for every point x0 ∈ Rn
+, there is an overtaking optimal program {x(t),y(t)}∞

t=0 such that
x(0) = x0.

Corollary 3.1. Assume that the function w is strictly concave. Then, for every point x0 ∈ Rn
+,

there exists an overtaking optimal program {x(t),y(t)}∞
t=0 satisfying x(0) = x0.

Corollary 3.2. Assume that ξσ 6= −1. Then, for every point x0 ∈ Rn
+, there is an overtaking

optimal program {x(t),y(t)}∞
t=0 such that x(0) = x0.
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The following three theorems were obtained in [30].

Theorem 3.4. Assume that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Then, for each program {x(t),y(t)}∞
t=0, the following conditions are equivalent:

(i) ∑
∞
t=0 δ (x(t),y(t),x(t +1)) = ∆(x(0)).

(ii) {x(t),y(t)}∞
t=0 is overtaking optimal.

(iii) {x(t),y(t)}∞
t=0 is weakly optimal.

Theorem 3.5. Assume that at least one of the following conditions holds:
(a) w is strictly concave.
(b) ξσ 6=−1.
Let M0,ε > 0. Then there exists a natural number T0 such that for each overtaking optimal

program {x(t),y(t)}∞
t=0 satisfying x(0)≤M0e and each integer t ≥ T0,

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε.

Theorem 3.6. Assume that at least one of the following conditions holds:
(a) w is strictly concave.
(b) ξσ 6=−1.
Let ε > 0. Then there is δ > 0 such that for each overtaking optimal program {x(t),y(t)}∞

t=0
satisfying ‖x(0)− x̂‖ ≤ δ the following inequality holds:

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε

for all integers t ≥ 0.

In [62], we studied the structure of good programs of the RSS model and proved the following
three results.

Theorem 3.7. Let a program {x(t),y(t)}∞
t=0 be good. Then, for each i ∈ {1, . . . ,n}\{σ},
∞

∑
t=0

xi(t)< ∞,

∞

∑
t=0

(xσ (t)− yσ (t))< ∞

and the sequence {∑T−1
t=0 xσ (t)−T (1+daσ )

−1}∞
T=1 is bounded.

Theorem 3.8. Let the function w be linear. Then a program {x(t),y(t)}∞
t=0 is good if and only

if, for each i ∈ {1, . . . ,n}\{σ},
∞

∑
t=0

xi(t)< ∞,

∞

∑
t=0

(xσ (t)− yσ (t))< ∞

and the sequence {∑T−1
t=0 xσ (t)−T (1+daσ )

−1}∞
T=1 is bounded.
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Theorem 3.9. Let w ∈C2, w′′(bx̂) 6= 0 and let for every good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Then a program {x(t),y(t)}∞
t=0 is good if and only if, for each i ∈ {1, . . . ,n}\{σ},

∞

∑
t=0

xi(t)< ∞,

∞

∑
t=0

(xσ (t)− yσ (t))< ∞,

∞

∑
t=0

(yσ (t)− x̂σ )
2 < ∞,

and the sequence {∑T−1
t=0 xσ (t)−T (1+daσ )

−1}∞
T=1 is bounded.

4. TURNPIKE PROPERTIES

In this section we discuss the turnpike properties for the Robinson-Solow-Srinivasan model.
To have these properties means that the approximate solutions of the problems are essentially
independent of the choice of an interval and endpoint conditions. We show that these turnpike
properties hold and that they are stable under perturbations of an objective function.

We continue to use the assumptions introduced in Section 2.
Let z ∈ Rn

+ and T ≥ 1 be a natural number. Set

U(z,T ) = sup{
T−1

∑
t=0

w(by(t)) : ({x(t)}T
t=0, {y(t)}T−1

t=0 )

is a program such that x(0) = z}.
Clearly, U(z,T ) is a finite number. Let x0,x1 ∈ Rn

+, T1,T2 be integers, and 0≤ T1 < T2. Define

U(x0,x1,T1,T2) = sup{
T2−1

∑
t=T1

w(by(t)) : ({x(t)}T2
t=T1

, {y(t)}T2−1
t=T1

)

is a program such that x(T1) = x0, x(T2)≥ x1}.
(Here we suppose that a supremum over empty set is −∞.) Clearly,

U(x0,x1,T1,T2)< ∞.

It is also clear that, for any z ∈ Rn
+ and any integer T ≥ 1, U(z,T ) =U(z,0,0,T ).

In this section we assume that the following asymptotic turnpike property holds:
(ATP) Each good program {x(t),y(t)}∞

t=0 converges to the golden-rule stock (x̂, x̂) :

lim
t→∞

(x(t),y(t)) = (x̂, x̂).

With Card(A), we denote in the sequel the cardinality of a finite set A.
The following two turnpike results were obtained in [32].
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Theorem 4.1. Let M,ε be positive numbers and Γ ∈ (0,1). Then there exists a natural number
L such that for each integer T > L, each z0,z1 ∈ Rn

+ satisfying z0 ≤ Me and az1 ≤ Γd−1 and
each program ({x(t)}T

t=0,{y(t)}
T−1
t=0 ) which satisfies

x(0) = z0, x(T )≥ z1,
T−1

∑
t=0

w(by(t))≥U(z0,z1,0,T )−M,

the following inequality holds:

Card{i ∈ {0, . . . ,T −1} : max{‖x(t)− x̂‖, ‖y(t)− x̂‖}> ε} ≤ L.

Theorem 4.2. Let M,ε be positive numbers and Γ∈ (0,1). Then there exist a natural number L
and a positive number γ such that for each integer T > 2L, each z0,z1 ∈ Rn

+ satisfying z0 ≤Me
and az1 ≤ Γd−1 and each program ({x(t)}T

t=0,{y(t)}
T−1
t=0 ) which satisfies

x(0) = z0, x(T )≥ z1,
T−1

∑
t=0

w(by(t))≥U(z0,z1,0,T )− γ,

there are integers τ1,τ2 such that

τ1 ∈ [0,L], τ2 ∈ [T −L,T ],

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε for all t = τ1, . . . ,τ2−1.

Moreover if ‖x(0)− x̂‖ ≤ γ , then τ1 = 0 and if ‖x(T )− x̂‖ ≤ γ , then τ2 = T .

In [70], we continued to study the turnpike phenomenon for the RSS model and proved the
following three turnpike results which are extensions of Theorem 4.2.

Theorem 4.3. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M,ε be positive numbers and Γ ∈ (0,1). Then there exist a natural number L and a positive
number γ such that for each integer T > 2L, each z0,z1 ∈Rn

+ satisfying z0≤Me and az1≤ Γd−1

and each program ({x(t)}T
t=0,{y(t)}

T−1
t=0 ) which satisfies

x(0) = z0, x(T )≥ z1,

τ+L−1

∑
t=τ

w(by(t))≥U(x(τ),x(τ +L),0,L)− γ for all τ ∈ {0, . . . ,T −L}

and
T−1

∑
t=T−L

w(by(t))≥U(x(T −L),z1,0,L)− γ

there are integers τ1,τ2 such that

τ1 ∈ [0,L], τ2 ∈ [T −L,T ],

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε for all t = τ1, . . . ,τ2−1.

Moreover if ‖x(0)− x̂‖ ≤ γ , then τ1 = 0 and if ‖x(T )− x̂‖ ≤ γ , then τ2 = T .
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Theorem 4.4. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M,ε be positive numbers. Then there exist a natural number L and a positive number
γ such that for each integer T > 2L, each z0 ∈ Rn

+ satisfying z0 ≤ Me and each program
({x(t)}T

t=0,{y(t)}
T−1
t=0 ) which satisfies

x(0) = z0,

τ+L−1

∑
t=τ

w(by(t))≥U(x(τ),x(τ +L),0,L)− γ for all τ ∈ {0, . . . ,T −L}

and
T−1

∑
t=T−L

w(by(t))≥U(x(T −L),L)− γ,

there are integers τ1,τ2 such that

τ1 ∈ [0,L], τ2 ∈ [T −L,T ],

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε for all t = τ1, . . . ,τ2−1.

Moreover if ‖x(0)− x̂‖ ≤ γ then τ1 = 0 and if ‖x(T )− x̂‖ ≤ γ then τ2 = T.

Theorem 4.5. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M,ε be positive numbers. Then there exist a natural number L and a positive number
γ such that for each integer T > 2L, each z0 ∈ Rn

+ satisfying z0 ≤ Me and each program
({x(t)}T

t=0,{y(t)}
T−1
t=0 ) which satisfies

x(0) = z0,

T−1

∑
t=0

w(by(t))≥U(z0,T )− γ

there are integers τ1,τ2 such that

τ1 ∈ [0,L], τ2 ∈ [T −L,T ],

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε for all t = τ1, . . . ,τ2−1.

Moreover if ‖x(0)− x̂‖ ≤ γ , then τ1 = 0 and ‖x(T )− x̂‖ ≤ γ , then τ2 = T .

For every positive number M and every function φ : Rn
+→ R1, define

‖φ‖M = sup{|φ(z)| : z ∈ Rn and 0≤ z≤Me}.

Let integers T1,T2 satisfy 0 ≤ T1 < T2, and wi : Rn
+ → R1, i = T1, . . . ,T2− 1 be bounded on

bounded subsets of Rn
+ functions. For every pair of points z0,z1 ∈ Rn

+, define

U({wt}T2−1
t=T1

,z0,z1) = sup{
T2−1

∑
t=T1

wt(y(t)) :

({x(t)}T2
t=T1

,{y(t)}T2−1
t=T1

) is a program such that x(T1) = z0, x(T2)≥ z1},
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U({wt}T2−1
t=T1

,z0) = sup{
T2−1

∑
t=T1

wt(y(t)) :

({x(t)}T2
t=T1

,{y(t)}T2−1
t=T1

) is a program such that x(T1) = z0}.
(Here we assume that supremum over empty set is −∞.) It is not difficult to see that the follow-
ing result holds.

Lemma 4.1. Let integers T1,T2 satisfy 0 ≤ T1 < T2 and wi : Rn
+ → R1, i = T1, . . . ,T2− 1 be

bounded on bounded subsets of Rn
+ upper semicontinuous functions. Then the following asser-

tions hold.
1. For every point z0 ∈ Rn

+, there exists a program ({x(t)}T2
t=T1

,{y(t)}T2−1
T1

) such that

x(T1) = z0,
T2−1

∑
t=T1

wt(y(t)) =U({wt}T2−1
t=T1

,z0).

2. For every pair of points z0,z1 ∈ Rn
+ such that U({wt}T2−1

t=T1
,z0,z1) is finite, there exists a

program ({x(t)}T2
t=T1

,{y(t)}T2−1
t=T1

) such that x(0) = z0, x(T2)≥ z1 and

T2−1

∑
t=T1

wt(y(t)) =U({wt}T2−1
t=T1

,z0,z1).

The following stability results were obtained in [70]. It was proved that the turnpike phe-
nomenon is stable under small perturbations of the utility functions.

Theorem 4.6. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M > max{(aid)−1 : i = 1, . . . ,n}, ε > 0 and Γ ∈ (0,1). Then there exist a natural number L
and a positive number γ̃ such that for each integer T > 2L, each z0,z1 ∈ Rn

+ satisfying z0 ≤Me
and az1 ≤ Γd−1, each finite sequence of functions wi : Rn

+ → R1, i = 0, . . . ,T − 1 which are
bounded on bounded subsets of Rn

+ and such that

‖wi−w(b(·))‖M ≤ γ̃

for every integer i ∈ {0, . . . ,T −1} and every program ({x(t)}T
t=0,{y(t)}

T−1
t=0 ) such that

x(0) = z0, x(T )≥ z1,

τ+L−1

∑
t=τ

wt(y(t))≥U({wt}τ+L−1
t=τ ,x(τ),x(τ +L))− γ̃

for every τ ∈ {0, . . . ,T −L} and
T−1

∑
t=T−L

wt(y(t))≥U({wt}T−1
t=T−L,x(T −L),z1)− γ̃,

there exist integers τ1,τ2 such that

τ1 ∈ [0,L], τ2 ∈ [T −L,T ],

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε for all t = τ1, . . . ,τ2−1.
Moreover if |x(0)− x̂‖ ≤ γ̃ , then τ1 = 0 and if ‖x(T )− x̂‖ ≤ γ̃ , then τ2 = T .
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Theorem 4.7. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M > max{(aid)−1 : i = 1, . . . ,n} and ε > 0. Then there exist a natural number L and a
positive number γ̃ such that for each integer T > 2L, each z0 ∈ Rn

+ satisfying z0 ≤ Me, each
finite sequence of functions wi : Rn

+ → R1, i = 0, . . . ,T − 1 which are bounded on bounded
subsets of Rn

+ and such that
‖wi−w(b(·))‖M ≤ γ̃

for each i ∈ {0, . . . ,T −1} and each program ({x(t)}T
t=0,{y(t)}

T−1
t=0 ) which satisfies

x(0) = z0,

τ+L−1

∑
t=τ

wt(y(t))≥U({wt}τ+L−1
t=τ ,x(τ),x(τ +L))− γ̃,

for each integer τ ∈ {0, . . . ,T −L} and
T−1

∑
t=T−L

wt(y(t))≥U({wt}T−1
t=T−L,x(T −L))− γ̃,

there are integers τ1,τ2 such that

τ1 ∈ [0,L], τ2 ∈ [T −L,T ],

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε for all t = τ1, . . . ,τ2−1.
Moreover if ‖x(0)− x̂‖ ≤ γ , then τ1 = 0 and if ‖x(T )− x̂‖ ≤ γ , then τ2 = T .

Theorem 4.8. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M > max{(aid)−1 : i = 1, . . . ,n}, ε > 0 and Γ ∈ (0,1). Then there exist a natural number
L, a positive number γ and λ > 1 such that for each integer T > 2L, each z0,z1 ∈ Rn

+ satisfying
z0 ≤ Me and az1 ≤ Γd−1, each finite sequence of functions wi : Rn

+ → R1, i = 0, . . . ,T − 1
which are bounded on bounded subsets of Rn

+ and such that ‖wi−w(b(·))‖M ≤ γ for each i ∈
{0, . . . ,T−1}, each sequence {αi}T−1

i=0 ⊂ (0,1] such that for each i, j ∈ {0, . . . ,T−1} satisfying
| j− i| ≤ L the inequality αiα

−1
j ≤ λ holds and each program ({x(t)}T

t=0,{y(t)}
T−1
t=0 ) such that

x(0) = z0, x(T )≥ z1,

τ+L−1

∑
t=τ

αtwt(y(t))≥U({αtwt}τ+L−1
t=τ ,x(τ),x(τ +L))− γατ

for each integer τ ∈ {0, . . . ,T −L} and
T−1

∑
t=T−L

αtwt(y(t))≥U({αtwt}T−1
t=T−L,z1)− γαT−L,

there are integers τ1,τ2 such that

τ1 ∈ [0,L], τ2 ∈ [T −L,T ],

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε for all t = τ1, . . . ,τ2−1.
Moreover if ‖x(0)− x̂‖ ≤ γ , then τ1 = 0 and if ‖x(0)− x̂‖ ≤ γ , then τ2 = T .
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Theorem 4.9. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M > max{(aid)−1 : i = 1, . . . ,n} and ε > 0. Then there exist a natural number L, a positive
number γ and λ > 1 such that for each integer T > 2L, each z0 ∈ Rn

+ satisfying z0 ≤ Me,
each finite sequence of functions wi : Rn

+→ R1, i = 0, . . . ,T −1 which are bounded on bounded
subsets of Rn

+ and such that
‖wi−w(b(·))‖M ≤ γ

for each i ∈ {0, . . . ,T −1}, each sequence {αi}T−1
i=0 ⊂ (0,1] such that for each

i, j ∈ {0, . . . ,T −1}

satisfying | j− i| ≤ L the inequality αiα
−1
j ≤ λ holds and each program ({x(t)}T

t=0,{y(t)}
T−1
t=0 )

such that
x(0) = z0,

τ+L−1

∑
t=τ

αtwt(y(t))≥U({αtwt}τ+L−1
t=τ ,x(τ),x(τ +L))− γατ

for each integer τ ∈ {0, . . . ,T −L} and
T−1

∑
t=T−L

αtwt(y(t))≥U({αtwt}T−1
t=T−L,x(T −L))− γαT−L,

there are integers τ1,τ2 such that

τ1 ∈ [0,L], τ2 ∈ [T −L,T ],

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε for all t = τ1, . . . ,τ2−1.
Moreover if ‖x(0)− x̂‖ ≤ γ , then τ1 = 0 and if ‖x(T )− x̂‖ ≤ γ , then τ2 = T .

Theorem 4.10. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M > max{(aid)−1 : i = 1, . . . ,n} and ε > 0. Then there exist a natural number L, a positive
number γ and λ > 1 such that for each integer T > 2L, each z0 ∈ Rn

+ satisfying z0 ≤Me, each
finite sequence of upper semicontinuous functions wi : Rn

+ → R1, i = 0, . . . ,T − 1 which are
bounded on bounded subsets of Rn

+ and such that

‖wi−w(b(·))‖M ≤ γ

for each i ∈ {0, . . . ,T −1}, each sequence {αi}T−1
i=0 ⊂ (0,1] such that for each

i, j ∈ {0, . . . ,T −1}

satisfying | j− i| ≤ L the inequality αiα
−1
j ≤ λ holds and each program ({x(t)}T

t=0,{y(t)}
T−1
t=0 )

such that
x(0) = z0

and
T−1

∑
t=0

αtwt(y(t)) =U({αtwt}T−1
t=0 ,x(0)),
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there are integers τ1,τ2 such that

τ1 ∈ [0,L], τ2 ∈ [T −L,T ],

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε for all t = τ1, . . . ,τ2−1.
Moreover if ‖x(0)− x̂‖ ≤ γ , then τ1 = 0 and if ‖x(T )− x̂‖ ≤ γ , then τ2 = T .

Theorem 4.11. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M > max{(aid)−1 : i = 1, . . . ,n}, ε > 0 and Γ∈ (0,1). Then there exist a natural number
L and a positive number γ̃ such that for each integer T > 2L, each z0,z1 ∈ Rn

+ satisfying z0≤Me
and az1 ≤ Γd−1, each finite sequence of functions wi : Rn

+ → R1, i = 0, . . . ,T − 1 which are
bounded on bounded subsets of Rn

+ and such that

‖wi−w(b(·))‖M ≤ γ̃

for each i ∈ {0, . . . ,T −1} and each program ({x(t)}T
t=0,{y(t)}

T−1
t=0 ) such that

x(0) = z0, x(T )≥ z1,

T−1

∑
t=0

wt(y(t))≥U({wt}T−1
t=0 ,z0,z1)− γ̃,

there are integers τ1,τ2 such that

τ1 ∈ [0,L], τ2 ∈ [T −L,T ],

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε for all t = τ1, . . . ,τ2−1.
Moreover if ‖x(0)− x̂‖ ≤ γ̃ , then τ1 = 0 and if ‖x(T )− x̂‖ ≤ γ̃ , then τ2 = T .

Theorem 4.12. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M > max{(aid)−1 : i = 1, . . . ,n} and ε > 0. Then there exist a natural number L and a
positive number γ̃ such that for each integer T > 2L, each z0 ∈ Rn

+ satisfying z0 ≤ Me, each
finite sequence of functions wi : Rn

+ → R1, i = 0, . . . ,T − 1 which are bounded on bounded
subsets of Rn

+ and such that
‖wi−w(b(·))‖M ≤ γ̃

for each i ∈ {0, . . . ,T −1} and each program ({x(t)}T
t=0,{y(t)}

T−1
t=0 ) which satisfies

x(0) = z0,

T−1

∑
t=0

wt(y(t))≥U({wt}T−1
t=0 ,z0)− γ̃,

there are integers τ1,τ2 such that

τ1 ∈ [0,L], τ2 ∈ [T −L,T ],

‖x(t)− x̂‖, ‖y(t)− x̂‖ ≤ ε for all t = τ1, . . . ,τ2−1.
Moreover if ‖x(0)− x̂‖ ≤ γ̃ , then τ1 = 0 and if ‖x(T )− x̂‖ ≤ γ̃ , then τ2 = T .

The following results were obtained in [73].
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Theorem 4.13. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M > max{(aid)−1 : i = 1, . . . ,n}, M0 > 0, ε > 0 and Γ ∈ (0,1). Then there exist a natural
number L and a positive number γ̃ such that for each integer T > L, each z0,z1 ∈ Rn

+ satisfying
z0 ≤Me and az1 ≤ Γd−1, each finite sequence of functions wi : Rn

+→ R1, i = 0, . . . ,T −1 which
are bounded on bounded subsets of Rn

+ and such that

‖wi−w(b(·))‖M ≤ γ̃

for each i ∈ {0, . . . ,T −1} and each program ({x(t)}T
t=0,{y(t)}

T−1
t=0 ) such that

x(0) = z0, x(T )≥ z1,

T−1

∑
t=0

wt(y(t))≥U({wt}T−1
t=0 ,z0,z1)−M0,

the following inequality holds:

Card({t ∈ {0, . . . ,T −1} : max{‖x(t)− x̂‖, ‖y(t)− x̂‖}> ε})≤ L.

Theorem 4.14. Suppose that for each good program {u(t),v(t)}∞
t=0,

lim
t→∞

(u(t),v(t)) = (x̂, x̂).

Let M > max{(aid)−1 : i = 1, . . . ,n}, M0 > 0 and ε > 0. Then there exist a natural number
L and a positive number γ̃ such that for each integer T > L, each z0 ∈ Rn

+ satisfying z0 ≤Me,
each finite sequence of functions wi : Rn

+→ R1, i = 0, . . . ,T −1 which are bounded on bounded
subsets of Rn

+ and such that
‖wi−w(b(·))‖M ≤ γ̃

for each i ∈ {0, . . . ,T −1} and each program ({x(t)}T
t=0,{y(t)}

T−1
t=0 ) which satisfies

x(0) = z0,

T−1

∑
t=0

wt(y(t))≥U({wt}T−1
t=0 ,z0)−M0,

the following inequality holds:

Card({t ∈ {0, . . . ,T −1} : max{‖x(t)− x̂‖, ‖y(t)− x̂‖}> ε})≤ L.

5. THE ROBINSON-SOLOW-SRINIVASAN MODEL WITH A NONCONCAVE UTILITY

FUNCTION

In this section we consider infinite horizon optimal control problems related to the Robinson-
Solow-Srinivasan model with a nonconcave utility function. In particular, we show the existence
of good programs and optimal programs using different optimality criterions.

Let a = (a1, . . . ,an)>> 0, b = (b1, . . . ,bn)>> 0, and d ∈ (0,1].
Recall that a sequence {x(t),y(t)}∞

t=0 is called a program if, for each integer t ≥ 0,

(x(t),y(t)) ∈ Rn
+×Rn

+, x(t +1)≥ (1−d)x(t),

0≤ y(t)≤ x(t), a(x(t +1)− (1−d)x(t))+ ey(t)≤ 1. (5.1)
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Let T1,T2 be integers such that 0≤ T1 < T2. A pair of sequences

({x(t)}T2
t=T1

,{y(t)}T2−1
t=T1

)

is called a program if x(T2) ∈ Rn
+ and for each integer t satisfying T1 ≤ t < T2 relations (5.1)

hold.
Let w : [0,∞)→ [0,∞) be a continuous strictly increasing function which represents the pref-

erences of the planner.
For every point x0 ∈ Rn

+ and every natural number T , set

U(x0,T ) = sup{
T−1

∑
t=0

w(by(t)) : ({x(t)}T
t=0,{y(t)}T−1

t=0 )

is a program such that x(0) = x0}.
In the sequel, we assume that supremum of empty set is −∞.

Let x0, x̃0 ∈ Rn
+ and let T be a natural number. Set

U(x0, x̃0,T ) = sup{
T−1

∑
t=0

w(by(t)) : ({x(t)}T
t=0,{y(t)}T−1

t=0 )

is a program such that x(0) = x0, x(T )≥ x̃0}.
The next proposition follows immediately from the continuity of w.

Proposition 5.1. For every point x0 ∈ Rn
+ and every integer T > 0, there exists a program

({x(t)}T
t=0, {y(t)}

T−1
t=0 ) such that x(0) = x0 and

T−1

∑
t=0

w(by(t)) =U(x0,T ).

Set
Ω = {(x,x′) ∈ Rn

+×Rn
+ : x′ ≥ (1−d)x and a(x′− (1−d)x)≤ 1}.

We have a correspondence Λ : Ω→ Rn
+ given by

Λ(x,x′) = {y ∈ Rn
+ : 0≤ y≤ x and

ey≤ 1−a(x′− (1−d)x)}, (x,x′) ∈Ω.

Let M0 be a positive number and let T ≥ 1 be an integer. Set

Û(M0,T ) = sup{
T−1

∑
t=0

w(by(t)) :

({x(t)}T
t=0,{y(t)}T−1

t=0 ) is a program such that x(0)≤M0e}.

It is clear that Û(M0,T ) is finite. The next proposition follows immediately from the continuity
of w.

Proposition 5.2. For every positive number M0 and every integer T ≥ 1, there exists a program
({x(t)}T

t=0, {y(t)}
T−1
t=0 ) such that x(0)≤M0e and ∑

T−1
t=0 w(by(t)) = Û(M0,T ).
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In this section we show the existence of a positive constant µ such that the following proper-
ties hold:

(a) For each program {x(t),y(t)}∞
t=0, either the sequence {∑T−1

t=0 [w(by(t))−µ]}∞
T=1 is bounded

or

lim
T→∞

T−1

∑
t=0

[w(by(t))−µ] =−∞;

(b) for each x0 ∈ Rn
+, there exists a program {x(t),y(t)}∞

t=0 such that x(0) = x0 and that the
sequence {∑T−1

t=0 [w(by(t))−µ]}∞
T=1 is bounded.

For any (x,x′) ∈Ω, define

u(x,x′) = max{w(by) : y ∈ Λ(x,x′)}.
In this section we state several results obtained in [60].
Our first result allows us to define the constant µ .

Theorem 5.1. Let M1,M2 > max{(dai)
−1 : i = 1, . . . ,n}. Then there exist finite limits

lim
p→∞

Û(Mi, p)/p, i = 1,2

and
lim
p→∞

Û(M1, p)/p = lim
p→∞

Û(M2, p)/p.

Define
µ = lim

p→∞
Û(M, p)/p,

where M > max{(dai)
−1 : i = 1, . . . ,n}. Note that µ is well defined and does not depend on M.

Theorem 5.2. Let M0 > max{(dai)
−1 : i = 1, . . . ,n}. Then there exists M > 0 such that

|Û(M0, p)− pµ| ≤M for all integers p≥ 1.

Corollary 5.1. Let M0 > max{(dai)
−1 : i = 1, . . . ,n}. Then there exists a positive number M

such that, for each program {x(t), y(t)}∞
t=0 satisfying x(0)≤M0e and each integer T ≥ 1,

T−1

∑
t=0

[w(by(t))−µ]≤M.

Proposition 5.3. Let {x(t),y(t)}∞
t=0 be a program. Then either the sequence {∑T−1

t=0 [w(by(t))−
µ]}∞

T=1 is bounded or

lim
T→∞

T−1

∑
t=0

[w(by(t))−µ] =−∞.

Recall that a program {x(t),y(t)}∞
t=0 is called good if there exists M ∈ R1 such that

T

∑
t=0

(w(y(t))−µ)≥M for all T ≥ 0

and that it is called bad if

lim
T→∞

T

∑
t=0

(w(y(t))−µ) =−∞.

By Proposition 5.3 any program that is not good is bad.
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Set
x(t) = (2nd max{ai : i = 1, . . . ,n})−1e,

y(t) = min{(2n)−1,(2nd max{ai : i = 1, . . . ,n})−1}e for all integers t ≥ 0.
It is easy to see that {x(t),y(t)}∞

t=0 is a program. By Corollary 5.1, we have

µ ≥ lim
T→∞

T−1
T−1

∑
t=0

w(by(t))> w(0).

Thus
µ > w(0).

Theorem 5.3. Let M0 > max{(dai)
−1 : i = 1, . . . ,n}. Then there exists a positive number M

such that, for every x0 ∈ Rn
+, which satisfies x0 ≤ M0e, there exists a program {x(t),y(t)}∞

t=0
such that x(0) = x0, for every integer T1 ≥ 0 and every natural number T2 > T1,

|
T2−1

∑
t=T1

w(by(t))−µ(T2−T1)| ≤M

and that, for every natural number T ,
T−1

∑
t=0

w(by(t)) =U(x(0),x(T ),T ). (5.2)

Theorem 5.3 establishes that for every initial state x0 ≥ 0 there exists a good program {x(t),
y(t)}∞

t=0 such that x(0) = x0. In addition, this program satisfies (5.2) for every natural number
T . This leads us to the following definition.

A program {x(t),y(t)}∞
t=0 is called weakly maximal if equality (5.2) holds for every natural

number T .
The next result establishes a relation between good programs and weakly maximal programs.

Theorem 5.4. Let {x(t),y(t)}∞
t=0 be a weakly maximal program such that limsupt→∞ by(t)> 0.

Then the program {x(t),y(t)}∞
t=0 is good.

A program {x∗(t),y∗(t)}∞
t=0 is called weakly agreeable if, for every nonnegative integer t,

u(x∗(t),x∗(t +1)) = w(by∗(t)) (5.3)

and if, for every integer T0 ≥ 1 and every positive number ε , there exists a natural number
Tε > T0 such that, for every program ({x(t)}Tε

t=0,{y(t)}
Tε−1
t=0 ) which satisfies x(0) = x∗(0), there

exists a program ({x′(t)}Tε

t=0,{y′(t)}
Tε−1
t=0 ) such that

x′(0) = x(0), x′(t) = x∗(t), t = 0, . . . ,T0,

Tε−1

∑
t=0

w(by′(t))≥
Tε−1

∑
t=0

w(by(t))− ε.

The notion of weakly agreeable programs is a weakened version of the notion of agreeable
programs which is well-known in the literature [15, 16, 17].

The following three results were obtained in [72].

Theorem 5.5. Any weakly agreeable program is good.

Theorem 5.6. Any weakly agreeable program is weakly maximal.
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Theorem 5.7. A program {x∗(t),y∗(t)}∞
t=0 is weakly agreeable if and only if there exist a strictly

increasing sequence of natural numbers {Sk}∞
k=1 and a sequence of programs

({x(k)(t)}Sk
t=0,{y

(k)(t)}Sk−1
t=0 ), k = 1,2, . . .

such that
x(k)(0) = x∗(0), k = 1,2, . . .

U(x∗(0),Sk)−
Sk−1

∑
t=0

w(by(k)(t))→ 0 as k→ ∞

and that, for all integers t ≥ 0,

x∗(t) = lim
k→∞

x(k)(t), y∗(t) = lim
k→∞

y(k)(t).

The following three theorems were obtained in [66].
We begin with the result which establishes the continuity of the function U(·, ·,T ).

Theorem 5.8. Let T > 0 be an integer, x0, x̃0 ∈ Rn
+, U(x0, x̃0,T ) > 0 and let d < 1. Then the

function (y,z)→U(y,z,T ), y,z ∈ Rn
+ is continuous at (x0, x̃0).

Theorem 5.9. Let M0 > max{(dai)
−1 : i = 1, . . . ,n}. Then there exists M1 > 0 such that for

each good weakly maximal program {x(t),y(t)}∞
t=0 satisfying x(0) ≤ M0e and each pair of

integers S1 ≥ 0 and S2 > S1,

|
S2−1

∑
t=S1

w(by(t))−µ(S2−S1)| ≤M1.

By definition for any good program {x(t),y(t)}∞
t=0, there is a constant M1 > 0 such that the

inequality above holds. In view of Theorem 5.9, the constant M1 depends only on the constant
M0 and the inequality above holds for all programs {x(t),y(t)}∞

t=0 satisfying x(0)≤M0e.

Theorem 5.10. Let {x(k)(t),y(k)(t)}∞
t=0, k = 1,2, . . . be good weakly maximal programs. As-

sume that, for any integer t ≥ 0, there exists x(t) = limk→∞ x(k)(t), y(t) = limk→∞ y(k)t . Then
{x(t),y(t)}∞

t=0 is a good weakly maximal program.

Now we consider the RSS model with discounting. For every nonnegative integer t let wt :
[0,∞)→ [0,∞) be a continuous increasing function which represents the preferences of the
planner at moment of time t. We suppose that the following assumption holds.

Assumption A: For every nonnegative integer t ≥ 0, wt(0) = 0, and for every positive number
M,

lim
t→∞

wt(M) = 0.

For every point x0 ∈ Rn
+ and every natural number T , define

U(x0,T ) = sup{
T−1

∑
t=0

wt(by(t)) : ({x(t)}T
t=0,{y(t)}T−1

t=0 )

is a program from such that x(0) = x0}.
The next proposition follows immediately from the continuity of wt , t = 0,1, . . . .
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Proposition 5.4. For every x0 ∈ Rn
+ and every integer T ≥ 1, there exists a program ({x(t)}T

t=0,

{y(t)}T−1
t=0 ), which satisfies x(0) = x0 and

T−1

∑
t=0

wt(by(t)) =U(x0,T ).

The following theorem was obtained in [31].

Theorem 5.11. For every z∈ Rn
+ there exists a program {xz(t),yz(t)}∞

t=0 such that xz(0) = z and
the following property holds: For every pair of positive numbers M0,δ , there exists an integer
L(δ )≥ 1 such that, for every natural number S≥ L(δ ) and every z∈ Rn

+, which satisfies z≤M0e,
S−1

∑
t=0

wt(byz(t))≥U(z,S)−δ .

Corollary 5.2. Let z ∈ Rn
+ and let a program {xz(t),yz(t)}∞

t=0 be as guaranteed by Theorem
5.11. Then, for every program {x(t),y(t)}∞

t=0 satisfying x(0) = z, the inequality

liminf
T→∞

[
T−1

∑
t=0

wt(byz(t))−
T−1

∑
t=0

wt(by(t))]≥ 0

holds.

Example 5.1. Let w : [0,∞)→ [0,∞) be a continuous increasing function, w(0) = 0, {ρt}∞
t=0 ⊂

(0,1), limt→∞ ρt = 0, and wt = ρtw, t = 0,1, . . . . Then Assumption A holds. Assume that
∑

∞
t=0 ρt = ∞ and that w(s) > 0 for every positive number s. Let z ∈ Rn

+ be given. Set x(0) =
z, y(0) = 0, for every natural number t,

y(t) = (2n)−1 min{1,a−1
1 , . . . ,a−1

i , . . . ,a−1
n }e,

for every nonnegative integer t,

x(t +1) = (1−d)x(t)+(2n)−1(a−1
1 , . . . ,a−1

n ).

Evidently, {x(t),y(t)}∞
t=0 is a program and, for every natural number T ,

T

∑
t=0

wt(by(t)) =
T

∑
t=1

ρtw(be(2n)−1 min{1,a−1
1 , . . . ,a−1

n })

= (
T

∑
t=1

ρt)w(be(2n)−1 min{1,a−1
1 , . . . ,a−1

n })→ ∞ as T → ∞.

This implies that U(z,T )→ ∞ as T → ∞.

6. NOAUTONOMOUS INFINITE HORIZON OPTIMAL CONTROL PROBLEMS

In this section we study infinite horizon optimal control problems with noautonomous opti-
mality criterions. The utility functions, which determine the optimality criterion, are noncon-
cave. The class of models contains, as a particular case, the Robinson-Solow-Srinivasan model.
We show the existence of good programs and optimal programs.

For every x ∈ Rn, we denote by ‖x‖2 its Euclidean norm in Rn. We assume that ‖ ·‖ is a norm
in Rn. For every mapping a : X → 2Y \{ /0}, where X ,Y are nonempty sets, we set

graph(a) = {(x,y) ∈ X×Y : y ∈ a(x)}.
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Let K be a nonempty compact subset of Rn. Denote by P(K) the set of all nonempty closed
subsets of K. For every pair of nonempty sets A,B⊂ Rn, define

H(A,B) = sup{sup
x∈A

inf
y∈B
‖x− y‖, sup

y∈B
inf
x∈A
‖x− y‖}.

For every nonnegative integer t, let at : K→P(K) be such that graph(at) is a closed subset of
Rn×Rn. Assume that there exists a number κ ∈ (0,1) such that, for every pair of points x,y∈K
and every nonnegative integer t,

H(at(x),at(y))≤ κ‖x− y‖

and that, for every nonnegative integer t, the upper semicontinuous function

ut : {(x,x′) ∈ K×K, x′ ∈ at(x)}→ [0,∞)

satisfies
sup{sup{ut(x,x′) : (x,x′) ∈ graph(at)} : t = 0,1, . . .}< ∞.

A sequence {x(t)}∞
t=0 ⊂ K is called a program if x(t + 1) ∈ at(x(t)) for every nonnegative

integer t.
Let T1,T2 be integers such that T1 < T2. A sequence {x(t)}T2

t=T1
⊂ K is called a program if

x(t +1) ∈ at(x(t)) for every integer t satisfying T1 ≤ t < T2.
We suppose that the following assumptions hold:
(A1) for every positive number δ , there exists a positive number λ such that if an integer t ≥ 0

and if (x,x′) ∈ graph(at) satisfies ut(x,x′)≥ δ , then there exists z ∈ at(x) satisfying z≥ x′+λe;
(A2) there exist a program {x̂(t)}∞

t=0 and a positive number ∆̂ such that ut(x̂(t), x̂(t +1))≥ ∆̂

for every nonnegative integer t;
(A3) for every nonnegative integer t, every (x,y)∈ graph(at) and every x̃ ∈K, which satisfies

x̃≥ x, there exists ỹ ∈ at(x̃) for which

ỹ≥ y, ut(x̃, ỹ)≥ ut(x,y).

In the sequel, we assume that supremum of empty set is −∞.
For every point x0 ∈ K and every natural number T , define

U(x0,T ) = sup{
T−1

∑
t=0

ut(x(t),x(t +1)) :

{x(t)}T−1
t=0 is a program and x(0) = x0}.

Let x0, x̃0 ∈ K and let T ≥ 1 be an integer. Define

U(x0, x̃0,T ) = sup{
T−1

∑
t=0

ut(x(t),x(t +1)) : {x(t)}T−1
t=0 is a program such that

x(0) = x0, x(T )≥ x̃0}.
Let T ≥ 1 be an integer. Define

Û(T ) = sup{
T−1

∑
t=0

ut(x(t),x(t +1)) : {x(t)}T−1
t=0 is a program}.

The results presented in this section were obtained in [63].
Upper semicontinuity of ut , t = 0,1, . . . implies the following two propositions.
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Proposition 6.1. For every x0 ∈ K and every integer T ≥ 1, there exists a program {x(t)}T
t=0,

which satisfies x(0) = x0 and
T−1

∑
t=0

ut(x(t),x(t +1)) =U(x0,T ).

Proposition 6.2. For every integer T ≥ 1 there exists a program {x(t)}T
t=0 satisfying

T−1

∑
t=0

ut(x(t),x(t +1)) = Û(T ).

For every x0 ∈ K and every pair of integers T1 < T2, define

U(x0,T1,T2) = sup{
T2−1

∑
t=T1

ut(x(t),x(t +1)) :

{x(t)}T2−1
t=T1

is a program and x(T1) = x0}.
Upper semicontinuity of ut , t = 0,1, . . . implies the following result.

Proposition 6.3. For every x0 ∈ K and every pair of integers T1 < T2 there exists a program
{x(t)}T2

t=T1
such that x(T1) = x0 and

T2−1

∑
t=T1

ut(x(t),x(t +1)) =U(x0,T1,T2).

Let x0, x̃0 ∈ K and let T1 < T2 be integers. Define

U(x0, x̃0,T1,T2) = sup{
T2−1

∑
t=T1

ut(x(t),x(t +1)) : {x(t)}T2
t=T1

is a program and

x(T1) = x0, x(T2)≥ x̃0}.
Let T1,T2 be integers such that T1 < T2. Define

Û(T1,T2) = sup{
T2−1

∑
t=T1

ut(x(t),x(t +1)) : {x(t)}T2
t=T1

is a program}.

The following theorem is the main result of this section.

Theorem 6.1. There exists a positive number M such that for every x0 ∈ K there exists a pro-
gram {x̄(t)}∞

t=0 such that x̄(0) = x0 and that for every pair of nonnegative integers T1,T2 satis-
fying T1 < T2, the inequality

|
T2−1

∑
t=T1

ut(x̄(t), x̄(t +1))−Û(T1,T2)| ≤M

holds. Moreover, for every natural number T ,
T−1

∑
t=0

ut(x̄(t), x̄(t +1)) = Ũ(x̄(0), x̄(T ),0,T ),

if the following properties hold:
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for every nonnegative integer t and every (z,z′) ∈ graph(at) satisfying ut(z,z′)> 0, the func-
tion ut is continuous at the point (z,z′);

for every nonnegative integer t and each z, z1, z2, z3 ∈ K, which satisfy z1 ≤ z2 ≤ z3 and
zi ∈ at(z), i = 1,3, the inclusion z2 ∈ at(z) is valid.

The program {x̄(t)}∞
t=0 whose existence is guaranteed by Theorem 6.1 in infinite horizon

optimal control is considered as an (approximately) optimal program.

Theorem 6.2. Assume that {x(t)}∞
t=0 is a program. There exists a positive number M0 such

that, for every natural number T ,
T−1

∑
t=0

ut(x(t),x(t +1))≥U(0,T,x(0),x(T ))−M0

and that
limsup

t→∞

ut(x(t),x(t +1))> 0.

Then there exists positive number M1 such that, for every pair of integers T1 ≥ 0 satisfying
T2 > T1, the inequality

|
T2−1

∑
t=T1

ut(x(t),x(t +1))−Û(T1,T2)| ≤M1

holds.

Proposition 6.4. Let x0 ∈ K and let a program {x̄(t)}∞
t=0 be as guaranteed by Theorem 6.1.

Assume that {x(t)}∞
t=0 is a program. Then either the sequence

{
T−1

∑
t=0

ut(x(t),x(t +1))−
T−1

∑
t=0

ut(x̄(t), x̄(t +1))}∞
T=1

is bounded or
T−1

∑
t=0

ut(x(t),x(t +1))−
T−1

∑
t=0

ut(x̄(t), x̄(t +1))→−∞ as T → ∞.

Now assume that ut = u0 and at = a0, t = 0,1, . . . . Let a positive number M be as guaranteed
by Theorem 6.1 and set u = u0, a = a0.

Theorem 6.3. There exists µ = limp→∞Û(0, p)/p and

|p−1Û(0, p)−µ| ≤ 2M/p for all natural numbers p.

7. TURNPIKE RESULTS FOR THE NONSTATIONARY ROBINSON-SOLOW-SRINIVASAN

MODEL

In this section we discuss turnpike results for a class of discrete-time optimal control prob-
lems. These control problems arise in economic dynamics and describe the nonstationary one-
dimensional Robinson-Solow-Srinivasan model. We study the structure of approximate solu-
tions which is independent of the length of the interval, for all sufficiently large intervals. The
results of this chapter were obtained in [64].
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Denote by Card(E) the cardinality of a set E. Let R1 (R1
+) be the set of real (nonnegative)

numbers. For each mapping a : X → 2Y \ { /0}, where X ,Y are nonempty sets, put graph(a) =
{(x,y) ∈ X×Y : y ∈ a(x)}. For each integer t ≥ 0, let

αt > 0, dt ∈ (0,1]

and, for each integer t ≥ 0, let wt : [0,∞)→ [0,∞) be a strictly increasing continuous function
such that

wt(0) = 0 and inf{wt(z) : an integer t ≥ 0}> 0 for all z > 0.

We suppose that the following assumption holds:
(A1) for each ε > 0, there exists δ > 0 such that wt(δ )≤ ε for each integer t ≥ 0.
We now give a formal description of the model.
Let t ≥ 0 be an integer. For each x ∈ R1

+, set

at(x) = {y ∈ R1
+ : y≥ (1−dt)x and αt(y− (1−dt)x)≤ 1}.

It is clear that, for each x ∈ R1
+,

at(x) = [(1−dt)x, α
−1
t +(1−dt)x]

and that graph(at) is a closed subset of R1
+×R1

+. Suppose that

inf{dt : t = 0,1, . . .}> 0,

inf{αt : t = 0,1, . . .}> 0,

sup{αt : t = 0,1, . . .}< ∞,

sup{wt(M) : t = 0,1, . . .}< ∞ for each M > 0.

The constraint mappings at , t = 0,1, . . . have already been defined. Now we define the cost
functions ut , t = 0,1, . . . . For each integer t ≥ 0 and each (x,x′) ∈ graph(at), set

ut(x,x′) = sup{wt(y) : 0≤ y≤ x and y+αt(x′− (1−dt)x)≤ 1}.

Clearly, for each integer t ≥ 0 and each (x,x′) ∈ graph(at),

ut(x,x′) = wt(min{x,1−αt(x′− (1−dt)x)}).

Choose α∗, α∗, d∗ > 0 such that

α∗ < αt < α
∗, d∗ < dt for all integers t ≥ 0.

Clearly, for each integer t ≥ 0, the function ut : graph(at)→ [0,∞) is upper semicontinuous.
A sequence {x(t)}∞

t=0 ⊂ R1
+ is called a program if x(t + 1) ∈ at(x(t)) for all integers t ≥ 0.

Let T1,T2 be integers such that T1 < T2. A sequence {x(t)}T2
t=T1
⊂ R1

+ is called a program if
x(t + 1) ∈ at(x(t)) for all integers t satisfying T1 ≤ t < T2. In the sequel, we assume that the
supremum over an empty set is −∞.

For each x0 ∈ R1
+ and each pair of integers T1 < T2, set

U(x0,T1,T2) = sup{
T2−1

∑
t=T1

ut(x(t),x(t +1)) : {x(t)}T2
t=T1

is a program and x(T1) = x0}.
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Let x0, x̃0 ∈ R1
+ and let T1 < T2 be integers. Set

U(x0, x̃0,T1,T2) = sup{
T2−1

∑
t=T1

ut(x(t),x(t +1)) : {x(t)}T2
t=T1

is a program such that x(T1) = x0, x(T2)≥ x̃0}.
Let T1,T2 be integers such that T1 < T2. Set

ÛM(T1,T2) = sup{
T2−1

∑
t=T1

ut(x(t),x(t +1)) :

{x(t)}T2
t=T1

is a program and x(T1)≤M}.
Upper semicontinuity of ut , t = 0,1, . . . , compactness of sets of admissible programs and the

optimization theorem of Weierstrass imply the following results.

Proposition 7.1. For each x0 ∈ R1
+ and each pair of integers T1 < T2, there exists a program

{x(t)}T2
t=T1

such that x(T1) = x0 and

T2−1

∑
t=T1

ut(x(t),x(t +1)) =U(x0,T1,T2).

Proposition 7.2. For each natural number T and each M > 0 there exists a program {x(t)}T
t=0

such that
T−1

∑
t=0

ut(x(t),x(t +1)) = ÛM(0,T )

and x(0)≤M.

Fix
M∗ > (α∗d∗)−1 +1.

It is clear that the model considered here is a particular case of the model discussed in Section
6 with n = 1. Therefore all the results of Section 6 can be applied.

Theorem 7.1. There exists M̄ > 0 such that, for each x0 ∈ [0,M∗], there is a program {x̄(t)}∞
t=0

such that x̄(0) = x0, for each pair of integers T1,T2 ≥ 0 satisfying T1 < T2,

|
T2−1

∑
t=T1

ut(x̄(t), x̄(t +1))−ÛM∗(T1,T2)| ≤ M̄

and that, for each integer T > 0,
T−1

∑
t=0

ut(x̄(t), x̄(t +1)) =U(x̄(0), x̄(T ),0,T ).

Theorem 7.2. Let x0 ∈ [0,M∗] and let a program {x̄(t)}∞
t=0 be as guaranteed by Theorem

7.1. Assume that {x(t)}∞
t=0 is a program. Then either the sequence {∑T−1

t=0 ut(x(t),x(t + 1))−
∑

T−1
t=0 ut(x̄(t), x̄(t +1))}∞

T=1 is bounded or
T−1

∑
t=0

ut(x(t),x(t +1))−
T−1

∑
t=0

ut(x̄(t), x̄(t +1))→−∞ as T → ∞.
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Let M̄ > 0 be as guaranteed by Theorem 7.1. Fix x∗0 ∈ [0,M∗] and let a program {x∗(t)}∞
t=0

be as guaranteed by Theorem 7.1. Namely,

x∗(0) = x∗0,

T−1

∑
t=0

ut(x∗(t),x∗(t +1)) =U(x∗(0),x∗(T ),0,T )

for each integer T > 0 and

|
T2−1

∑
t=T1

ut(x∗(t),x∗(t +1))−ÛM∗(T1,T2)| ≤ M̄

for each pair of integers T1,T2 satisfying 0≤ T1 < T2.
For each integer t ≥ 0, set

y∗(t) = min{x∗(t), 1−αt(x∗(t +1)− (1−dt)x∗(t))}.

We will show that the program {x∗(t)}∞
t=0 is the turnpike for the model.

A function w : [0,∞)→ R1 is called strictly concave if, for each x,y ∈ [0,∞) satisfying x 6= y
and each α ∈ (0,1),

w(αx+(1−α)y)> αw(x)+(1−α)w(y).

The following two results are consequences of the optimization theorem of Weierstrass.

Proposition 7.3. Assume that w : [0,∞)→ [0,∞) is continuous strictly concave function. Let
ε,M > 0. Then there exists δ0 > 0 such that, for each x,y ∈ [0,M] satisfying |x− y| ≥ ε ,

w(2−1(x+ y))−2−1w(x)−2−1w(y)≥ δ0.

Proposition 7.4. Assume that w : [0,∞)→ [0,∞) is a strictly increasing continuous function,
M > 0 and ε ∈ (0,M). Then inf{w(x)−w(y) : x,y ∈ [0,M] and x≥ y+ ε}> 0.

We suppose that the following assumptions hold.
(A2) For each ε,M > 0, there exists ε0 > 0 such that, for each x,y∈ (0,M] satisfying |x−y| ≥

ε and each integer t ≥ 0,

wt(2−1(x+ y))−2−1wt(x)−2−1wt(y)≥ ε0.

(A3) For each M > 0 and each ε ∈ (0,M], there is ε1 > 0 such that, for each integer t ≥ 0 and
each x,y ∈ [0,M] satisfying x≥ y+ ε ,

wt(x)−wt(y)≥ ε1.

(A4) For each M > 0 and each ε > 0, there exists δ > 0 such that, for each integer t ≥ 0 and
each x,y ∈ [0,M] satisfying |x− y| ≤ δ , the inequality |wt(x)−wt(y)| ≤ ε holds.

Note that (A2) is an assumption of uniform concavity of the functions wt , t = 0,1, . . . , (A3)
is an assumption of uniform strict monotonicity of the functions wt , t = 0,1, . . . and (A4) is an
assumption of uniform equicontinuity of the functions wt , t = 0,1, . . . .

We assume that
d∗ := sup{dt : t = 0,1, . . .}< 1.

The following theorems describe the structure of optimal program of the model.
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Theorem 7.3. Let M > 0 and ε > 0. Then there exists a natural number Q such that, for
each pair of integers T1 ≥ 0 and T2 ≥ Q+ T1 and each program {x(t)}T2

t=T1
, which satisfies

x(T1)≤M∗, ∑
T2−1
t=T1

ut(x(t),x(t +1))≥U(x(T1),T1,T2)−M, the following inequality holds:

Card({t ∈ {T1, . . . ,T2} : |x(t)− x∗(t)|> ε})≤ Q.

Theorem 7.4. Let M,ε > 0. Then there exist a natural number p and δ > 0 such that, for
each pair of integers T1 ≥ 0, T2 ≥ 2p+T1 and each program {x(t)}T2

t=T1
satisfying x(T1)≤M∗,

∑
T2−1
t=T1

ut(x(t),x(t +1))≥U(x(T1),x(T2),T1,T2)−δ ,

U(x(T1),x(T2),T1,T2)≥U(x(T1),T1,T2)−M,

the inequality |x(t)− x∗(t)| ≤ ε holds for all integers t ∈ [T1 + p,T2− p].

Theorem 7.5. Let M > 0 and ε > 0. Then there exist a natural number p and δ > 0 such
that, for each pair of integers T1 ≥ 0, T2 ≥ p+T1 and each program {x(t)}T2

t=T1
which satisfies

x(T1)≤M∗, |x(T1)− x∗(T1)| ≤ δ ,

T2−1

∑
t=T1

ut(x(t),x(t +1))≥U(x(T1),x(T2),T1,T2)−δ ,

U(x(T1),x(T2),T1,T2)≥U(x(T1),T1,T2)−M,

the inequality |x(t)− x∗(t)| ≤ ε holds for all integers t ∈ [T1,T2− p].

Theorem 7.6. Let ε > 0. Then there exist a natural number p and δ > 0 such that, for each
pair of integers T1 ≥ 0, T2 ≥ 2p+ T1 and each program {x(t)}T2

t=T1
, which satisfies x(T1) ≤

M∗, ∑
T2−1
t=T1

ut(x(t),x(t+1))≥U(x(T1),T1,T2)−δ , the inequality |x(t)−x∗(t)| ≤ ε holds for all
integers t ∈ [T1 + p,T2− p].

Theorem 7.7. Let ε > 0. Then there exist a natural number p and δ > 0 such that, for each pair
of integers T1≥ 0, T2≥ p+T1 and each program {x(t)}T2

t=T1
which satisfies x(T1)≤M∗, |x(T1)−

x∗(T1)| ≤ δ ,
T2−1

∑
t=T1

ut(x(t),x(t +1))≥U(x(T1),T1,T2)−δ ,

the inequality |x(t)− x∗(t)| ≤ ε holds for all integers t ∈ [T1,T2− p].

Theorems 7.6 and 7.7 easily follow from Theorems 7.4 and 7.5, respectively.
A program {x(t)}∞

t=0 is called good if the sequence

{
T−1

∑
t=0

ut(x(t),x(t +1))−
T−1

∑
t=0

ut(x∗(t),x∗(t +1))}∞
T=1

is bounded. In view of Theorem 7.2, if the sequence {x(t)}∞
t=0 is not good, then

lim
T→∞

[
T−1

∑
t=0

ut(x(t),x(t +1))−
T−1

∑
t=0

ut(x∗(t),x∗(t +1))] =−∞.

Theorem 7.8. Assume that a program {x(t)}∞
t=0 is good. Then x(t)− x∗(t)→ 0 as t→ ∞.
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A program {x(t)}∞
t=0 is called overtaking optimal if, for each program {x′(t)}∞

t=0 satisfying
x′(0) = x(0),

limsup
T→∞

[
T−1

∑
t=0

ut(x′(t),x′(t +1))−
T−1

∑
t=0

ut(x(t),x(t +1))]≤ 0.

We have the following result.

Theorem 7.9. Let x0 ∈ [0,M∗] and let a program {x̄(t)}∞
t=0 be as guaranteed by Theorem 7.3.

Then {x̄(t)}∞
t=0 is a unique overtaking optimal program with the initial state x0.
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