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GENERIC PROPERTIES OF OPERATOR-DEPENDENT NORMAL MAPPINGS

KAY BARSHAD, SIMEON REICH∗, ALEXANDER ZASLAVSKI

Department of Mathematics, The Technion – Israel Institute of Technology, 32000 Haifa, Israel

Abstract. We introduce the notions of operator-dependent normality and operator-dependent weak nor-
mality with respect to a given convex function, which is uniformly continuous on bounded sets, and a
given operator. In 2001, Gabour, Reich and Zaslavski considered bounded sets and studied the proper-
ties of normal mappings and normal sequences of mappings with respect to an everywhere uniformly
continuous convex function. In 2020, Barshad, Reich and Zaslavski studied similar properties for not
necessarily bounded sets, and also introduced the more general notion of weak normality. In this paper,
we investigate the analogous properties regarding certain developments of these concepts and present
some applications to the minimization of convex functions.
Keywords. Baire category; Banach space, Lyapunov function; Minimization problem; Normal map-
ping.

1. INTRODUCTION AND BACKGROUND

Let (X ,‖·‖) be a normed space with norm ‖·‖. Let K ⊂ X be a nonempty, closed and convex
subset of X , and let f : K→R be a convex function, which is bounded from below and uniformly
continuous on bounded subsets of K. In the case where K is an unbounded set, we also assume

lim
x→∞

f (x) = ∞. (1.1)

Set
inf f := inf{ f (x) : x ∈ K} .

Denote by B the set of all bounded mappings B : K→ K, by A the set of all mappings A ∈B,
which satisfy

f (Ax)≤ f (x) foreach x ∈ K (1.2)

and by Ac the set of all continuous mappings A ∈ A. For the set A, we define a metric ρ :
A×A→ R by

ρ (A,B) : = sup{‖Ax−Bx‖ : x ∈ K} , A,B ∈ A.

Clearly, the metric space A is complete if (X ,‖·‖) is a Banach space, and the metric space Ac is
a closed subset of A. Denote by M the set of all sequences of elements in A and by Mc the set
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of all sequences of elements in Ac. For the set M, we consider the following two uniformities
and the topologies induced by them. The first uniformity is determined by the following basis:

E1 (N,ε) = {({An}∞

n=1 ,{Bn}∞

n=1) ∈M×M : ρ (An,Bn)< ε, n = 1, . . . ,N} ,
where N = 1,2 . . . and ε > 0. This uniformity induces a uniform topology on M, which we
denote by τ1 and call the weak topology.

The second uniformity is determined by the following basis:

E2 (ε) = {({An}∞

n=1 ,{Bn}∞

n=1) ∈M×M : ρ (An,Bn)< ε, n = 1,2, . . .} ,
where ε > 0. This uniformity induces a uniform topology on M, which we denote by τ2 and
call the strong topology. Clearly, τ2 is indeed stronger than τ1.

It is not difficult to see that the uniform spaces (M,τ1) and (M,τ2) are metrizable (by metrics
ρ1 and ρ2, respectively) and complete if (X ,‖·‖) is a Banach space. More information on
uniformities and uniform spaces can be found, for example, in [1].

Clearly, Mc is a closed subset of M with respect to the weak topology (and therefore with
respect to the strong topology) and hence complete with respect to both the strong and weak
topologies. Denote by Mb the set of all bounded sequences of elements in A and by Mbc the
set of all bounded sequences of elements in Ac. It can easily be verified that Mb and Mbc are
closed subsets of M with respect to the strong topology. Evidently, the relative strong topology
on Mb is determined by the metric d : Mb×Mb→ R defined by

d ({An}∞

n=1 ,{Bn}∞

n=1) := sup{ρ (An,Bn)}∞

n=1 {An}∞

n=1 ,{Bn}∞

n=1 ∈Mb.

For each B0 ∈B, we set

dB0 := sup{| f (B0x)| : x ∈ K} andSB0 := {x ∈ K : f (x)≤ dB0} .
Note that the assumption that f is convex and uniformly continuous on bounded sets implies
that dB0 is finite. Note also that the set SB0 is always bounded (in the case where K is unbounded
this follows from (1.1)) and hence f is uniformly continuous on it.

Definition 1.1. Let B0 ∈B. A mapping A : K→ K is said to be B0-normal with respect to f if
for given ε > 0, there is δ (ε) > 0 such that for each x ∈ SB0 satisfying f (x) ≥ inf( f )+ ε , the
inequality

f (Ax)< f (x)−δ (ε)

is true. A sequence {An}∞

n=1 of operators An : K→ K is said to be B0-normal with respect to f
if for given ε > 0, there is δ (ε)> 0 such that for each x ∈ SB0 satisfying f (x)≥ inf( f )+ε and
each integer n = 1,2, . . . , the inequality

f (Anx)< f (x)−δ (ε)

holds.

Example 1.1. Let X = R and K = [0,∞). Define B0 ∈B by B0 (x) := |cosx| for each x ∈ K,

and define A : K→ K by Ax :=


2−1x, x≤ 1,
2x−3 ·2−1, 1 < x≤ 3 ·2−1,

x, 3 ·2−1 < x≤ 2,
2, x > 2,

for each x ∈ K. Let f : K→R

be defined by f (x) := x2 for each x ∈ K. Evidently, f is convex and uniformly continuous
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on bounded sets. Clearly, A is B0-normal with respect to f . We also have A ∈ Ac, that is,
Ac ⊂ A 6= /0 and therefore Mc ⊂M 6= /0.

Definition 1.2. Let B0 ∈ B. A sequence {An}∞

n=1 of operators An : K → K is said to be B0-
weakly normal with respect to f if for given ε > 0, there exists a sequence {δn}∞

n=1 of positive
numbers such that limsupn→∞ nδn = ∞ and for each positive integer n, each x ∈ SB0 satisfying
f (x)≥ inf( f )+ ε and each integer k = 1,2, . . . ,n, the inequality

f (Akx)< f (x)−δn

holds.

Remark 1.1. Assume B0 ∈ B. It is not difficult to see that for each α ∈ (0,1) and each
{An}∞

n=1 ,{Bn}∞

n=1 ∈M, the convex combination, α {An}∞

n=1 +(1−α){Bn}∞

n=1, is also an ele-
ment of M and if one of them is B0-normal with respect to f , then the sequence α {An}∞

n=1 +
(1−α){Bn}∞

n=1 is also B0-normal with respect to f . Each B0-normal sequence of mappings
with respect to f is, in particular, B0-weakly normal with respect to f , but not vice versa as is
shown in the following example.

Example 1.2. Let X = R and K = [0,∞). Let B0 ∈B be defined by B0 (x) := sin2 x for each
x ∈ K. For each positive integer n, define An : K→ K by

Anx :=



(
1−n−2−1

)2−1

x, x≤ 1,(
3−2

(
1−n−2−1

)2−1)
x+3

((
1−n−2−1

)2−1

−1
)
, 1 < x≤ 3 ·2−1,

x, 3 ·2−1 < x≤ 2,
2, x > 2,

for each x ∈ K. Let f : K → R be defined by f (x) := x2 for each x ∈ K. It is clear that f is
convex and uniformly continuous on bounded sets. Let ε > 0 be arbitrary. For each positive
integer n, set δn := n−2−1

ε . Then inf( f ) = 0, and for each x ∈ SB0 such that f (x)≥ ε and each
k = 1,2, . . . ,n, we have

f (Akx) =
(

1− k−2−1
)

f (x)≤ f (x)− k−2−1
ε = f (x)−δk ≤ f (x)−δn.

Clearly, limn→∞ nδn = ∞. Therefore the sequence {An}∞

n=1 is B0-weakly normal with respect
to f , but it is not B0-normal with respect to f because limn→∞ f (Anx) = f (x) for each x ∈ SB0

such that f (x)≥ ε . As a matter of fact, we also have {An}∞

n=1 ∈Mc, that is, Mc ⊂M 6= /0.

In the sequel, we assume that the function f is clearly understood, and therefore we use
the notions of the operator-dependent normality and the operator-dependent weak normality
without referring explicitly to f .

The importance of concepts related to normality and weak normality for convex minimiza-
tion problems was plainly demonstrated in [2], [3] and [4], where the function f is uniformly
continuous on the set K. In this paper, we present analogous results under different assump-
tions. In contrast with previous studies, here the concepts of normality and weak normality are
considered with respect to a given operator B0 ∈B and not globally, and the residual sets de-
pend on the operator B0. This operator-dependent approach turns out to be useful for removing
the somewhat restrictive requirement on the function f to be uniformly continuous on all of
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K. We also present numerous applications of our results to generic minimization problems on
arbitrary closed balls.

The rest of our paper is organized as follows. In Section 2, we state our main results. Several
auxiliary results are presented in Section 3. Section 4 is devoted to the results concerning the
existence of residual sets of operator-dependent normal mappings, operator-dependent normal
sequences and of operator-dependent weakly normal sequences of mappings. In Section 5,
we provide some applications of operator-dependent normality and operator-dependent weak
normality to the study of certain minimization problems. The proofs of our main results, which
are stated in Section 2, are provided in Section 6. Finally, in Section 7, we present a few
corollaries of these results, which involve metric projections onto closed balls.

In all our results, we also assume that (X ,‖·‖) is a Banach space.

2. STATEMENTS OF THE MAIN RESULTS

In this section we state our three main results. We establish them in Section 6 below.

Theorem 2.1. Let B0 ∈B. Then there exist sets F ⊂M, Fb ⊂F∩Mb, Fc ⊂F ∩Mc and
Fbc⊂Fb∩Mc of B0-weakly normal sequences of mappings, which are countable intersections
of open (in the relative weak topology) and dense (respectively, in the weak topology, in the
relative strong topology, in the relative weak topology and in the relative strong topology) sets
in, respectively, M, Mb, Mc and Mbc such that for each {An}∞

n=1 ∈F , the following assertion
holds:

For each ε > 0, there exist a neighborhood U (in the weak topology) of {An}∞

n=1 and a
positive integer N satisfying

f (BN . . .B1B0x)< inf( f )+ ε

for each {Bn}∞

n=1 ∈U and each x ∈ K.

Theorem 2.2. Let B0 ∈ B. Then there exist a set F ⊂ A of B0-normal mappings, which is
a countable intersection of open and dense sets in A, and a set Fc ⊂ F ∩Ac of B0-normal
mappings, which is a countable intersection of open and dense sets in Ac, such that for each
A ∈F , the following assertion holds:

For each ε > 0, there exist a neighborhood U of A in A and a positive integer N satisfying

f
(
BNB0x

)
< inf( f )+ ε

for each B ∈U and each x ∈ K.

Theorem 2.3. Let B0 ∈B. Then there exist sets Fb ⊂Mb and Fbc ⊂Fb∩Mc of B0-normal
sequences of mappings, which are countable intersections of open (in the relative strong topol-
ogy) and dense (in the relative strong topology) sets in, respectively, Mb and Mbc, such that for
each {An}∞

n=1 ∈F , the following assertion holds:
For each ε > 0, there exist a neighborhood U (in the strong topology) of {An}∞

n=1 and a
positive integer N satisfying

f
(
Br(N) . . .Br(1)B0x

)
< inf( f )+ ε

for each {Bn}∞

n=1 ∈U, each mapping r : {1,2, . . .}→{1,2, . . .} and each x ∈ K.

These theorems generalize the corresponding results in [3] and [4].
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3. AUXILIARY RESULTS

We first prove that there exists an operator A∗ : K→ K, which is continuous and B0-normal
for each B0 ∈B.

Proposition 3.1. There exists an operator A∗ ∈ Ac, which is B0-normal for each B0 ∈B.

Proof. Given ε > 0, there exists a positive integer j such that 2− j < ε . Without loss of general-
ity, we may assume that f does not attain its minimum on K. Therefore, there exists a function
p : K→ N such that, for each x ∈ K,

p(x) = min
{

i ∈ N : f (x)> inf( f )+2−i} . (3.1)

Clearly, there exists an open cover {Vx}x∈K of K such that, for each x ∈ K,

(∀y ∈Vx) f (y)> inf( f )+2−p(x). (3.2)

For each x ∈ K, by (3.1) and (3.2), we have

(∀y ∈Vx) p(y)≤ p(x) (3.3)

and there exists ax ∈ K such that

f (ax)< inf( f )+2−p(x)−1. (3.4)

Since metric spaces are paracompact Hausdorff spaces [5], there is a continuous partition of
unity {φx}x∈K subordinated to the cover {Vx}x∈K . That is, for every x ∈ K, φx : K→ [0,1] is a
continuous function such that supp(φx)⊂Vx and for each x ∈ K, there is a neighborhood Ux of
x and a finite sequence {xx

i }
mx
i=1 ⊂ K such that

(∀y ∈Ux)
mx

∑
i=1

φxx
i
(y) = 1 and {z ∈ X : φz (y)> 0} ⊂ {xx

i }
mx
i=1 . (3.5)

Since K is convex, the definition of a partition of unity implies that there exists a mapping
A∗ : K → K defined by (∀x ∈ K)A∗x := ∑z∈K φz (z)az. Since for each x ∈ K and each y ∈Ux,
we have by (3.5),

A∗y =
mx

∑
i=1

φxx
i
(y)axx

i
. (3.6)

Since φxx
i

is continuous for each i = 1, . . .mx, it follows that A∗ is also continuous on K. Let
x ∈ K satisfy f (x) ≥ inf( f ) + ε . Then by (3.1), p(x) ≤ j. Since f is a convex function, it
follows from (3.5) and (3.6) that

f (A∗x)≤max
{

f
(

axx
i

)
: i ∈ {1 . . .mx}

}
. (3.7)

Evidently, we may assume that φxx
i
(x) 6= 0 for all i ∈ {1 . . .mx}. Therefore, for each i ∈

{1 . . .mx}, we have x ∈ supp(φxx
i
)⊂Vxx

i
. Now, by (3.3) and (3.4), we have

f
(

axx
i

)
< inf( f )+2−p(xx

i )−1 ≤ inf( f )+2−p(x)−1

for each i ∈ {1 . . .mx}. Using (3.7), we obtain that f (A∗x) < inf( f )+ 2−p(x)−1. On the other
hand, by (3.1), inf( f )< f (x)−2−p(x) and therefore

f (A∗x)< f (x)−2−p(x)−1. (3.8)
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Now, we choose δ (ε) = 2− j−1. Since p(x) ≤ j, it follows from (3.8) that A∗ is B0-normal for
each B0 ∈B and satisfies (1.2). In the case where K is unbounded, since limx→∞ f (x) = ∞, it
follows from (3.4) that {ax : x ∈ K} is bounded. Using (3.6), we conclude that A∗ ∈ Ac even if
K is unbounded, as asserted. �

Note that, in contrast with [2], in the above proof we use the concept of a partition of unity
and not Michael’s selection theorem [6].

Lemma 3.1. Let B0 ∈ A, let {An}∞

n=1 ∈M be a B0-normal sequence and let ε > 0 be given.
Then there exist a number δ > 0 and a neighborhood U of {An}∞

n=1 in M with the strong
topology such that, for each {Bn}∞

n=1 ∈ U and each x ∈ SB0 satisfying f (x) ≥ inf( f ) + ε ,
f (Bnx)< f (x)−δ for each n = 1,2, . . . .

Proof. Since {An}∞

n=1 is B0-normal, there is δ0 > 0 such that, for each n = 1,2, . . . and each
x ∈ SB0 satisfying f (x)≥ inf( f )+ ε , we have

f (Anx)< f (x)−δ0. (3.9)

Since f is uniformly continuous on SB0 , there is δ ∈
(
0,2−1δ0

)
such that | f (y)− f (z)|< 2−1δ0

for each y,z ∈ SB0 satisfying ‖y− z‖< δ . Set

U := {{Bn}∞

n=1 ∈M : ({An}∞

n=1 ,{Bn}∞

n=1) ∈ E2 (δ )} .

It is clear that U is a neighborhood of {An}∞

n=1 in M with the strong topology. Assume that
{Bn}∞

n=1 ∈U and that x ∈ SB0 satisfies f (x)≥ inf( f )+ ε . Then by (3.9), we have

f (Anx)< f (x)−δ0 (3.10)

for each n = 1,2, . . . . The definitions of δ and U imply that

‖Anx−Bnx‖< δ ,

and
| f (Anx)− f (Bnx)|< 2−1

δ0

for each n = 1,2, . . . . When combined with (3.10), this implies that

f (Bnx)< f (x)+2−1
δ0−δ0 < f (x)−δ

for each n = 1,2, . . . , as asserted. �

Lemma 3.2. Let B0 ∈B, let {An}∞

n=1 ∈M be a B0-weakly normal sequence and let ε > 0 be
given. Then there exist a sequence of positive numbers {δN}∞

N=1 and a sequence {UN}∞

N=1 of
neighborhoods of {An}∞

n=1 in M with the weak topology such that limsupN→∞ NδN = ∞ and for
each positive integer N, the following assertion holds:

For each {Bn}∞

n=1 ∈UN and each x ∈ SB0 satisfying f (x) ≥ inf( f )+ ε , we have f (Bnx) <
f (x)−δN for each n = 1,2, . . . ,N.

Proof. Since {An}∞

n=1 is B0-weakly normal, there is a sequence {δ ′N}
∞

N=1 of positive numbers
such that limsupN→∞ Nδ ′N = ∞ and for each x ∈ SB0 satisfying f (x)≥ inf( f )+ ε , we have

f (Anx)< f (x)−δ
′
N (3.11)

for all N = 1,2 . . . and each n = 1,2, . . . ,N.
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Let N be a positive integer. Set δN := 2−1δ ′N . Since f is uniformly continuous on SB0 , there
is a number δ ′′N > 0 such that | f (y)− f (z)|< δN for each y,z ∈ SB0 satisfying ‖y− z‖< δ ′′N . Set

UN :=
{
{Bn}∞

n=1 ∈M : ({An}∞

n=1 ,{Bn}∞

n=1) ∈ E1
(
N,δ ′′N

)}
.

Clearly, UN is a neighborhood of {An}∞

n=1 in M with the weak topology. Assume that {Bn}∞

n=1 ∈
UN and that x ∈ SB0 satisfies f (x)≥ inf( f )+ ε . Then, it follows from (3.11) that

f (Anx)< f (x)−δ
′
N (3.12)

for each n = 1,2, . . . ,N. The definitions of δ ′′N and UN imply that ‖Anx−Bnx‖ < δ ′′N and
| f (Anx)− f (Bnx)| < δN for each n = 1,2, . . . ,N. When combined with (3.12), this implies
that

f (Bnx)< f (x)+δN−δ
′
N = f (x)−δN

for each n= 1,2, . . . ,N. In this way, we have constructed two sequences {δN}∞

N=1 and {UN}∞

N=1.
Using the B0-weak normality of {An}∞

n=1 and the definition of {δN}∞

N=1, we have

limsup
N→∞

NδN = ∞.

Hence, we see that the sequences {δN}∞

N=1 and {UN}∞

N=1 enjoy all the asserted properties. �

Let B0 ∈B, let A∗ be the mapping the existence of which is guaranteed by Proposition 3.1,
and let {An}∞

n=1 be an arbitrary sequence in M. For each γ ∈ (0,1) , we define a sequence of
mappings

{
Aγ

n
}∞

n=1, Aγ
n : K→ K, by

Aγ
n := (1− γ)An + γA∗, n = 1,2, . . . . (3.13)

By Proposition 3.1 and Remark 1.1, the sequence
{

Aγ
n
}∞

n=1 ∈M. For each γ ∈ (0,1) and for
each N = 1,2 . . . , we have

(∀n ∈ {1, . . . ,N})ρ (Aγ
n,An)≤ 2γ max

{
max

{
sup
x∈K
‖Akx‖

}N

k=1
,sup

x∈K
‖A∗x‖

}
. (3.14)

If, in addition, {An}∞

n=1 ∈Mb, then

(∀n ∈ {1,2 . . .})ρ (Aγ
n,An)≤ 2γ max

{
sup
{

sup
x∈K
‖Akx‖

}∞

k=1
,sup

x∈K
‖A∗x‖

}
, (3.15)

where sup{supx∈K ‖Akx‖}∞

k=1 < ∞. For an arbitrary operator A ∈ A, we define

Aγ := (1− γ)A+ γA∗. (3.16)

Evidently,

ρ (Aγ ,A)≤ 2γ max
{

sup
x∈K
‖Ax‖ ,sup

x∈K
‖A∗x‖

}
. (3.17)

Lemma 3.3. Let B0 ∈ B. Then, for each ε > 0, there exist a positive number δ such that,
for each {An}∞

n=1 ∈M and each γ ∈ (0,1), there is a sequence {UN}∞

N=1 of neighborhoods
of
{

Aγ
n
}∞

n=1 in M with the weak topology satisfying, for each positive integer N, the following
assertion: For each {Bn}∞

n=1 ∈ UN and each x ∈ SB0 such that f (x) ≥ inf( f ) + ε , we have
f (Bnx)< f (x)− γδ for each n = 1,2, . . . ,N.
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Proof. Let ε > 0. Since A∗ is B0-normal, there is a positive number δ ′ such that, for each x∈ SB0

satisfying f (x)≥ inf( f )+ ε , we have

f (A∗x)< f (x)−δ
′.

Set δ := 2−1δ ′. Let {An}∞

n=1 ∈M and γ ∈ (0,1). The convexity of f implies that

f (Aγ
nx)< f (x)− γδ

′ (3.18)

for each n = 1,2 . . . . Let N be a positive integer. Since f is uniformly continuous on SB0 , there
is a number δ ′′ > 0 such that | f (y)− f (z)|< γδ for each y,z ∈ SB0 satisfying ‖y− z‖< δ ′′. Set

UN :=
{
{Bn}∞

n=1 ∈M : ({Aγ
n}

∞

n=1 ,{Bn}∞

n=1) ∈ E1
(
N,δ ′′

)}
.

Clearly, UN is a neighborhood of
{

Aγ
n
}∞

n=1 in M with the weak topology. Assume that {Bn}∞

n=1 ∈
UN and that x ∈ SB0 satisfies f (x) ≥ inf( f ) + ε . The definitions of δ ′′ and UN imply that
‖Anx−Bnx‖< δ ′′ and

∣∣ f (Aγ
nx
)
− f (Bnx)

∣∣< γδ for each n = 1,2, . . . ,N. When combined with
(3.18), this implies that

f (Bnx)< f (x)+ γδ − γδ
′ = f (x)− γδ

for each n = 1,2, . . . ,N. In this way, we have found a number δ and constructed a sequence of
neighborhoods {UN}∞

N=1 which have all the asserted properties. �

4. RESIDUAL SETS OF OPERATOR-DEPENDENT NORMAL MAPPINGS,
OPERATOR-DEPENDENT NORMAL SEQUENCES OF MAPPINGS AND OF

OPERATOR-DEPENDENT WEAKLY NORMAL SEQUENCES OF MAPPINGS

Recall that a subset Z of a topological space Y is called residual if it contains a countable
intersection of open and dense subsets of Y . In the case where the space Y is completely
pseudo-metrizable, the Baire category theorem guarantees that Z is also a dense subset of Y .
In this section, we prove that there exist residual sets of operator-dependent normal mappings,
operator-dependent normal sequences of mappings and operator-dependent weakly normal se-
quences of mappings. More examples of applications of the concept of genericity to nonlinear
analysis can be found, for example, in [7].

Theorem 4.1. For each B0 ∈B, there exist sets F ⊂M, Fb ⊂F∩Mb, Fc ⊂F ∩Mc and
Fbc ⊂Fb∩Mc, which are countable intersections of open (in the relative weak topology) and
dense (respectively, in the weak topology, in the relative strong topology, in the relative weak
topology and in the relative strong topology) sets in, respectively, M, Mb, Mc and Mbc such
that each sequence {Bn}∞

n=1 ∈F is B0-weakly normal.

Proof. Define

T :=
{

γ ∈ (0,1) : γ = N−2−1
for some positive integer N

}
,

and for each positive integer N define

TN :=
{

γ ∈ T : γ < N−2−1
}
.

By (3.14) and Proposition 3.1, for each N = 1,2 . . . , the set

AN =
{
{Aγ

n}
∞

n=1 : {An}∞

n=1 ∈M, γ ∈ TN
}
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is dense in M with the weak topology, and the set

AN
c =

{
{Aγ

n}
∞

n=1 : {An}∞

n=1 ∈Mc, γ ∈ TN
}

is dense in Mc with the relative weak topology. By (3.15) and Proposition 3.1, for each N =
1,2 . . . , the set

AN
b =

{
{Aγ

n}
∞

n=1 : {An}∞

n=1 ∈Mb, γ ∈ TN
}

is dense in Mb with the relative strong topology, and the set

AN
bc =

{
{Aγ

n}
∞

n=1 : {An}∞

n=1 ∈Mbc, γ ∈ TN
}

is dense in Mbc with the relative strong topology.
Let q be an arbitrary positive integer. By Lemma 3.3, there exist a number δ (q) > 0 such

that, for each ({An}∞

n=1 ,γ) ∈M× T , there is a sequence {UN ({An}∞

n=1 ,γ)(q)}
∞

N=1 of open
neighborhoods of

{
Aγ

n
}∞

n=1 with the weak topology satisfying, for each positive integer N, the
following assertion:

For each {Bn}∞

n=1 ∈UN ({An}∞

n=1 ,γ)(q) and each x ∈ SB0 satisfying f (x)≥ inf( f )+2−q, we
have

f (Bnx)< f (x)− γδ (q) (4.1)
for each n = 1,2 . . . ,N.

For each pair of positive integers q and N, set

Dq,N := ∪({An}∞

n=1,γ)∈M×TN

(
Uγ−2 ({An}∞

n=1 ,γ)(q)
)
,

Db
q,N := ∪({An}∞

n=1,γ)∈Mb×TNUγ−2 ({An}∞

n=1 ,γ)(q)∩Mb,

Dc
q,N := ∪({An}∞

n=1,γ)∈Mc×TNUγ−2 ({An}∞

n=1 ,γ)(q)∩Mc,

and

Dbc
q,N := ∪({An}∞

n=1,γ)∈Mbc×TNUγ−2 ({An}∞

n=1 ,γ)(q)∩Mbc.

Clearly, the sets Dq,N , Db
q,N , Dc

q,N and Dbc
q,N are open (in the relative weak topology) and dense

(respectively, in the weak topology, in the relative strong topology, in the relative weak topology
and in the relative strong topology) sets in, respectively, M, Mb, Mc and Mbc for each pair of
positive integers q and N, because these sets contain, respectively, AN , AN

b , AN
c and AN

bc. Define
F = ∩∞

q=1 ∩∞
N=1 Dq,N , Fb = ∩∞

q=1 ∩∞
N=1 Db

q,N , Fc = ∩∞
q=1 ∩∞

N=1 Dc
q,N and Fbc = ∩∞

q=1 ∩∞
N=1

Dbc
q,N . Evidently, F , Fb, Fc and Fbc are countable intersections of open (in the relative weak

topology) and dense (respectively, in the weak topology, in the relative strong topology, in the
relative weak topology and in the relative strong topology) sets in, respectively, M, Mb, Mc
and Mbc.

Assume now that {Bn}∞

n=1 ∈ F and let ε > 0 be an arbitrary positive number. Choose a
positive integer q0 such that 2−q0 < ε . Then, for each positive integer N, there exists a pair
({An}∞

n=1 ,γN) ∈M×TN such that

{Bn}∞

n=1 ∈U
γ
−2
N

({An}∞

n=1 ,γN)(q0) .

It follows from (4.1) that, for each point x ∈ SB0 satisfying f (x)≥ inf( f )+ ε ,

f (Bnx)< f (x)− γNδ (q0) (4.2)

for each n = 1,2 . . . ,γ−2
N .
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Consider the sequences {γN}∞

N=1 and
{

γ
−2
N
}∞

N=1. Since for each positive integer N we have

γ
−2
N > N, it is clear that there exists a strictly increasing subsequence

{
γ
−2
Nk

}∞

k=1
of
{

γ
−2
N
}∞

N=1.

For each positive integer M, set δM := γN
min
{

k:γ
−2
Nk
≥M

} .

Since γ
−2
N

min
{

k:γ
−2
Nk
≥M

} ≥ M, we conclude from (4.2) that, for each point x ∈ SB0 satisfying

f (x)≥ inf( f )+ ε ,
f (Bnx)< f (x)−δMδ (q0)

for each n = 1,2 . . . ,M. Since for each k = 1,2 . . . , we have

δ
γ
−2
Nk

= γN
min
{

i:γ
−2
Ni
≥γ
−2
Nk

} = γNk ,

it follows that
lim
n→∞

γ
−2
Nk

δ
γ
−2
Nk

= lim
n→∞

γ
−1
Nk

= ∞.

Hence {Bn}∞

n=1 is B0-weakly normal. This completes the proof of Theorem 4.1. �

Theorem 4.2. For each B0 ∈B, there exist a set F ⊂Mb, which is a countable intersection
of open and dense sets in A, and a set Fc ⊂F ∩Ac, which is a countable intersection of open
and dense sets in Ac such that each mapping B ∈F is B0-normal.

Proof. By (3.17) and Proposition 3.1, the set

A = {Aγ : A ∈ A, γ ∈ (0,1)}
is dense in A, and the set

Ac = {Aγ : A ∈ Ac, γ ∈ (0,1)}
is dense in Ac.

By Remark 1.1, for each A ∈ A and each γ ∈ (0,1), the mapping Aγ is B0-normal. Assume
that q is an arbitrary positive integer. By Lemma 3.1, for each (A,γ) ∈ A×(0,1), there exist
a number δq (A,γ) > 0 and an open neighborhood Uq (A,γ) of Aγ in A such that the following
assertion holds:

For each B ∈Uq (A,γ) and each x ∈ SB0 satisfying f (x)≥ inf( f )+2−q, we have

f (Bx)< f (x)−δq. (4.3)

For each positive integer q, set

Dq := ∪(A,γ)∈A×(0,1)Uq (A,γ) ,

Dc
q := ∪(A,γ)∈Ac×(0,1)Uq (A,γ)∩Ac.

It is clear that the sets Dq and Dc
q are open and dense sets in, respectively, A and Ac for

each q = 1,2 . . . , because these sets contain, respectively, A and Ac. Define F = ∩∞
q=1Dq and

Fc = ∩∞
q=1D

c
q . Evidently, F and Fc are countable intersections of open and dense sets in,

respectively, A and Ac.
Assume now that B ∈F . Let ε > 0 be an arbitrary positive number and choose a positive

integer q0 such that 2−q0 < ε . There exists a pair (A,γ) ∈ A× (0,1) such that B ∈Uq0 (A,γ). It
follows from (4.3) that for each point x ∈ SB0 satisfying f (x)≥ inf( f )+ ε , we have

f (Bx)< inf( f )−δq0.
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Hence B is B0-normal. This completes the proof of Theorem 4.2. �

Theorem 4.3. For each B0 ∈B, there exist sets Fb ⊂F∩Mb and Fbc ⊂Fb ∩Mbc, which
are countable intersections of open (in the relative strong topology) and dense (in the relative
strong topology) sets in, respectively, Mb and Mbc, such that each sequence {Bn}∞

n=1 ∈F is
B0-normal.

Proof. By (3.15) and Proposition 3.1, the set

Ab =
{
{Aγ

n}
∞

n=1 : {An}∞

n=1 ∈Mb, γ ∈ (0,1)
}

is dense in Mb with the relative strong topology and the set

Abc =
{
{Aγ

n}
∞

n=1 : {An}∞

n=1 ∈Mbc, γ ∈ (0,1)
}

is dense in Mbc with the relative strong topology.
By Remark 1.1, for each {An}∞

n=1 ∈M and each γ ∈ (0,1), the sequence
{

Aγ
n
}∞

n=1 is B0-
normal. Let q be an arbitrary positive integer. By Lemma 3.1, for each pair ({An}∞

n=1 ,γ) ∈
M×(0,1), there exist a number δq ({An}∞

n=1 ,γ)> 0 and an open neighborhood Uq ({An}∞

n=1 ,γ)

of
{

Aγ
n
}∞

n=1 in M with the strong topology such that the following assertion holds:
For each {Bn}∞

n=1 ∈ Uq ({An}∞

n=1 ,γ) and each x ∈ SB0 satisfying f (x) ≥ inf( f )+ 2−q, we
have

f (Bnx)< f (x)−δq (4.4)

for each n = 1,2, . . . . For each positive integer q, set

Db
q := ∪({An}∞

n=1,γ)∈Mb×(0,1)Uq ({An}∞

n=1 ,γ)∩Mb,

Dbc
q := ∪({An}∞

n=1,γ)∈Mbc×(0,1)Uq ({An}∞

n=1 ,γ)∩Mbc.

Clearly, the sets Db
q and Dbc

q are open and dense sets in, respectively, Mb and Mbc for each
q = 1,2 . . . , because these sets contain, respectively, Ab and Abc. Define F = ∩∞

q=1D
b
q and

Fbc = ∩∞
q=1D

bc
q . Evidently, F and Fc are countable intersections of open and dense sets in,

respectively, Mb and Mbc.
Assume now that {Bn}∞

n=1 ∈ F and let ε > 0 be an arbitrary positive number. Choose a
positive integer q0 such that 2−q0 < ε . There exists a pair ({An}∞

n=1 ,γ) ∈Mb× (0,1) such
that {Bn}∞

n=1 ∈ Uq0 ({An}∞

n=1 ,γ). It follows from (4.4) that for each point x ∈ SB0 satisfying
f (x)≥ inf( f )+ ε , we have

f (Bnx)< inf( f )−δq0

for each n = 1,2, . . . . Hence {Bn}∞

n=1 is B0-normal. This completes the proof of Theorem
4.3. �

5. APPLICATIONS OF OPERATOR-DEPENDENT NORMALITY AND OPERATOR-DEPENDENT

WEAK NORMALITY TO THE MINIMIZATION OF CONVEX FUNCTIONS

In this section we present several applications of the concepts of operator-dependent normal-
ity and operator-dependent weak normality to solving certain minimization problems.
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Theorem 5.1. Let B0 ∈B, let {An}∞

n=1 ∈M be B0-weakly normal and let ε > 0 be given. Then
there exist a neighborhood U of {An}∞

n=1 in M with the weak topology and a positive integer N
such that, for each {Bn}∞

n=1 ∈U,

f (BN . . .B1B0x)< inf( f )+ ε

for all x ∈ K.

Proof. Since {An}∞

n=1 is B0-weakly normal, employing Lemma 3.2, we see that there exist a
positive integer N, a positive number δN > 0 satisfying δNN > dB0− inf( f ), and a neighborhood
UN of {An}∞

n=1 in M with the weak topology such that the following assertion holds:
For each {Bn}∞

n=1 ∈UN and each x ∈ SB0 satisfying f (x)≥ inf( f )+ ε , we have

f (Bnx)< f (x)−δN (5.1)

for each n = 1,2, . . . ,N.
Let {Bn}∞

n=1 ∈UN . We claim that

f (BN . . .B1B0x)< inf( f )+ ε (5.2)

for each x ∈ K. Suppose to the contrary that this is not true. Then there exists x ∈ K such that

f (Bn . . .B1B0x)≥ inf( f )+ ε, n = 0, . . . ,N.

From (5.1), it follows by induction that, for each n = 1, . . . ,N,

f (Bn . . .B1B0x)< f (B0x)−nδN .

This implies that

f (BN . . .B1B0x)< f (B0x)−NδN < dB0− (dB0− inf( f )) = inf( f ) ,

a contradiction. Therefore, (5.2) is, in fact, valid and Theorem 5.1 is proved. �

Theorem 5.2. Let B0 ∈B, let A ∈ A be B0-normal and let ε > 0 be given. Then there exist a
neighborhood U of A in A and a positive integer N such that, for each B ∈U,

f
(
BNB0x

)
< inf( f )+ ε

for all x ∈ K.

Proof. By Lemma 3.1, there exist a neighborhood U of A in A and a number δ > 0 such that
the following property holds:

For each B ∈U and each x ∈ SB0 satisfying f (x)≥ inf( f )+ ε , we have

f (Bx)< f (x)−δ . (5.3)

Choose a positive integer N such that

δN > dB0− inf( f ) ,

Assume that B ∈U . We claim that

f
(
BNB0x

)
< inf( f )+ ε (5.4)

for each x ∈ K. Suppose to the contrary that this is not true. Then there exists x ∈ K such that

f (BnB0x)≥ inf( f )+ ε, n = 0, . . . ,N.
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From (5.3), it follows by induction that, for each n = 1, . . . ,N,

f (BnB0x)< f (B0x)−nδ .

This implies that

f
(
BNB0x

)
< f (B0x)−Nδ < dB0− (dB0− inf( f )) = inf( f ) ,

a contradiction. Therefore, (5.4) is indeed valid, as claimed, and Theorem 5.2 is proved. �

Theorem 5.3. Let B0 ∈B, let the sequence {An}∞

n=1 ∈M be B0-normal and let ε > 0 be given.
Then there exist a neighborhood U of {An}∞

n=1 in M with the strong topology and a positive
integer N such that, for each {Bn}∞

n=1 ∈U and each mapping r : {1,2, . . .}→{1,2, . . .},

f
(
Br(N) . . .Br(1)B0x

)
< inf( f )+ ε

for all x ∈ K.

Proof. By Lemma 3.1, there exist a neighborhood U of {An}∞

n=1 in M with the strong topology
and a number δ > 0 such that the following property holds:

For each {Bn}∞

n=1 ∈U and each point x ∈ SB0 satisfying f (x)≥ inf( f )+ ε , we have

f (Bnx)< f (x)−δ (5.5)

for each n = 1,2, . . . .
Choose a positive integer N such that

δN > dB0− inf( f ) ,

Now assume that {Bn}∞

n=1 ∈U and r : {1,2, . . .}→ {1,2, . . .}. We claim that

f
(
Br(N) . . .Br(1)B0x

)
< inf( f )+ ε (5.6)

for each x ∈ K. Suppose to the contrary that this is not true. Then there exists a point x ∈ K
such that

f
(
Br(n) . . .Br(1)B0x

)
≥ inf( f )+ ε, n = 0, . . . ,N.

Using (5.5) and induction, we see that, for each n = 1, . . . ,N,

f
(
Br(n) . . .Br(1)B0x

)
< f (B0x)−nδ .

This implies that

f
(
Br(N) . . .Br(1)B0x

)
< f (B0x)−Nδ < dB0− (dB0− inf( f )) = inf( f ) ,

a contradiction. Therefore, (5.6) is indeed valid, as claimed, and Theorem 5.3 is established. �

6. PROOFS OF THE MAIN RESULTS

Theorem 2.1 is a direct consequence of Theorems 4.1 and 5.1. Theorem 2.2 is a direct
consequence of Theorems 4.2 and 5.2. Theorem 2.3 is a direct consequence of Theorems 4.3
and 5.3.
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7. NORMALITY, WEAK NORMALITY AND METRIC PROJECTIONS ONTO CLOSED BALLS

Let d be the metric induced on K by ‖·‖. We denote by B(x0,r) the closed ball in (K,d) of
center x0 and radius r > 0. Since K is convex, there exists a metric projection PB(x0,r) of K onto
B(x0,r). If X is a strictly convex Banach space, then this metric projection is unique. By taking
B0 = PB(x0,r) in our main results we obtain the following corollaries.

Corollary 7.1. There exist sets F ⊂M, Fb ⊂F∩Mb, Fc ⊂F ∩Mc and Fbc ⊂Fb ∩Mc
of PB(x0,r)-weakly normal sequences of mappings, which are countable intersections of open (in
the relative weak topology) and dense (respectively, in the weak topology, in the relative strong
topology, in the relative weak topology and in the relative strong topology) sets in, respectively,
M, Mb, Mc and Mbc such that for each {An}∞

n=1 ∈F , the following assertion holds:
For each ε > 0, there exist a neighborhood U (in the weak topology) of {An}∞

n=1 and a
positive integer N satisfying

f (BN . . .B1x)< inf( f )+ ε

for all {Bn}∞

n=1 ∈U and x ∈ B(x0,r).

Corollary 7.2. There exist a set F ⊂ A of PB(x0,r)-normal mappings, which is a countable
intersection of open and dense sets in A, and a set Fc ⊂F ∩Ac of PB(x0,r)-normal mappings,
which is a countable intersection of open and dense sets in Ac, such that for each A ∈F , the
following assertion holds:

For each ε > 0, there exist a neighborhood U of A in A and a positive integer N satisfying

f
(
BNx

)
< inf( f )+ ε

for all B ∈U and x ∈ B(x0,r).

Corollary 7.3. There exist sets Fb ⊂Mb and Fbc ⊂ Fb ∩Mc of PB(x0,r)-normal sequences
of mappings, which are countable intersections of open (in the relative strong topology) and
dense (in the relative strong topology) sets in, respectively, Mb and Mbc, such that for each
{An}∞

n=1 ∈F , the following assertion holds:
For each ε > 0, there exist a neighborhood U (in the strong topology) of {An}∞

n=1 and a
positive integer N satisfying

f
(
Br(N) . . .Br(1)x

)
< inf( f )+ ε

for all {Bn}∞

n=1 ∈U, all mappings r : {1,2, . . .}→{1,2, . . .} and all points x ∈ B(x0,r).
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