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Abstract. This paper is concerned with the problem of geodesic convex semi-infinite programming on
Riemannian manifolds. First, we establish Karush-Kuhn-Tucker necessary optimality conditions for op-
timal solutions under the Guignard constraint qualification. Then, some characterizations of the solution
sets of convex smooth semi-infinite programming on Riemannian manifolds are given.
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1. INTRODUCTION

Semi-infinite programming can be viewed as an extension of optimization problems, where
the finite number of constraints is replaced by the infinite many constraints. Arising from var-
ious practical problems in engineering, economic, and information technology, semi-infinite
programming has recently been investigated in numerous papers, see e.g., [1, 2, 3, 4, 5] and the
references therein. Besides, numerious concepts, techniques, and algorithms in optimization in
Euclidean spaces were generalized to Riemannian manifolds to deal with some realistic opti-
mization problems. Jongen et al [6] derived the Fritz John type first order necessary optimality
condition without assuming any constraint qualifying or reduction strategy, and described geo-
metrical characteristics of the feasible set with examples. Vázquez et al. [7] discussed general-
ized semi-infinite programming and its application. They investigated the geometric and topo-
logical properties of the feasible set, as well as its differences from the ordinary semi-infinite
with examples. Constraint qualifiers were developed by using the first-order approximations
of the feasible set. Then, using the directional differentiability properties of the optimal value
function of the so-called lower level problem, necessary and sufficient first- and second-order
optimality conditions were derived.

Standard semi-infinite optimization (SIP) problems were often solved by using discretiza-
tion methods. Due to the independence of the infinite index set, transferring these methods to
the situation of general semi-infinite optimization (GSIP) problems is problematic. For solving
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the GSIP through numerical approaches, the GSIP is generally converted to the SIP. A GSIP
problem can be converted into a SIP problem under the right conditions. However, it has the
potential to disrupt convexity at a lower level, which is critical for numerical approaches. Stein
[8] focused on the structural features of generic semi-infinite programming, formulating opti-
mality conditions, and presenting a conceptually novel solution approach. Stein and Still [9]
introduced a new numerical solution method for solving semi-inifinte optimization problems
with convex lower level problems. They demonstrated the convergence features of the method
and provided numerical examples from design centering and robust optimization, where they
solved so-called generalised semi-infinite optimization problems. When the bi-level structure of
general semi-infinite programmes is properly exploited, it is explained that it can be solved effi-
ciently under specific conditions. The spherical convexity of quadratic functions on spherically
convex sets was studied in [10]. The paper [11] presented a version of the Newton method for
finding a singularity of a special class of locally Lipschitz continuous vector fields. Schwientek
et al. [12] introduced the transformation based discretization method for solving the GSIP and
illustrated it with several examples which include a problem of volume-maximal inscription of
multiple variable bodies into a larger fixes body.

It is known that the establishing optimality conditions and the characterization of solution sets
of optimization problems play an important roles in optimization. This gives the test for a fea-
sible point to be an optimal solution of optimization problems, which is a necessary condition
in building algorithms to solve the optimization problems. Although the algorithms to solve the
optimization problems on Riemannian manifolds have recently been investigated extensively,
the establishing optimality conditions and the characterization of solution sets of optimization
problems have not yet been considered comprehensively. The concepts and techniques of opti-
mization on the sphere were discussed in [13]. The paper [14] established optimality conditions
for the nonlinear programming problems on Riemannian manifolds. Intrinsic formulation of
KKT conditions and constraint qualifications for constrained optimizations on smooth mani-
folds were discussed in [15]. Necessary and sufficient optimality conditions for vector equilib-
rium problems on Hadamard manifolds were provided in [16]. The characterization of solution
sets of convex smooth unconstrained optimization were extended from Euclidean spaces in [17]
to Riemannian manifolds in [18]. The optimality conditions and duality for semi-infinite pro-
gramming on Hadamard manifolds were discussed in [19]. However, the characterization of
solution sets of convex constrained optimizations have not been yet considered in [13, 18, 19].
Moreover, to the best of our knowledge, there is no paper dealing with optimality conditions and
the characterization of solution sets of semi-infinite programming on Riemannian manifolds.

The above observations motivate us to establish Karush-Kuhn-Tucker optimality conditions
and characterize the solution sets of semi-infinite programming on Riemannian manifolds in this
paper. The outline of the paper is as follows. Section 2 recalls the basic notions of Riemannian
manifolds. Then, Karush-Kuhn-Tucker necessary optimality conditions for optimal solutions
is examined. Section 3 concentrates on characterizing the solution sets of the semi-infinite
programming on Riemannian manifolds. Some detailed examples are provided to illustrate the
outcomes of the paper.
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2. PRELIMINARIES AND AUXILIARY RESULTS

In this paper, the notation 〈·, ·〉 is utilized to denote the inner product in the p-dimensional
Euclidean space E . Let E1 be a p1-dimensional linear subspace of E with p1 ≤ p. Then, E1 is
also an Euclidean space with 〈·, ·〉E1 = 〈·, ·〉, and E1 is equipped with a topology induced from
that of E . Moreover, there is a natural isometry identifying E1 and Rp1 . For a given x̄ ∈ E1,
U (x̄) is the system of the open neighborhoods of x̄ in E1. For A⊆ E1, intA, clA, affA, spanA, and
coA stand for its interior, closure, affine hull, linear hull, and convex hull of A in E1, respectively
(shortly, resp). The cone and the convex cone (containing the origin) generated by A in E1 are
indicated resp by coneA, posA. The negative polar cone and the strictly negative polar cone of
A in E1 are defined resp by

A− := {x∗ ∈ E1 | 〈x∗,x〉 ≤ 0, ∀x ∈ A},
and

As := {x∗ ∈ E1 | 〈x∗,x〉< 0, ∀x ∈ A}.
It should be noted that if A1⊂A2, then A−2 ⊂A−1 . Moreover, we can check that A−=(cl coneA)−;
see also [20]. If 〈x∗,x〉 ≥ 0 for all x∗ ∈ A∗, where A∗ is a subset of the dual space of E1, we
write 〈A∗,x〉 ≥ 0. The map ϕ from an Euclidean space E to another Euclidean space E ′ is
said to be of class C1(C∞, resp) if ϕ is continuously differentiable (infinitely continuously
differentiable, resp) on E . Recall the following definition of the Riemannian manifolds; see
[21, 22, 23, 24, 25, 26] for more details.

Let E be an Euclidean space and Mn ⊂ E be a smooth manifold. The tangent space to Mn

at x̄ is denoted by Tx̄Mn. It should be noted that Tx̄Mn is a n-dimensional vector subspace
of E . The tangent bundle of a manifold Mn is the disjoint union of the tangent spaces of
Mn. If F ≡ f : Mn → R is a smooth map, then the differential of f at x̄ is a linear mapping
d f (x̄) : Tx̄Mn→ R, defined by

d f (x̄)[v] :=
d
dt

f (γ(t))
∣∣∣∣
t=0

, [v] ∈ Tx̄Mn.

One calls a smooth manifold Mn a Riemannian manifold with respect to G if its tangent
spaces are endowed with a smoothly varying inner product G , defined by G (v1,v2) = 〈v1,v2〉x,
∀v1,v2 ∈ TxMn. The length of a piecewise smooth curve on a Riemannian manifold γx,y : [0,1]→
Mn, joining x to y with γx,y(0) = x,γx,y(1) = y, is defined by L(γx,y) =

∫ 1
0 ‖γ ′x,y(t)‖dt. The the

Riemannian distance d(x,y) is defined by minimizing this length over the set of all such curves
joining x to y, which induces the original topology on Mn. The covariant derivative associated
with a Riemannian manifold Mn is called Levi-Civita connection LC∇. A geodesic is a smooth
curve γ satisfying the equation LC∇γ ′(t)γ

′(t) = 0. A geodesic joining x to y in Mn is said to be
minimal if its length equals d(x,y). A Hadamard manifold Mn is a complete simply connected
Riemannian manifold of nonpositive sectional curvature.

The exponential map expx̄ : Tx̄Mn→Mn is defined by expx̄(v) = γx̄,v(1), where γx̄,v : [0,1]→
Mn is the geodesic starting at x̄ with velocity v, i.e., γx̄,v(0) = x̄ and γ ′x̄,v(0) = v. It is easy to
see that expx̄(tv) = γx̄,v(t) for all t ∈ [0,1] and expx̄(0x̄) = γx̄,v(0) = x̄. The exponential map is a
retraction; see [21, 22, 27].

Proposition 2.1 (Hopf-Rinow Theorem). If Mn is a complete and connected Riemannian man-
ifold, then any two points in Mn can be joined by a minimizing geodesic segment.
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Proposition 2.2. [23] If Mn is a Hadamard manifold, then expx̄ : Tx̄Mn → Mn is a diffeo-
morphism with the inverse map exp−1

x̄ : Mn → Tx̄Mn satisfying exp−1
x̄ (x̄) = 0x̄. Moreover,

for any x ∈ Mn, there exists a unique minimal geodesic γx̄,x : [0,1]→ Mn satisfying γx̄,x(t) =
expx̄(t exp−1

x̄ (x)).

Definition 2.1. Let A be a given nonempty subset of the Riemannian manifold Mn and x̄ ∈ clA.
The contingent cone (see [20, 28]) of A at x̄ is

T (A, x̄) := {v ∈ Tx̄Mn | ∃τk ↓ 0,∃vk ∈ Tx̄Mn,vk→ v, ∀k ∈ N,expx̄(τkvk) ∈ A}.

If Mn is a Hadamard manifold, then there exists xk ∈Mn such that xk = expx̄(vk), and we can
replace vk by exp−1

x̄ (xk)(= vk) in the above definition.

The Riemannian gradient of f : Mn → R at x̄ is a vector in Tx̄Mn, denoted by grad f (x̄),
uniquely defined by

〈grad f (x̄),v〉x̄ = d f (x̄)[v], ∀v ∈ Tx̄Mn.

It is worth to mention that grad f (x̄) ∈ Tx̄Mn and d f (x̄) : Tx̄Mn→ R.

Definition 2.2. [21, 22, 27] Let Mn be a complete Riemannian manifold, f : Mn→ R, x̄ ∈Mn,
and v ∈ Tx̄Mn.

(i) Assume that γ : (−ε,ε)→ Mn is a smooth curve satisfying γ(0) = x̄,γ ′(0) = v and
f ◦ γ : (−ε,ε)→ R is smooth. Then, we have the following Taylor expansion

f (γ(t)) = f (x̄)+ t〈grad f (x̄),v〉x̄ +o(t),

where o(t)/t→ 0 when t→ 0.
(ii) If the curve is obtained by γ(t) = expx̄(tv), then

f (expx̄(tv)) = f (x̄)+ t〈grad f (x̄),v〉x̄ +o(t).

(iii) If Mn is a Hadamard manifold, then γ(t)= γx̄,x(t)= expx̄(t exp−1
x̄ (x)), where x= expx̄(v),

and
f (γx̄,x(t)) = f (x̄)+ t〈grad f (x̄),exp−1

x̄ (x)〉x̄ +o(t).

Definition 2.3. [25, 26] Let Mn be a Riemannian manifold.
(i) A subset S of Mn is said to be geodesic convex if, for any pair of distinct points x,y ∈ S,

there is a unique minimizing geodesic γx,y : [0,1]→Mn joining x to y such that γx,y(t) ∈
S, ∀t ∈ [0,1]. A singleton is geodesic convex.

(ii) Let S be a geodesic convex of Mn and f : S→ R. The function f is said to be geodesic
convex at x̄ if, for any point x ∈ S and for any geodesic γx̄,x : [0,1]→Mn joining x̄ to x,

f (γx̄,x(t))≤ t f (x̄)+(1− t) f (x),∀t ∈ [0,1].

We say that f is geodesic convex on S if f is geodesic convex at any point of S. If Mn is
a Hadamard manifold, then f is geodesic convex at x̄ if and only if

f (expx̄(t exp−1
x̄ (x)))≤ t f (x̄)+(1− t) f (x),x ∈ S,∀t ∈ [0,1].

Proposition 2.3. [21, 22, 25, 26] Let S be a geodesic convex of a complete Riemannian manifold
Mn, x̄ ∈ S, and f : S→ R be a smooth function in a neighborhood of x̄. Denote by Γx̄,x the set
of all geodesics joining the points x̄ and x ∈ S.
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(i) f is geodesic convex at x̄ if and only if

f (γx̄,x(t))− f (x̄)≥ 〈grad f (x̄),γ ′x̄,x(0)〉x̄,∀t ∈ [0,1],∀γx̄,x ∈ Γx̄,x.

(ii) Let v ∈ Tx̄Mn such that expx̄(tv) ∈ S. If f is geodesic convex at x̄, then

f (expx̄(tv))− f (x̄)≥ 〈grad f (x̄),v〉x̄,∀t ∈ [0,1].

(iii) Suppose further that the inverse map exp−1
x̄ : Mn→ Tx̄Mn exists. If f is geodesic convex

at x̄, then

f (expx̄(t exp−1
x̄ (x)))− f (x̄)≥ 〈grad f (x̄),exp−1

x̄ (x)〉x̄,∀t ∈ [0,1],

Especially, if f is geodesic convex at x̄, then

f (x)− f (x̄)≥ 〈grad f (x̄),exp−1
x̄ (x)〉x̄,∀x ∈ S.

Proposition 2.4. [25, 26] Let S ⊂M n be an open geodesic convex set, and f : S→ R be a
twice continuously differentiable function. Then, f is geodesic convex on S iff the following
geodesic Hessian (or second covariant derivative) is positive semidefinite at all the points of
each geodesic convex coordinate neighbourhood of S:

Hg
u f (x(u)) = J(x(u))T Hx f (x(u))J(x(u))+∇x f (x(u))(Hx(u)− Jx(u)Γ(u)),

where matrix Γ(u) is the second Christoffel symbols with respect to the Riemannian metric of
M n representation.

Proposition 2.5. [25, 26] Let S ⊂ Rn be an open geodesic convex set, and let f : S→ R be a
twice continuously differentiable function. Then, f is geodesic convex on S iff the following ma-
trix is positive semidefinite at all the points of each geodesic convex coordinate neighbourhood
x(u), with x : U ⊂ Rk → Rn, of S: Hg f (x) = H f (x)+∇ f (x)Γ, where matrix Γ is the second
Christoffel symbols with respect to the Riemannian metric of Rn.

In some cases, it is difficult to check the geodesic convexity assumptions via the definitions.
Then, Proposition 2.4 and Proposition 2.5 could be utilized to verify the geodesic convexity as
in the following example.

Example 2.1. Let E =R3 and M2 = S2 = {x∈R2 | x2
1+x2

2+x2
3 = 1}. Then, M2 is a Riemannian

manifold with the usual metric 〈u,v〉x̄ = 〈u,v〉, ∀u,v ∈ Tx̄M2, where = 〈., .〉 is the standard inner
product on R3. Let S = {x ∈M2 | x3 ≤ −

√
3

2 }, x̄ = (0,0,−1), and fi : M2→ R(i = 1, ...,3) be
defined by f1(x) = d(x̄,x) = arccos(−x3), f2(x) =−x2

3(= x2
1 + x2

2−1), and f3(x) = x3, f4(x) =
x2

1. Then, we can check that S is a geodesic convex subset of M2. Now, we check that f1, f2 are
geodesic convex on S. By the similar approach to the approach of Example 6.5.1 in [25], we
introduce the coordinate representation of S as follows

x(u) = (x1(u1,u2),x2(u1,u2),x3(u1,u2)) = (u1,u2,−
√

1−u2
1−u2

2),

(u1,u2) ∈U =

{
u ∈ R2 | −1

2
≤ u1 ≤

1
2
,−
√

1
4
−u2

1 ≤ u2 ≤
√

1
4
−u2

1

}
.
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Then, by some calculations,

Jx(u) =

 1 0
0 1
u1√

1−u2
1−u2

2

u2√
1−u2

1−u2
2

 ,Hx1(u) = Hx2(u) =
[

0 0
0 0

]

Hx3(u)=

 1−u2
2

(1−u2
1−u2

2)
3/2

u1u2
(1−u2

1−u2
2)

3/2

u1u2
(1−u2

1−u2
2)

3/2
1−u2

1
(1−u2

1−u2
2)

3/2

 , f1(x(u))= arccos(−x3(u))=−arccos(
√

1−u2
1−u2

2),

∇x f1(x(u)) =

 0
0
1√

1−x2
3

 ,Hx f1(x(u)) =

 0 0 0
0 0 0
0 0 x3

(1−x2
3)

3/2

 ,
G = Jx(u)T Jx(u) =

 1−u2
2

1−u2
1−u2

2

u1u2
1−u2

1−u2
2

u1u2
1−u2

1−u2
2

1−u2
1

1−u2
1−u2

2

 ,G−1 =

[
1−u2

1 −u1u2
−u1u2 1−u2

2

]
,

Γ
u1 =

 u1(1−u2
2)

1−u2
1−u2

2

u2
1u2

1−u2
1−u2

2
u2

1u2
1−u2

1−u2
2

u1(1−u2
1)

1−u2
1−u2

2

 ,Γu2 =

 u2(1−u2
2)

1−u2
1−u2

2

u1u2
2

1−u2
1−u2

2
u1u2

2
1−u2

1−u2
2

u2(1−u2
1)

1−u2
1−u2

2

 .
Hence,

Hg
u f1(x(u))

= Jx(u)T Hx f1(x(u))Jx(u)+∇x f1(x(u))(Hx(u)− Jx(u)Γ(u))

= Jx(u)T Hx f1(x(u))Jx(u)+
3

∑
i=1

∂

∂xi
f1(x(u))(Hxi(u)− Jxi(u)Γ(u))

=

 1 0 u1√
1−u2

1−u2
2

0 1 u2√
1−u2

1−u2
2

 .
 0 0 0

0 0 0
0 0 x3

(1−x2
3)

3/2

 .
 1 0

0 1
u1√

1−u2
1−u2

2

u2√
1−u2

1−u2
2


+ 0.

([
0 0
0 0

]
− (1.Γu1 +0.Γu2)

)
+0.

([
0 0
0 0

]
− (0.Γu1 +1.Γu2)

)

+
x3

(1− x2
3)

3/2 .

 1−u2
2

(1−u2
1−u2

2)
3/2

u1u2
(1−u2

1−u2
2)

3/2

u1u2
(1−u2

1−u2
2)

3/2
1−u2

1
(1−u2

1−u2
2)

3/2

−
 u1√

1−u2
1−u2

2

.Γu1 +
u2√

1−u2
1−u2

2

.Γu2


=

√
1−u2

1−u2
2

(u2
1 +u2

2)
3/2

[
u2

2 −u1u2
−u1u2 u2

1

]
is a positive semidefinite matrix. This together with Theorem 6.3.1 in [25] entails that f1 is
geodesic convex; see another approach in Example 3 in [13]. Similarly, we deduce from

Hg
u f2(x(u)) =

2
1−u2

1−u2
2

[
u4

2 +(u2
1−2)u2

2−2u2
1 +1 −u1u2(u2

1 +u2
2)

−u1u2(u2
1 +u2

2) u4
1 +(u2

2−2)u2
1−2u2

2 +1

]
,

ϕ(u2
2) = u4

2 +(u2
1−2)u2

2−2u2
1 +1 = u4

2 +u2
1u2

2 +1−2(u2
1 +u2

2)
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≥ u2
4 +u2

1u2
2 +1−2.

1
4
≥ 0(since u2

1 +u2
2 ≤

1
4
),

det(Hg
u f2(x(u))) = 8

(
1
2
−u2

1−u2
2

)
≥ 0

that f2 are geodesic convex; see also Remark 3 in [10]. Similarly, since

Hg
u f3(x(u)) =

1√
1−u2

1−u2
2

[
1−u2

2 u1u2
u1u2 1−u2

1

]
,

Hg
u f4(x(u)) =

2
1−u2

1−u2
2

[
u2

1(u
2
2−2)+1−u2

2 −u3
1u2

−u3
1u2 u2

1(u
2
1−1)

]
,

f3 is geodesic convex and f4 is not geodesic convex. By calculating directly, we also can check
that f4 is not geodesic convex as follows. For x = ( 1

10 ,
3
√

2
10 ,− 9

10),x
′ = ( 1

10 ,−
3
√

2
10 ,− 9

10)∈ S, one
has

〈x,x′〉= 16
25

,
√

1−〈x,x′〉2 = 3
√

41
25

,d(x,x′) = arccos
(

16
25

)
.

Hence, the geodesic [13, 26] joining from x to x′ in S is

γx,x′(t) =
(

cos
(

t arccos
(

16
25

))
− 16

3
√

41
sin
(

t arccos
(

16
25

)))
x

+
25sin

(
t arccos

(16
25

))
3
√

41
x′, t ∈ [0,1].

Thus, for t = 1
2 ,

f4

(
γx,x′(

1
2
)

)
=

(
1
10

cos
(

1
2

arccos
(

16
25

))
+

3
10
√

41
sin
(

1
2

arccos
(

16
25

)))2

≈ 0.0122

> 0.01 =
1
2
.

(
1

10

)2

+
1
2
.

(
1
10

)2

=
1
2

f4(x)+
1
2

f4(x′),

leading that f4 is not geodesic convex on S.

As there exists an isometry identifying a n-dimensional Euclidean space E and Rn, the fol-
lowing lemmas utilized frequently in the proof of the optimality conditions of semi-infinite
programming can be checked similarly to the results in [29, 30, 31].

Lemma 2.1. Let {Ct |t ∈ Γ} be an arbitrary collection of nonempty convex sets in E and

K := pos
(⋃

t∈Γ

Ct

)
. Then, every nonzero vector of K can be expressed as a non-negative linear

combination of n or fewer linear independent vectors, each belonging to a different Ct .

Lemma 2.2. Suppose that S,P are arbitrary (possibly infinite) index sets, as = a(s)= (a1(s), ...,an(s))
maps S onto E , and so does ap. Suppose that the set co{as,s ∈ S}+pos{ap, p ∈ P} is closed.
Then the following statements are equivalent:

I :
{
〈as,x〉< 0,s ∈ S,S 6= /0
〈ap,x〉 ≤ 0, p ∈ P

has no solution x ∈ E ;

II : 0 ∈ co{as,s ∈ S}+pos{ap, p ∈ P}.
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Lemma 2.3. If X is a nonempty compact subset of E , then

(i) coX is a compact set;
(ii) If 0 6∈ coX, then posX is a closed cone.

In this paper, we consider the following constrained semi-infinite programming:
(P) : min f (x)
s.t. g`(x)≤ 0, ` ∈ L,

where Mn ⊂ E is a complete Riemannian manifold fulfilling that exp−1
x : Mn → TxMn exists

for all x ∈ Mn, and f ,g` : Mn → R are smooth geodesic convex functions on Mn. The index
set L is an arbitrary nonempty set, not necessary finite. A point x̄ is a locally optimal solution
to (P) if there exists a (topological) neighborhood U of x̄ such that f (x) ≥ f (x̄), ∀x ∈ Ω∩U,
where Ω := {x ∈Mn | g`(x)≤ 0, ` ∈ L} is the feasible solution set of (P). If U = Mn, the word
“locally” is omitted. The solution set of problem (P) is defined by

S := {x ∈Mn | f (x)≤ f (x′),∀x′ ∈Ω}.

For a given x̄ ∈Mn, define L(x̄) := {` ∈ L|g`(x̄) = 0}. The set of active constraint multipliers at
x̄ ∈Ω is

Λ(x̄) := {λ ∈ R|L|+ |λ`g`(x̄) = 0,∀` ∈ L}.

Notice that λ ∈ Λ(x̄) if there exists a finite index set J ⊂ L(x̄) such that λ` > 0 for all ` ∈ J and
λ` = 0 for all ` ∈ L\ J.

In the sequel, we always use the notion coA,posA,A−,As for a given subset A of the tangent
space TxMn := E1, which is a linear subspace of E . The linearizing cone to Ω at x̄ is the set
defined by

L (x̄) := {d ∈ Tx̄Mn | 〈gradg`(x̄),d〉x̄ ≤ 0,∀` ∈ L(x̄)}.

We can check that L (x̄) =

( ⋃
`∈L(x̄)

gradg`(x̄)

)−
.

Definition 2.4. (i) [19] The (ACQ) holds at x̄ ∈ Ω if L (x̄) ⊆ T (Ω, x̄), and the set ∆ :=
pos

⋃
`∈L(x̄)

gradg`(x̄) is closed.

(ii) The (GCQ) holds at x̄∈Ω if L (x̄)⊆ clconeT (Ω, x̄), and the set ∆ := pos
⋃

`∈L(x̄)
gradg`(x̄)

is closed.
It is easy to see that (ACQ) ⇒ (GCQ). Moreover, L (x̄) ⊆ clconeT (Ω, x̄) implies that

(clconeT (Ω, x̄))− ⊆L (x̄)−.

Proposition 2.6. Suppose that x̄ is a locally optimal solution of (P) and (GCQ) holds at x̄.
Then, there exists λ ∈ Λ(x̄) such that grad f (x̄)+ ∑

`∈L
λ`gradg`(x̄) = 0.

Proof. We first justify that

−grad f (x̄) ∈ (T (Ω, x̄))− = (clconeT (Ω, x̄))−. (2.1)

∗ Case 1. grad f (x̄) = 0. Then, −grad f (x̄) = 0 ∈ (T (Ω, x̄))−. Hence, (2.1) holds for the Case
1.
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∗ Case 2. grad f (x̄) 6= 0. Then, for an arbitrary v ∈ T (Ω, x̄), there exist τk ↓ 0 and vk→ v such
that expx̄(τkvk) ∈Ω for all k. We derive from the Taylor expansion of f at x̄ that

f (expx̄(τkvk)) = f (x̄)+ τk〈grad f (x̄)),vk〉x̄ +o(τk).

We deduce from the fact x̄ is a locally optimal solution of (P) that

0≤ f (expx̄(τkvk))− f (x̄)
τk

= 〈grad f (x̄),vk〉x̄ +
o(τk)

τk
.

Letting k→∞, one has 0≤ 〈grad f (x̄),v〉x̄, ∀v ∈T (Ω, x̄), or equivalently, 〈−grad f (x̄),v〉x̄ ≤ 0,
∀v ∈T (Ω, x̄), i.e., −grad f (x̄) ∈ (T (Ω, x̄))−. Hence, claim (2.1) holds for Case 2, leading that
(2.1) satisfies both two possibilities.

We derive from (2.1) and (GCQ) that −grad f (x̄) ∈ (clconeT (Ω, x̄))− ⊆L (x̄)−, i.e.,

〈−grad f (x̄),v〉x̄ ≤ 0,∀v ∈L (x̄). (2.2)

Now we prove that there is no v ∈ Tx̄Mn fulfilling{
〈grad f (x̄)),v〉x̄ < 0,
〈gradg`(x̄)),v〉x̄ ≤ 0, ∀` ∈ L(x̄).

(2.3)

Suppose to the contrary that there is v̄ ∈ Tx̄Mn such that{
〈grad f (x̄)), v̄〉x̄ < 0,
〈gradg`(x̄)), v̄〉x̄ ≤ 0, ∀` ∈ L(x̄).

This leads that {
〈−grad f (x̄)), v̄〉x̄ > 0,
v̄ ∈L (x̄),

contradicting (2.2), which in turn implies that (2.3) holds.
Moreover, we deduce from Lemma 2.3 that cograd f (x̄) is a compact set. Hence, cograd f (x̄)+

∆ is closed. Combining this and (2.3), one deduces from Lemma 2.2 that

0 ∈ cograd f (x̄)+pos
⋃

`∈L(x̄)

gradg`(x̄).

In view of Lemma 2.1, there exists λ ∈ Λ(x̄) such that

grad f (x̄)+ ∑
`∈L

λ`gradg`(x̄) = 0.

This completes the proof. �

Remark 2.1. The KKT necessary optimality conditions for semi-infinite on Hadarmard man-
ifolds under (ACQ) was established in [19]. That results is generalized for semi-infinite on
Riemannian manifolds under (GCQ) in Proposition 2.6. It should be noted that the Hadamard
manifolds has sectional curvature is less than or equal zero, while the sectional curvature of
Riemann manifolds could be is greater than zero. Moreover, the (GCQ) could be applied in
some cases that (ACQ) could not be applied as in the following example.

Example 2.2. Let M2 = {x ∈ R2 | x1,x2 > 0}. Then, M2 is a Riemannian manifold (see, e.g.,
[25]) with the metric

〈u,v〉x = 〈G (x)u,v〉,∀u,v ∈ TxM2 = R2,
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where G (x) =

[ 1
x2

1
0

0 1
x2

2

]
, and 〈., .〉 is standard inner product on R2. M2 is also a Hadamard

manifold as its sectional curvature is equal to zero. The Riemannian distance function is

d(x,y) =
∥∥∥∥(ln

x1

y1
, ln

x2

y2

)∥∥∥∥ ,∀x,y ∈M2.

For x ∈M2, the exponent map expx : TxM2→M2 is defined by

expx(v) =
(

x1e
v1
x1 ,x2e

v2
x2

)
,v ∈ TxM2.

Furthermore, exp−1
x : M2→ TxM2 is exp−1

x (y) =
(

x1 ln y1
x1
,x2 ln y2

x2

)
.

Consider the problem
(P) : min f (x) = 2

√
x1 + lnx2

s.t. g`(x) = 1− (1− `) lnx1− ` lnx2 ≤ 0, ` ∈ L1 = [0,1],
g2(x) = lnx1. lnx2− lnx1− lnx2 +1≤ 0,

where f ,g` : M2→ R and L = [0,1]∪{2}. Then,

Ω = {x ∈M2 | lnx1 ≥ 1, lnx2 ≥ 1,(lnx1−1)(lnx2−1)≤ 0}.
Setting t1 = lnx1−1, t2 = lnx2−1, one has

Ω = {t ∈ R2
+ | t1 ≥ 0, t2 ≥ 0, t1t2 ≤ 0}

= {t ∈ R2
+ | t1 = 0, t2 ≥ 0}∪{t ∈ R2

+ | t1 ≥ 0, t2 = 0}
= {x ∈M2 | x1 = e,x2 ≥ e}∪{x ∈M2 | x1 ≥ e,x2 = e}.

It is easy to check that S = {(e,e)}. By employing some formulas in [25] to calculate, we obtain

grad f (x) = G (x)−1

[
1√
x1
1
x2

]
=

[
x1
√

x1
x2

]
= (x1

√
x1,x2),

gradg`(x) = G (x)−1

[
−1−`

x1

− `
x2

]
= (−(1− `)x1,−`x2), ` ∈ L1,

gradg2(x) = G (x)−1

[
lnx2−1

x1
lnx1−1

x2

]
= (x1(lnx2−1),x2(ln(x1−1)).

Taking x̄ = (e,e) ∈ S, one has L(x̄) = L. Let us take v ∈ T (Ω, x̄). Then, there exist τk ↓ 0 and
vk ∈ Tx̄M2 = R2 with vk = (vk

1,v
k
2)→ v = (v1,v2) such that

expx̄(τkvk) =

(
e.e

τkvk
1

e ,e.e
τkvk

2
e

)
=

(
e

τkvk
1

e +1,e
τkvk

2
e +1

)
∈Ω,∀k,

which leads to  e.e
τkvk

1
e = e

e.e
τkvk

2
e ≥ e,

∀k or

 e.e
τkvk

1
e ≥ e

e.e
τkvk

2
e = e,

∀k.

Consequently, {
τkvk

1
e = 0

τkvk
2

e ≥ 0,
∀k or

{
τkvk

1
e ≥ 0

τkvk
2

e = 0,
∀k,
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or equivalently, {
vk

1 = 0
vk

2 ≥ 0,
∀k or

{
vk

1 ≥ 0
vk

2 = 0,
∀k.

Letting k to infinity, one has that

T (Ω, x̄)⊆ Γ := {x ∈ R2 | v1 = 0,v2 ≥ 0}∪{x ∈ R2 | v1 ≥ 0,v2 = 0}.

Moreover, it is easy to check that Γ⊆T (Ω, x̄). Thus, T (Ω, x̄) = Γ. Further,

grad f (x̄) = (e
√

e,e),

gradg`(x̄) = (−(1− `)e,−`e),∀` ∈ L1,gradg2(x̄) = {(0,0)},⋃
`∈L(x̄)

gradg`(x̄) =
{

x ∈ Tx̄M2 | x1 + x2 =−e,x1 ≤ 0,x2 ≤ 0
}
∪{(0,0)},

 ⋃
`∈L(x̄)

gradg`(x̄)

− = R2
+ 6⊆T (Ω, x̄),

 ⋃
`∈L(x̄)

gradg`(x̄)

− = R2
+ ⊆ clconeT (Ω, x̄),

pos
⋃

`∈L(x̄)

gradg`(x̄) =
{

x ∈ Tx̄M2 | x1 ≤ 0,x2 ≤ 0
}

is closed, i.e., (ACQ) does not hold at x̄. Hence, the result in [19] could not be applied. However,
(GCQ) holds at x̄, and thus, all the assumptions in Proposition 2.6 hold. Now, let λ̄ : L→ R be
defined by

λ̄ (`) =

{
1+
√

e, if `= 1
1+
√

e ,

0, otherwise.

Then, λ̄ ∈ Λ(x̄) and

grad f (x)+ ∑
`∈L

λ̄`gradg`(x) = (e
√

e,e)+(1+
√

e)
(
−
(

1− 1
1+
√

e

)
e,− 1

1+
√

e
e
)
= (0,0),

i.e., the conclusion of Proposition 2.6 is satisfied.

3. CHARACTERIZATION OF SOLUTION SETS

The characterization of solution sets of constrained optimizations in Euclidean spaces and
their applications in giving the important information of the optimal solutions, such as the ex-
istence, the error bound, and the properties of solution methods were considered in [17, 32, 33,
34]. In this section, we give the characterization of solution sets of semi-infinite programming
on Riemannian manifolds, which extends some above-mentioned results when L is a finite set
and the objective function and constraint functions are smooth. For x̄ ∈ S and the Lagrange
multiplier λ̄ ∈ Λ(x̄) with respect to x̄, define

L̃(x̄) := {` ∈ L(x̄) | λ̄` > 0},

Ω1 := {x ∈Mn | g`(x) = 0,∀` ∈ L̃(x̄),g`(x)≤ 0,∀` ∈ L\ L̃(x̄)},
and

Ω2 := {x ∈Mn | g`(x)≤ 0,∀` ∈ L\ L̃(x̄)}.
It is easy to see that L̃(x̄)⊆ L(x̄)⊆ L and Ω1 ⊆Ω⊆Ω2.
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Lemma 3.1. Suppose that S 6= /0, i.e., there exists some x̄ ∈ S. Then, the following statements
are true.

(i) [25] S is a geodesic convex set.
(ii) S = {x ∈Mn | f (x) = f (x̄)}.

(iii) S is a geodesic convex subset of Ω.

Proof. (i) See Lema 6.1.1 in [25].
(ii) (⊆) Let x ∈ S. Then, x ∈Ω. Moreover, since x, x̄ ∈ S, we have f (x)≤ f (x̄) and f (x̄)≤ f (x),
which leads f (x) = f (x̄). Hence, x ∈ {x ∈Ω | f (x) = f (x̄)}, i.e., S⊆ {x ∈Ω | f (x) = f (x̄)}.
(⊇) Let x∈ {x∈Ω | f (x) = f (x̄)}. Then, x∈Ω and f (x) = f (x̄)≤ f (x′),∀x′ ∈Ω. Hence, x∈ S.
(iii) Let x̄, x̄′ ∈ S. Then, for any x ∈Ω, one has f (x̄)≤ f (x), f (x̄′)≤ f (x). Since Ω is a geodesic
convex set, there exists a unique minimizing geodesic γx̄,x̄′(t) joining x̄ to x̄′ containing in Ω.
Hence, we deduce from the geodesic convexity of f that

f (γx̄,x̄′(t))≤ t f (x̄)+(1− t) f (x̄′)≤ t f (x)+(1− t) f (x) = f (x),∀t ∈ [0,1],∀x ∈Ω.

Thus γx̄,x̄′(t) ∈ S for all t ∈ [0,1], which demonstrates that S is geodesic convex. �

Example 3.1. Let E =R3 and M2 = S2 = {x ∈R2 | x2
1+x2

2+x2
3 = 1}. Then, M2 is a Riemann-

ian manifold with the usual metric 〈u,v〉x̄ = 〈u,v〉,∀u,v ∈ Tx̄M2, where 〈., .〉 is standard inner
product on R3. Consider the problem

(P) : min f (x) =−x2
3

s.t. g`(x) = x3− `≤ 0, ` ∈ L = [−
√

3
2 ,0],

where f ,g` : S2→R. Then, Ω= {x∈ S2 | x3≤−
√

3
2 } and S= {x∈Ω | x3 =−1}= {(0,0,−1)}.

So, it follows from Definition 2.2 (i) that the conclusion of Lemma 3.1 holds.

Proposition 3.1. Suppose that x̄ ∈ S, (GCQ) holds at x̄ and there exists λ̄ ∈ Λ(x̄) such that

grad f (x̄)+ ∑
`∈L

λ̄`gradg`(x̄) = 0. (3.1)

Suppose that f ,g`(` ∈ L) are geodesic convex at x̄ on Ω. Then, for any x ∈ S, ∑
`∈L(x̄)

λ̄`g`(x) = 0

and L (., λ̄ ) = f (.)+ ∑
`∈L(x̄)

λ̄`g`(.) is constant on S.

Proof. Since λ̄`g`(x̄) = 0, ∀` ∈ L and g`(x̄)< 0,∀` 6∈ L(x̄), we have λ̄` = 0,∀` 6∈ L(x̄). Hence,

λ̄` = 0,∀` 6∈ L̃(x̄). (3.2)

It is straightforward that, for each x ∈ S,

∑
`∈L(x̄)

λ̄`g`(x) = 0⇔ ∑
`∈L̃(x̄)

λ̄`g`(x) = 0⇔ g`(x) = 0,∀` ∈ L̃(x̄). (3.3)

If L̃(x̄) = /0, the proof is trivial. If otherwise, suppose to the contrary that there exist ¯̀∈ L̃(x̄) and
x ∈ S such that g ¯̀(x)< 0 = g ¯̀(x̄). This together with the geodesic convexity of g ¯̀ at x̄ implies
that

〈gradg ¯̀(x̄),exp−1
x̄ (x)〉x̄ ≤ g ¯̀(x)−g ¯̀(x̄)< 0. (3.4)



CHARACTERIZATION OF SOLUTION SETS OF GEODESIC CONVEX SIP ON RIEMANNIAN MANIFOLDS 13

For each ` ∈ L̃(x̄) \ { ¯̀}, we have g`(x) ≤ 0 = g`(x̄), which in turn along with the geodesic
convexity of g`(` ∈ L) at x̄ derives

〈gradg`(x̄),exp−1
x̄ (x)〉x̄ ≤ g`(x)−g`(x̄)≤ 0,∀` ∈ L̃(x̄)\{ ¯̀}.

Combining this, (3.1), (3.2), and (3.4), one arrives at

〈grad f (x̄),exp−1
x̄ (x)〉x̄ =−∑

`∈L
λ̄`〈gradg`(x̄),exp−1

x̄ (x)〉x̄ =− ∑
`∈L̃(x̄)

λ̄`〈gradg`(x̄),exp−1
x̄ (x)〉x̄ > 0.

(3.5)
However, since f (x) = f (x̄), we deduce from the fact f is geodesic convex at x̄ that

〈grad f (x̄),exp−1
x̄ (x)〉x̄ ≤ f (x)− f (x̄)≤ 0,

contradicting (3.5). Hence, (3.3) holds. It follows from (3.2) and (3.3) that

L (x, λ̄ ) = f (x)+ ∑
`∈L̃(x̄)

λ̄`g`(x) = f (x) = f (x̄), ∀x ∈ S,

i.e., L (., λ̄ ) = f (.)+ ∑
`∈L(x̄)

λ̄tg`(.) is constant on S. �

Now, we give some characterization of the solution sets of geodesic convex SIP on Rie-
mannian manifolds. In our opinion, the solution set S5 is more interesting since it give more
information to verify that a feasible point is a solution.

Proposition 3.2. Suppose that x̄ ∈ S, (GCQ) holds at x̄, and there exists λ̄ ∈ Λ(x̄) such that

grad f (x̄)+ ∑
`∈L

λ̄`gradg`(x̄) = 0. (3.6)

If f ,g`(` ∈ L) are geodesic convex at x̄ on Ω, then the solution sets is characterized by

S = S1 = S2 = S3 = S4 = S5,

where

(i) S1 = {x ∈Ω1 | 〈grad f (x),exp−1
x (x̄)〉x = 0},

(ii) S2 = {x ∈Ω1 | 〈grad f (x),exp−1
x (x̄)〉x ≥ 0},

(iii) S3 = {x ∈Ω1 | 〈grad f (x),exp−1
x (x̄)〉x = 〈grad f (x̄),exp−1

x̄ (x)〉x̄},
(iv) S4 = {x ∈Ω1 | 〈grad f (x),exp−1

x (x̄)〉x ≥ 〈grad f (x̄),exp−1
x̄ (x)〉x̄},

(v) S5 = {x ∈Ω1 | 〈grad f (x),exp−1
x (x̄)〉x = 〈grad f (x̄),exp−1

x̄ (x)〉x̄ = 0}.

Proof. It is immediate that S5 ⊆ S1 ⊆ S2 and S5 ⊆ S3 ⊆ S4. Hence, we only need to prove that
S⊆ S5, S2 ⊆ S and S4 ⊆ S.
(a) (S ⊆ S5) Let x ∈ S. Since x̄ ∈ S, we implies from Lemma 3.1 (ii) that f (x) = f (x̄). This
together with the geodesic convexity of f at x̄ leads that

〈grad f (x̄),exp−1
x̄ (x)〉x̄ ≤ f (x)− f (x̄) = 0. (3.7)

In view of Proposition 3.1, we deduce from x ∈ S that

g`(x) = 0,∀` ∈ L̃(x̄) and λ̄` = 0,∀` 6∈ L̃(x̄).
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It follows from the above inequalities, (3.6), and the geodesic convexity of g`(` ∈ L) at x̄ that

〈grad f (x̄),exp−1
x̄ (x)〉x̄ = −∑

`∈L
λ̄`〈gradg`(x̄),exp−1

x̄ (x)〉x̄

= − ∑
`∈L̃(x̄)

λ̄`〈gradg`(x̄),exp−1
x̄ (x)〉x̄

≥ − ∑
`∈L̃(x̄)

λ̄`(g`(x)−g`(x̄)) = 0. (3.8)

Combining (3.7) and (3.8), one obtains

〈grad f (x̄),exp−1
x̄ (x)〉x̄ = 0. (3.9)

By invoking Lemma 3.1, we deduce from x, x̄ ∈ S that, for any γx,x̄,

f (γx,x̄(t)) = f (x) = f (x̄),∀t ∈ [0,1].

Granting this and taking into account the Taylor expansion of f at x give us

0 =
f (γx,x̄(t))− f (x)

t
= 〈grad f (x),exp−1

x (x̄)〉x +
o(t)

t
.

Letting t to zero, we have
〈grad f (x),exp−1

x (x̄)〉x = 0,

which in turn along with (3.9) concludes that x ∈ S5.
(b) (S2 ⊆ S) Let x ∈ S2. Then, x ∈Ω1 ⊆Ω and

〈grad f (x),exp−1
x (x̄)〉x̄ ≥ 0.

This together with the geodesic convexity of f at x tells us that f (x̄)− f (x)≥ 0, leading that

f (x)≤ f (x̄)≤ f (x′),∀x′ ∈Ω.

The proof is complete.
(c) Let x ∈ S4. Then, x ∈Ω1 ⊆Ω and

〈grad f (x),exp−1
x (x̄)〉x ≥ 〈grad f (x̄),exp−1

x̄ (x)〉x̄.

By analyzing similarly as the proof in (a), one has

〈grad f (x̄),exp−1
x̄ (x)〉x̄ = 0,

which implies that
〈grad f (x),exp−1

x (x̄)〉x ≥ 0.

Again from the geodesic convexity of f on Ω, we arrive at f (x)≤ f (x̄). Thus x ∈ S. �

In our opinion, the solution set S5 is more interesting since it give more information to verify
the solution of semi-infinite programming on Riemannian manifolds.

Example 3.2. Let E =R3 and M2 = S2 = {x∈R2 | x2
1+x2

2+x2
3 = 1}. Then, M2 is a Riemannian

manifold (see, e.g., [13, 21, 27]) with the usual metric 〈u,v〉x̄ = 〈u,v〉, ∀u,v ∈ Tx̄M2, where =
〈., .〉 is standard inner product on R3. The Riemannian distance function is d(x,y)= arccos〈x,y〉,
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∀x,y ∈ M2, where arccos〈x,y〉 := θ ∈ [0,π] satisfies cosθ = 〈x,y〉
‖x‖.‖y‖ = 〈x,y〉. For x ∈ M2, the

exponent map expx : TxM2→M2 is defined by

expx(v) =
{

cos(‖v‖)x+ sin(‖v‖) v
‖v‖ , v ∈ TxM2 \{0}

x, v = 0.

Moreover, exp−1
x : M2→ TxM2 is

exp−1
x (y) =

{
arccos〈x,y〉

sin(arccos〈x,y〉)(y−〈x,y〉x), y 6∈ {x,−x}
0, y = x.

Consider the problem
(P) : min f (x) =−x2

3

s.t. g`(x) = `x3 + `−1≤ 0, ` ∈ L =
[
0, 2

2−
√

3

]
,

where f ,g` : S2→ R. Then, g`(x)≤ 0,∀` ∈ L if and only if

x3 ≤ min
`∈
(

0, 2
2−
√

3

]
{
−1+

1
`

}
⇔ x3 ≤−

√
3

2
.

Hence, Ω = {x ∈ S2 | x3 ≤−
√

3
2 } and we can check directly that

S = {x ∈ S2 | x3 =−1}= {(0,0,−1)}.

By using some formulas in [13, 21, 27] to calculate, we have

grad f (x) = Px((0,0,−2x3)) = (2x1x2
3,2x2x2

3,−2x3 +2x3
3) = 2x3(x1x3,x2x3,−1+ x2

3),

gradg`(x) = Px((0,0, `)) = (−`x1x3,−`x2x3, `− `x2
3), ` ∈ L,

where Px = I3− xxT . Taking x̄ = (0,0,−1) ∈ S, one has

L(x̄) = L,Tx̄M2 = {v ∈ R3 | 〈v, x̄〉=−v3 = 0} is a subspace of R3.

Let us take v ∈ T (Ω, x̄)\{0}. Then, there exist τk ↓ 0 and vk ∈ Tx̄Mn with vk = (vk
1,v

k
2,v

k
3)→

v = (v1,v2,v3) such that

expx̄(τkvk) = cos(‖τkvk‖)x̄+ sin(‖τkvk‖) τkvk

‖τkvk‖
∈Ω,∀k,

which implies

cos(‖τkvk‖)(−1)+
sin(‖τkvk‖)
‖τkvk‖

τkvk
3 ≤−

√
3

2
,∀k.

Letting k to infinity, one has that−1≤−
√

3
2 , which satisfies for all v ∈T (Ω, x̄)\{0}. It should

be noted that 0 ∈T (Ω, x̄). Hence,

T (Ω, x̄) = {v ∈ Tx̄M2 | v3 ≤ 0}= clconeT (Ω, x̄).

Moreover,

grad f (x̄) = (0,0,0),gradg`(x̄) = (0,0,0),
⋃

`∈L(x̄)

gradg`(x̄) = {(0,0,0)},
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`∈L(x̄)

gradg`(x̄)

− =
{

x∗ ∈ Tx̄M2 | 〈x∗,(0,0,0)〉 ≤ 0
}
= Tx̄M2 ⊆T (Ω, x̄),

pos
⋃

`∈L(x̄)

gradg`(x̄) = pos{(0,0,0)}= {(0,0,0)}

is closed, i.e., (GCQ) holds at x̄. Now, let λ̄ : L→ R be defined by

λ̄ (`) =

{
1, if `= 0,
0, otherwise.

Then, λ̄ ∈ Λ(x̄) and
grad f (x̄)+ ∑

`∈L
λ̄`gradg`(x̄) = 0.

Furthermore, L̃(x̄) = {0} and Ω1 = Ω. Then,

〈grad f (x̄),exp−1
x̄ (x)〉x̄ = 0,∀x ∈Ω1 \{x̄},

sin(arccos〈x, x̄〉)
arccos〈x, x̄〉

〈grad f (x),exp−1
x (x̄)〉x = 〈2x3(x1x3,x2x3,−1+ x2

3), x̄−〈x̄,x〉x)〉x

= 2x3
〈
(x1x3,x2x3,−1+ x2

3),(x1x3,x2x3,−1+ x2
3)
〉

= 2x3
(
x2

1x2
3 + x2

2x2
3 +(−1+ x2

3)
2)

= 2x3
(
x2

3(x
2
1 + x2

2)+1−2x2
3 + x4

3
)

= 2x3
(
x2

3(1− x2
3)+1−2x2

3 + x4
3
)

= 2x3(1− x3)(1+ x3),∀x ∈Ω\{x̄}.

Since −1≤ x3 ≤−
√

3
2 ∀x ∈Ω\{x̄}, one has

0 < arccos〈x, x̄〉 ≤ π

6
, 0 < sin(arccos〈x, x̄〉)≤ 1

2
.

Hence,
〈grad f (x),exp−1

x (x̄)〉x = 0⇔ 2x3(1− x3)(1+ x3) = 0⇔ x3 =−1,

〈grad f (x),exp−1
x (x̄)〉x ≥ 0⇔ 1+ x3 ≤ 0⇔ x3 =−1.

Moreover, it follows from Example 2.1 that f is geodesic convex and g` are geodesic convex
for all ` ∈ L. Hence,

S1 = S2 = {x ∈Ω | x3 =−1}= {(0,0,−1)}
and S1 = S2 = S3 = S4 = S5 = S, which yield that the conclusions of Proposition 3.2 hold.

Remark 3.1. (i) The semi-infinite programming could be served in formulating the robotics
trajectory planning problems in Euclidean spaces in [35]. However, in some circumstances in
real life, the robotics trajectory is planned on manifolds including surfaces, such as spheres, tori,
and cylinders. The viewpoint of the authors is that the theory and algorithms of semi-infinite
programming on manifolds in the future could be applied in these problems.
(ii) In the case that L is a finite set, the main results in the paper are also new since the char-
acterization of solution sets of convex constrained optimizations have not been yet examined
in [13, 18, 19]. Considering the characterization of solution sets of nonsmooth optimizations
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on Riemannian manifolds by using the generalized subdifferentials on Riemannian manifolds
could be an interesting subject for the future research.
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[24] J.M. Lee, Introduction to Riemannian Manifolds, 2nd ed. Springer, New York, 2018.
[25] T. Rapcsák, Smooth Nonlinear Optimization in Rn, Kluwer Academic Publishers, Dordrecht, 1997.
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