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OPTIMALITY CONDITIONS AND DUALITY RELATIONS IN NONSMOOTH
FRACTIONAL INTERVAL-VALUED MULTIOBJECTIVE OPTIMIZATION
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Abstract. This paper deals with Pareto solutions of a nonsmooth fractional interval-valued multiob-
jective optimization. We first introduce four types of Pareto solutions of the considered problem by
considering the lower-upper interval order relation and then apply some advanced tools of variational
analysis and generalized differentiation to establish necessary optimality conditions for these solutions.
Sufficient conditions for Pareto solutions of such a problem are also provided by means of introducing
the concepts of (strictly) generalized convex functions defined in terms of the limiting/Mordukhovich
subdifferential of locally Lipschitzian functions. Finally, a Mond–Weir type dual model is formulated,
and weak, strong and converse-like duality relations are examined.
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iting/Mordukhovich subdifferential; Pareto solutions; Generalized convex-affine function.
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1. INTRODUCTION

In this paper, we are interested in Pareto solutions of the following fractional multiobjective
problem with interval-valued objective functions:

LU−Min F(x) :=
(

f1(x)
g1(x)

, . . . ,
fm(x)
gm(x)

)
(FIMP)

s.t. x ∈Ω := {x ∈ S : h j(x)≤ 0, j = 1, . . . , p},

where fi,gi : Rn→Kc, i∈ I := {1, . . . ,m}, are interval-valued functions defined respectively by
fi(x) = [ f L

i (x), fU
i (x)], gi(x) = [gL

i (x),g
U
i (x)], f L

i , fU
i , gL

i ,gU
i : Rn→ R are locally Lipschitzian

functions satisfying f L
i (x)≤ fU

i (x) and

0 < gL
i (x)≤ gU

i (x)

for all x ∈ S and i ∈ I, Kc is the class of all closed and bounded intervals in R, i.e.,

Kc = {[aL,aU ] : aL,aU ∈ R, aL ≤ aU},

h j : Rn→ R, j ∈ J := {1, . . . , p}, are locally Lipschitzian functions, and S is a nonempty and
closed subset of Rn.
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An interval-valued optimization problem is one of the deterministic optimization models
to deal with the uncertain/incomplete data. More precisely, in interval-valued optimization,
the coefficients of objective and constraint functions are taken as closed intervals. The study
of optimality conditions and duality relations for optimization problems with one or multiple
interval-valued objective functions have recently received increasing interest in optimization
community; see, e.g., [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
and the references therein. However, there are quite few publications devoted to optimality
conditions and duality relations for fractional interval-valued optimization problems; see [24,
25, 26].

Debnath and Gupta [24] presented some necessary and sufficient optimality conditions for
nondifferentiable fractional interval-valued programming problems, where numerators of the
objective function and constraint functions are convex, while denominators of the objective
function are concave. Recently, these results have been extended to fractional interval-valued
multiobjective problems [25, 26]. However, to the best of our knowledge, so far there have
been no papers investigating optimality conditions and duality for fractional interval-valued
multiobjective problems with locally Lipschitzian data.

Motivated by the above observations, in this paper, we introduce some kinds of Pareto solu-
tions with respect to lower-upper (LU) interval order relation for problems of the form (FIMP).
Then we employ the limiting/Mordukhovich subdifferential and the limiting/Mordukhovich
normal cone to derive necessary and sufficient optimality conditions for these Pareto solutions
of problem (FIMP). Along with optimality conditions, we state a dual problem in the sense of
Mond–Weir to the primal one and examine weak, strong and converse duality relations under
assumptions of (strictly) generalized convexity (cf. [2, 27, 28]). In addition, some examples are
also given for analyzing the obtained results.

The paper is organized as follows. Section 2 contains some basic definitions from variational
analysis, interval analysis and several auxiliary results. In Section 3, we first introduce four
kinds of Pareto solutions of problem (FIMP) and then establish necessary conditions for these
solutions. Sufficient optimality conditions for such solutions are provided by means of intro-
ducing (strictly) generalized convex functions defined in terms of the limiting subdifferential
for locally Lipschitzian functions. Section 4 is devoted to describing duality relations.

2. PRELIMINARIES

Throughout the paper, letRn be the n-dimensional Euclidean space andRn
+ be its nonnegative

orthant. The topological closure of a set S is denoted by clS. As usual, the polar cone of a set
S⊂ Rn is defined by

S◦ := {x∗ ∈ Rn : 〈x∗,x〉 ≤ 0 ∀x ∈ S}.

Definition 2.1 (see [29, 30]). Given x̄ ∈ clS. The set

N(x̄;S) := {z∗ ∈ Rn : ∃xk S−→ x̄,εk→ 0+,z∗k → z∗,z∗k ∈ N̂εk(x
k;S), ∀k ∈ N}

is called the limiting/Mordukhovich normal cone of S at x̄, where

N̂ε(x;S) :=
{

z∗ ∈ Rn : limsup
u S→x

〈z∗,u− x〉
‖ u− x ‖

≤ ε

}
is the set of ε-normals of S at x and u S−→ x means that u→ x and u ∈ S.
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Let ϕ : Rn→ R := [−∞,∞] be an extended-real-valued function. The epigraph and domain
of ϕ are denoted, respectively, by

epi ϕ := {(x,α) ∈ Rn×R : ϕ(x)≤ α},
dom ϕ := {x ∈ Rn : |ϕ(x)|<+∞}.

Definition 2.2 (see [29, 30]). Let x̄ ∈ dom ϕ .
(i) The set

∂ϕ(x̄) := {x∗ ∈ Rn : (x∗,−1) ∈ N((x̄,ϕ(x̄)); epi ϕ)},

is called the limiting/Mordukhovich subdifferential of ϕ at x̄. If x̄ /∈ dom ϕ , then we put
∂ϕ(x̄) = /0.

(ii) The set ∂+ϕ(x̄) :=−∂ (−ϕ)(x̄) is called the upper subdifferential of ϕ at x̄.

We now summarize some properties of the limiting subdifferential that will be used in the
sequel.

Proposition 2.1 (see [29, Theorem 3.36]). Let ϕl : Rn→ R, l = 1, . . . , p, p≥ 2, be lower semi-
continuous around x̄ and let all but one of these functions be locally Lipschitzian around x̄. Then
we have the following inclusion

∂ (ϕ1 + . . .+ϕp)(x̄)⊂ ∂ϕ1(x̄)+ . . .+∂ϕp(x̄).

Recall that, the function ϕ is called lower semicontinuous (l.s.c.) at a point x̄ ∈ domϕ if

ϕ(x̄)≤ liminf
x→x̄

ϕ(x).

We say that ϕ is l.s.c. around x̄ when it is l.s.c. at any point of some neighborhood of x̄. The
function ϕ is called locally Lipschitzian around x̄, or Lipschitz continuous around x̄ if there is a
neighborhood U of this point and a constant l ≥ 0 such that

‖ϕ(v)−ϕ(u)‖ ≤ l‖v−u‖ for all u,v ∈U.

Proposition 2.2 (see [29, Theorem 3.46]). Let ϕl : Rn→R, l = 1, . . . , p, be locally Lipschitzian
around x̄. Then the function φ(·) :=max{ϕl(·) : l = 1, . . . , p} is also locally Lipschitzian around
x̄ and one has

∂φ(x̄)⊂
⋃{

∂

( p

∑
l=1

λlϕl

)
(x̄) : (λ1, . . . ,λp) ∈ Λ(x̄)

}
,

where

Λ(x̄) :=
{
(λ1, . . . ,λp) : λl ≥ 0,

p

∑
l=1

λl = 1,λl[ϕl(x̄)−φ(x̄)] = 0
}
.

Proposition 2.3 (see [29, Corollary 1.111(ii)]). Let ϕi : Rn → R, i = 1,2, be locally Lips-
chitzian around x̄. If ϕ2(x̄) 6= 0, then we have

∂

(
ϕ1

ϕ2

)
(x̄)⊂ ∂ (ϕ2(x̄)ϕ1)(x̄)+∂ (−ϕ1(x̄)ϕ2)(x̄)

[ϕ2(x̄)]2
.

Proposition 2.4 (see [29, Proposition 1.114]). Let ϕ : Rn → R be finite at x̄. If x̄ is a local
minimizer of ϕ , then 0 ∈ ∂ϕ(x̄).
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Next we recall some definitions and facts in interval analysis. Let A = [aL,aU ] and B =
[bL,bU ] be two intervals in Kc. Then, we define

(i) A+B := {a+b : a ∈ A,b ∈ B}= [aL +bL,aU +bU ];
(ii) A−B := {a−b : a ∈ A,b ∈ B}= [aL−bU ,aU −bL];

(iii) For each k ∈ R,

kA := {ka : a ∈ A}=

{
[kaL,kaU ] if k ≥ 0,
[kaU ,kaL] if k < 0;

(iv) A
B :=

[
min

(
aL

bL ,
aL

bU ,
aU

bL ,
aU

bU

)
,max

(
aL

bL ,
aL

bU ,
aU

bL ,
aU

bU

)]
, if 0 /∈ B,

see, e.g., [31, 32, 33] for more details.

Definition 2.3 (see [5, 19]). Let A = [aL,aU ] and B = [bL,bU ] be two intervals in Kc. We say
that:

(i) A≤LU B if aL ≤ bL and aU ≤ bU .
(ii) A <LU B if A≤LU B and A 6= B, or, equivalently, A <LU B if{

aL < bL

aU ≤ bU ,
or

{
aL ≤ bL

aU < bU ,
or

{
aL < bL

aU < bU .

(iii) A <s
LU B if aL < bL and aU < bU .

3. OPTIMALITY CONDITIONS

We now introduce Pareto solutions of (FIMP) with respect to LU interval order relation. For
the sake of convenience, we always assume hereafter that f L

i (x)≥ 0, ∀x ∈ S and i ∈ I. For each
i ∈ I and x ∈ Rn, put Fi(x) := fi(x)

gi(x)
. By definition, we have

Fi(x) :=
fi(x)
gi(x)

=

[
f L
i (x)

gU
i (x)

,
fU
i (x)

gL
i (x)

]
.

Definition 3.1. Let x̄ ∈Ω. We say that:
(i) x̄ is a type-1 Pareto solution of (FIMP), denoted by x̄ ∈S1(FIMP), if there is no x ∈ Ω

such that {
Fi(x)≤LU Fi(x̄), ∀i ∈ I,
Fk(x)<LU Fk(x̄), for at least one k ∈ I.

(ii) x̄ is a type-2 Pareto solution of (FIMP), denoted by x̄ ∈S2(FIMP), if there is no x ∈ Ω

such that {
Fi(x)≤LU Fi(x̄), ∀i ∈ I,
Fk(x)<s

LU Fk(x̄), for at least one k ∈ I.
(iii) x̄ is a type-1 weakly Pareto solution of (FIMP), denoted by x̄ ∈S w

1 (FIMP), if there is no
x ∈Ω such that

Fi(x)<LU Fi(x̄), ∀i ∈ I.
(iv) x̄ is a type-2 weakly Pareto solution of (FIMP), denoted by x̄ ∈S w

2 (FIMP), if there is no
x ∈Ω such that

Fi(x)<s
LU Fi(x̄), ∀i ∈ I.

Remark 3.1. The following relations are immediate from the definition of Pareto solutions.
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(i) S1(FIMP)⊆S2(FIMP)⊆S w
2 (FIMP).

(ii) S1(FIMP)⊆S w
1 (FIMP)⊆S w

2 (FIMP).
Furthermore, the above inclusions may be strict; see, e.g., [16, Examples 3.3–3.5 ].

The following result provides a Fritz-John type necessary condition for type-2 weakly Pareto
solutions of problem (FIMP).

Theorem 3.1. If x̄ ∈S w
2 (FIMP), then there exist λ L

i ≥ 0, λU
i ≥ 0, i ∈ I, and µ j ≥ 0, j ∈ J with

∑i∈I(λ
L
i +λU

i )+∑ j∈J µ j = 1, such that

0 ∈∑
i∈I

λ L
i

gU
i (x̄)

[
∂ f L

i (x̄)−
f L
i (x̄)

gU
i (x̄)

∂
+gU

i (x̄)
]
+∑

i∈I

λU
i

gL
i (x̄)

[
∂ fU

i (x̄)−
fU
i (x̄)

gL
i (x̄)

∂
+gL

i (x̄)
]

+ ∑
j∈J

µ j∂h j(x̄)+N(x̄;S), µ jh j(x̄) = 0, j ∈ J. (3.1)

Proof. Since x̄ ∈S w
2 (FIMP), there is no x ∈Ω such that Fi(x)<s

LU Fi(x̄), ∀i ∈ I, i.e.,

f L
i (x)

gU
i (x)

<
f L
i (x̄)

gU
i (x̄)

and
fU
i (x)

gL
i (x)

<
fU
i (x̄)

gL
i (x̄)

, ∀i ∈ I.

Hence for each x ∈Ω, there exists i ∈ I such that

f L
i (x)

gU
i (x)

≥ f L
i (x̄)

gU
i (x̄)

or
fU
i (x)

gL
i (x)

≥
fU
i (x̄)

gL
i (x̄)

. (3.2)

Let ϕ be a real-valued function defined by

ϕ(x) := max
i∈I, j∈J

{
f L
i (x)

gU
i (x)

− f L
i (x̄)

gU
i (x̄)

,
fU
i (x)

gL
i (x)

−
fU
i (x̄)

gL
i (x̄)

,h j(x)
}
, ∀x ∈ Rn.

By (3.2), we have
0 = ϕ(x̄)≤ ϕ(x), ∀x ∈Ω.

If x ∈ S\Ω, then there exists j0 ∈ J such that h j0(x)> 0 and so ϕ(x)> 0. This implies that

0 = ϕ(x̄)≤ ϕ(x), ∀x ∈ S,

or, equivalently, x̄ is a minimizer to the following unconstrained optimization problem

minimizer ϕ(x)+δ (x;S), x ∈ Rn,

where δ (·, ;S) is the indicator function of Ω and defined by

δ (x;S) =

{
0, if x ∈ S,
+∞, otherwise.

By Proposition 2.4, we have
0 ∈ ∂ (ϕ +δ (· ;S))(x̄).

Clearly, ϕ is locally Lipschitzian around x̄ and δ (· ;S) is lower semicontinuous around this point.
Hence by Proposition 2.1 and the fact that ∂δ (· ;S)(x̄) = N(x̄;S) (see e.g., [29, Proposition
1.19]), we obtain

0 ∈ ∂ϕ(x̄)+N(x̄;S). (3.3)
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By Proposition 2.2, we have

∂ϕ(x̄)⊂

{
∑
i∈I

λ
L
i ∂

(
f L
i

gU
i

)
(x̄)+∑

i∈I
λ

U
i ∂

(
fU
i

gL
i

)
(x̄)+ ∑

j∈J
µ j∂h j(x̄) : λ

L
i ,λ

U
i ≥ 0, i ∈ I,

µ j ≥ 0, j ∈ J,∑
i∈I

(λ L
i +λ

U
i )+ ∑

j∈J
µ j = 1,µ jh j(x̄) = 0, j ∈ J

}
. (3.4)

Now, taking Proposition 2.3 into account, we arrive at

∂

(
f L
i

gU
i

)
(x̄)⊂

∂ (gU
i (x̄) f L

i )(x̄)+∂ (− f L
i (x̄)g

U
i )(x̄)

[gU
i (x̄)]2

=
gU

i (x̄)∂ f L
i (x̄)+ f L

i (x̄)∂ (−gU
i )(x̄)

[gU
i (x̄)]2

,

=
gU

i (x̄)∂ f L
i (x̄)− f L

i (x̄)∂
+gU

i (x̄)
[gU

i (x̄)]2
, ∀i ∈ I, (3.5)

where the last equalities hold due to the fact that f L
i (x̄)≥ 0, gU

i (x̄)> 0, and

∂ (−gU
i )(x̄) =−∂

+gU
i (x̄), ∀i ∈ I.

Similarly, we have

∂

(
fU
i

gL
i

)
(x̄)⊂

gL
i (x̄)∂ fU

i (x̄)− fU
i (x̄)∂+gL

i (x̄)
[gL

i (x̄)]2
, ∀i ∈ I. (3.6)

It follows from (3.3)–(3.6) that

0 ∈

{
∑
i∈I

λ L
i

gU
i (x̄)

[
∂ f L

i (x̄)−
f L
i (x̄)

gU
i (x̄)

∂
+gU

i (x̄)
]
+∑

i∈I

λU
i

gL
i (x̄)

[
∂ fU

i (x̄)−
fU
i (x̄)

gL
i (x̄)

∂
+gL

i (x̄)
]

+ ∑
j∈J

µ j∂h j(x̄) : λ
L
i ,λ

U
i ≥ 0, i ∈ I,µ j ≥ 0, j ∈ J,

∑
i∈I

(λ L
i +λ

U
i )+ ∑

j∈J
µ j = 1,µ jh j(x̄) = 0, j ∈ J

}
+N(x̄;S).

In other words, there exist λ L
i ≥ 0, λU

i ≥ 0, i ∈ I, and µ j ≥ 0, j ∈ J, with ∑i∈I(λ
L
i + λU

i )+

∑ j∈J µ j = 1 satisfying (3.1). The proof is complete. �

The relation obtained in (3.1) suggests us to define a Karush–Kuhn–Tucker (KKT) type con-
dition when dealing with Pareto solutions of problem (FIMP).

Definition 3.2. Let x̄ ∈Ω. We say that x̄ satisfies the KKT condition if (3.1) holds with λ L
i ≥ 0,

λU
i ≥ 0, i ∈ I, and µ j ≥ 0, j ∈ J such that ∑i∈I(λ

L
i +λU

i )+∑ j∈J µ j = 1 and (λ L,λU) 6= (0,0),
where λ L := (λ L

1 , . . . ,λ
L
m) and λU := (λU

1 , . . . ,λU
m ).

In order to obtain optimality conditions of KKT-type for Pareto solutions of problem (FIMP),
we use the following well known constraint qualification.
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Definition 3.3 (see [34]). Let x̄ ∈ Ω. We say that the constraint qualification (CQ) is satisfied
at x̄ if there do not exist µ j ≥ 0, j ∈ J(x̄) not all zero, such that

0 ∈ ∑
j∈J(x̄)

µ j∂h j(x̄)+N(x̄;S), (CQ)

where J(x̄) := { j ∈ J : g j(x̄) = 0}.

It is worth to mentioning here that the above (CQ) reduces to the classical Mangasarian–
Fromovitz constraint qualification when the functions h1, . . . ,hp are strictly differentiable at
such x̄ and S = Rn; see e.g., [35, 36].

Theorem 3.2. If x̄ ∈S w
2 (FIMP) and the (CQ) holds at x̄, then x̄ satisfies the KKT condition.

Proof. Assume that x̄ ∈S w
2 (FIMP) and the (CQ) holds at x̄. Then by Theorem 3.1, there exist

λ L
i ≥ 0, λU

i ≥ 0, i ∈ I, and µ j ≥ 0, j ∈ J with ∑i∈I(λ
L
i +λU

i )+∑ j∈J µ j = 1 satisfying (3.1). If
(λ L,λU) = (0,0), then 0 ∈ ∑ j∈J µ j∂h j(x̄)+N(x̄;S) and µ jh j(x̄) = 0 for all j ∈ J. Hence, by
the condition (CQ), µ j = 0 for all j ∈ J. This contradicts to the fact that

∑
i∈I

(λ L
i +λ

U
i )+ ∑

j∈J
µ j = 1.

Therefore, (λ L,λU) 6= (0,0). The proof is complete. �

The following example shows that the conclusion of Theorem 3.2 may fail if the (CQ) is not
satisfied.

Example 3.1. We consider problem (FIMP) with m = 2, n = p = 1, S = (−∞,0], h(x) = x2,
f L
1 (x) = fU

1 (x) = −x+ 2, f L
2 (x) = fU

2 (x) = −x+ 3, gL
1(x) = gL

2(x) = −2x+ 1, and gU
1 (x) =

gU
2 (x) =−2x+2. Then

F1(x) =
[
−x+2
−2x+2

,
−x+2
−2x+1

]
,F2(x) =

[
−x+3
−2x+2

,
−x+3
−2x+1

]
,

and Ω = {0}. Clearly, x̄ = 0 ∈S w
2 (FIMP), ∇h(x̄) = 0, and N(x̄,S) = [0,+∞). By Theorem 3.1,

there exist λ L
i ≥ 0, λU

i ≥ 0, i ∈ I = {1,2}, µ ≥ 0 with ∑i∈I(λ
L
i +λU

i )+µ = 1 satisfying (3.1),
i.e.,

0 ∈
λ L

1
2

+λ
L
2 +3λ

U
1 +5λ

U
2 +[0,+∞).

This implies that λ L
1 = λ L

2 = λU
1 = λU

2 = 0 and so the KKT condition do not hold at x̄. Actually,
the (CQ) fails to hold at x̄.

Next we present sufficient conditions for Pareto solutions of (FIMP). In order to obtain these
sufficient conditions, we need to introduce concepts of (strictly) generalized convexity at a given
point for a family of locally Lipschitzian functions. The following definition is motivated from
[28].

Definition 3.4. (i) We say that (F,h) is generalized convex on S at x̄ ∈ S if for any x ∈ S,
x∗Li ∈ ∂ f L

i (x̄), x∗Ui ∈ ∂ fU
i (x̄), y∗Li ∈ ∂+gL

i (x̄), y∗Ui ∈ ∂+gU
i (x̄), i ∈ I, and z∗j ∈ ∂h j(x̄), j ∈ J,
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there exists ν ∈ [N(x̄;S)]◦ satisfying

f L
i (x)− f L

i (x̄)≥ 〈x∗Li ,ν〉, ∀i ∈ I,

fU
i (x)− fU

i (x̄)≥ 〈x∗Ui ,ν〉, ∀i ∈ I,

gL
i (x)−gL

i (x̄)≤ 〈y∗Li ,ν〉, ∀i ∈ I,

gU
i (x)−gU

i (x̄)≤ 〈y∗Ui ,ν〉, ∀i ∈ I,

h j(x)−h j(x̄)≥ 〈z∗j ,ν〉, ∀ j ∈ J.

(ii) We say that (F,h) is strictly generalized convex on S at x̄ ∈ S if for any x ∈ S \{x̄}, x∗Li ∈
∂ f L

i (x̄), x∗Ui ∈ ∂ fU
i (x̄), y∗Li ∈ ∂+gL

i (x̄), y∗Ui ∈ ∂+gU
i (x̄), i ∈ I, and z∗j ∈ ∂h j(x̄), j ∈ J, there

exists ν ∈ [N(x̄;S)]◦ satisfying

f L
i (x)− f L

i (x̄)> 〈x∗Li ,ν〉, ∀i ∈ I,

fU
i (x)− fU

i (x̄)> 〈x∗Ui ,ν〉, ∀i ∈ I,

gL
i (x)−gL

i (x̄)≤ 〈y∗Li ,ν〉, ∀i ∈ I,

gU
i (x)−gU

i (x̄)≤ 〈y∗Ui ,ν〉, ∀i ∈ I,

h j(x)−h j(x̄)≥ 〈z∗j ,ν〉, ∀ j ∈ J.

Remark 3.2. We see that if S is convex and f L
i , fU

i , −gL
i , −gU

i , i ∈ I, and h j, j ∈ J, are convex,
then (F,h) is generalized convex on S at any x̄ ∈ S with ν = x− x̄. Moreover, the class of
generalized convex functions is properly larger than the one of convex functions; see, e.g., [37,
Example 3.2] and [34, Example 3.12].

Theorem 3.3. Let x̄ ∈Ω satisfy the KKT condition.

(i) If (F,h) is generalized convex on S at x̄, then x̄ ∈S w
2 (FIMP).

(ii) If (F,h) is strictly generalized convex on S at x̄, then x̄ ∈S1(FIMP) and so x̄ ∈S2(FIMP)
and x̄ ∈S w

1 (FIMP).

Proof. Since x̄ satisfies the KKT condition, there exist (λ L,λU)∈ (Rm
+×Rm

+)\{(0,0)}, µ j ≥ 0,
j ∈ J, and x∗Li ∈ ∂ f L

i (x̄), x∗Ui ∈ ∂ fU
i (x̄), y∗Li ∈ ∂+gL

i (x̄), y∗Ui ∈ ∂+gU
i (x̄), i∈ I, z∗j ∈ ∂h j(x̄), j ∈ J,

and ω∗ ∈ N(x̄;S) such that µ jh j(x̄) = 0, j ∈ J and

∑
i∈I

λ L
i

gU
i (x̄)

[
x∗Li −

f L
i (x̄)

gU
i (x̄)

y∗Ui

]
+∑

i∈I

λU
i

gL
i (x̄)

[
x∗Ui −

fU
i (x̄)

gL
i (x̄)

y∗Li

]
+ ∑

j∈J
µ jz∗j +ω

∗ = 0,

or, equivalently,

∑
i∈I

λ L
i

gU
i (x̄)

[
x∗Li −

f L
i (x̄)

gU
i (x̄)

y∗Ui

]
+∑

i∈I

λU
i

gL
i (x̄)

[
x∗Ui −

fU
i (x̄)

gL
i (x̄)

y∗Li

]
+ ∑

j∈J
µ jz∗j =−ω

∗. (3.7)

First, we prove (i). Assume on the contrary that x̄ /∈S w
2 . This means that there exists x̂ ∈ Ω

such that Fi(x̂)<s
LU Fi(x̄), ∀i ∈ I, or, equivalently,

f L
i (x̂)

gU
i (x̂)

<
f L
i (x̄)

gU
i (x̄)

and
fU
i (x̂)

gL
i (x̂)

<
fU
i (x̄)

gL
i (x̄)

, ∀i ∈ I. (3.8)



OPTIMALITY CONDITIONS AND DUALITY RELATIONS IN NONSMOOTH FIMP 39

By the generalized convexity of (F,h) at x̄, for such x̂, there is ν ∈ [N(x̄;S)]◦ such that

∑
i∈I

λ L
i

gU
i (x̄)

[
〈x∗Li ,ν〉− f L

i (x̄)
gU

i (x̄)
〈y∗Ui ,ν〉

]
+∑

i∈I

λU
i

gL
i (x̄)

[
〈x∗Ui ,ν〉−

fU
i (x̄)

gL
i (x̄)
〈y∗Li ,ν〉

]
+ ∑

j∈J
µ j〈z∗j ,ν〉

≤∑
i∈I

λ L
i

gU
i (x̄)

[
f L
i (x̂)− f L

i (x̄)−
f L
i (x̄)

gU
i (x̄)

(gU
i (x̂)−gU

i (x̄))
]

+∑
i∈I

λU
i

gL
i (x̄)

[
fU
i (x̂)− fU

i (x̄)−
fU
i (x̄)

gL
i (x̄)

(gL
i (x̂)−gL

i (x̄))
]
+ ∑

j∈J
µ j(h j(x̂)−h j(x̄))

= ∑
i∈I

λ L
i

gU
i (x̄)

[
f L
i (x̂)−

f L
i (x̄)

gU
i (x̄)

gU
i (x̂)

]
+∑

i∈I

λU
i

gL
i (x̄)

[
fU
i (x̂)−

fU
i (x̄)

gL
i (x̄)

gL
i (x̂)

]
+ ∑

j∈J
µ j(h j(x̂)−h j(x̄)).

It follows from (3.7) and relations ω∗ ∈ N(x̄;S) and ν ∈ [N(x̄,S)]◦ that

0≤ 〈−ω
∗,ν〉= ∑

i∈I

λ L
i

gU
i (x̄)

[
〈x∗Li ,ν〉− f L

i (x̄)
gU

i (x̄)
〈y∗Ui ,ν〉

]
+∑

i∈I

λU
i

gL
i (x̄)

[
〈x∗Ui ,ν〉−

fU
i (x̄)

gL
i (x̄)
〈y∗Li ,ν〉

]
+ ∑

j∈J
µ j〈z∗j ,ν〉

≤∑
i∈I

λ L
i

gU
i (x̄)

[
f L
i (x̂)−

f L
i (x̄)

gU
i (x̄)

gU
i (x̂)

]
+∑

i∈I

λU
i

gL
i (x̄)

[
fU
i (x̂)−

fU
i (x̄)

gL
i (x̄)

gL
i (x̂)

]
+ ∑

j∈J
µ j(h j(x̂)−h j(x̄)). (3.9)

Furthermore, we see that µ jh j(x̄) = 0 and µ jh j(x̂)≤ 0 for all j ∈ J. This and (3.9) imply that

∑
i∈I

λ L
i

gU
i (x̄)

[
f L
i (x̂)−

f L
i (x̄)

gU
i (x̄)

gU
i (x̂)

]
+∑

i∈I

λU
i

gL
i (x̄)

[
fU
i (x̂)−

fU
i (x̄)

gL
i (x̄)

gL
i (x̂)

]
≥ 0.

Since (λ L,λU) 6= (0,0), there exists i0 ∈ I such that

f L
i0(x̂)−

f L
i0(x̄)

gU
i0(x̄)

gU
i0(x̂)≥ 0 or fU

i0 (x̂)−
fU
i0 (x̄)

gL
i0(x̄)

gL
i0(x̂)≥ 0,

or, equivalently,
f L
i0(x̂)

gU
i0(x̂)

≥
f L
i0(x̄)

gU
i0(x̄)

or
fU
i0 (x̂)

gL
i0(x̂)

≥
fU
i0 (x̄)

gL
i0(x̄)

,

This together with (3.8) gives a contradiction, which completes the proof of (i).
We now prove (ii). Suppose on the contrary that x̄ /∈S1(FIMP). Then there exists x̂ ∈Ω such

that {
Fi(x̂)≤LU Fi(x̄), ∀i ∈ I,
Fk(x̂)<LU Fk(x̄), for at least one k ∈ I.

This implies that x̂ 6= x̄ and

f L
i (x̂)

gU
i (x̂)

≤ f L
i (x̄)

gU
i (x̄)

and
fU
i (x̂)

gL
i (x̂)

≤
fU
i (x̄)

gL
i (x̄)

, ∀i ∈ I, (3.10)
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with at least one of the inequalities is strict. Hence, by the strictly generalized convexity of
(F,h) at x̄ and the assumption that (λ L,λU) 6= (0,0), for x̂ above, there exists ν ∈ [N(x̄;S)]◦

such that

0≤ 〈−ω
∗,ν〉= ∑

i∈I

λ L
i

gU
i (x̄)

[
〈x∗Li ,ν〉− f L

i (x̄)
gU

i (x̄)
〈y∗Ui ,ν〉

]
+∑

i∈I

λU
i

gL
i (x̄)

[
〈x∗Ui ,ν〉−

fU
i (x̄)

gL
i (x̄)
〈y∗Li ,ν〉

]
+ ∑

j∈J
µ j〈z∗j ,ν〉

< ∑
i∈I

λ L
i

gU
i (x̄)

[
f L
i (x̂)−

f L
i (x̄)

gU
i (x̄)

gU
i (x̂)

]
+∑

i∈I

λU
i

gL
i (x̄)

[
fU
i (x̂)−

fU
i (x̄)

gL
i (x̄)

gL
i (x̂)

]
+ ∑

j∈J
µ j(h j(x̂)−h j(x̄))

≤∑
i∈I

λ L
i

gU
i (x̄)

[
f L
i (x̂)−

f L
i (x̄)

gU
i (x̄)

gU
i (x̂)

]
+∑

i∈I

λU
i

gL
i (x̄)

[
fU
i (x̂)−

fU
i (x̄)

gL
i (x̄)

gL
i (x̂)

]
.

This implies that there exists i0 ∈ I satisfying

f L
i0(x̂)−

f L
i0(x̄)

gU
i0(x̄)

gU
i0(x̂)> 0 or fU

i0 (x̂)−
fU
i0 (x̄)

gL
i0(x̄)

gL
i0(x̂)> 0,

or, equivalently,
f L
i0(x̂)

gU
i0(x̂)

>
f L
i0(x̄)

gU
i0(x̄)

or
fU
i0 (x̂)

gL
i0(x̂)

>
fU
i0 (x̄)

gL
i0(x̄)

.

It together with (3.10) gives a contradiction. The proof is complete. �

Remark 3.3. The condition (3.1) alone is not sufficient for Pareto solutions of (FIMP) if the
(strict) generalized convexity of (F,h) at the point under consideration is violated. To see this,
let us consider the following example.

Example 3.2. We consider problem (FIMP) with m = 2, n = p = 1, S = (−∞,1], h(x) = −x2,
f L
1 (x) = fU

1 (x) = −x3 + 1, f L
2 (x) = fU

2 (x) = −2x3 + 3, gL
1(x) = gL

2(x) = x2 + 1, and gU
1 (x) =

gU
2 (x) = x2 +2. Then

F1(x) =
[
−x3 +1
x2 +2

,
−x3 +1
x2 +1

]
,F2(x) =

[
−2x3 +3

x2 +2
,
−2x3 +3

x2 +1

]
,

and Ω = S. Let x̄ = 0 ∈Ω. Then, we have N(x̄;S) = {0} and

∂ f L
i (x̄) = ∂ fU

i (x̄) = ∂
+gL

i (x̄) = ∂
+gU

i (x̄) = ∂h(x̄) = {0}, i ∈ {1,2}.

Thus, x̄ satisfies the KKT condition. However, since 1
2 ∈ S and

F
(

1
2

)
=

([
7
18

,
7
10

]
,

[
11
9
,
11
5

])
<s

LU F(x̄) =
([

1
2
,1
]
,

[
3
2
,3
])

,

we arrive at x̄ /∈S w
2 (FIMP). Meanwhile, it is easy to check that (F,h) is not generalized convex

at x̄.
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4. APPROXIMATE DUALITY THEOREMS

Let A := (A1, . . . ,Am) and B := (B1, . . . ,Bm), where Ai, Bi, i ∈ I, are intervals in Kc. In
what follows, we use the following notations for convenience.

A �LU B⇔

{
Ai ≤LU Bi, ∀i ∈ I,
Ak <LU Bk, for at least one k ∈ I.

A �LU B is the negation of A �LU B.

A ≺s
LU B⇔ Ai <

s
LU Bi, ∀i ∈ I.

A ⊀s
LU B is the negation of A ≺s

LU B.

For y ∈ Rn, (λ L,λU) ∈ (Rm
+×Rm)+ \{(0,0)}, and µ ∈ Rp

+, put

L (y,λ L,λU ,µ) := F(y) = (F1(y), . . . ,Fm(y)) ,

where

Fi(y) :=
fi(y)
gi(y)

=

[
f L
i (y)

gU
i (y)

,
fU
i (y)

gL
i (y)

]
, i ∈ I.

In connection with the primal problem (FIMP), we consider the following dual problem in
the sense of Mond–Weir:

LU−max L (y,λ L,λU ,µ) (FIMDMW )

s.t. (y,λ L,λU ,µ) ∈ΩMW ,

where the feasible set ΩMW is defined by

ΩMW :=
{
(y,λ L,λU ,µ) ∈ S×Rm

+×Rm
+×R

p
+ : 0 ∈∑

i∈I

λ L
i

gU
i (y)

[
∂ f L

i (y)−
f L
i (y)

gU
i (y)

∂
+gU

i (y)
]

+∑
i∈I

λU
i

gL
i (y)

[
∂ fU

i (y)−
fU
i (y)

gL
i (y)

∂
+gL

i (y)
]
+ ∑

j∈J
µ j∂h j(y)+N(y;S),

∑
j∈J

µ jh j(y)≥ 0, ∑
i∈I

(λ L
i +λ

U
i )+ ∑

j∈J
µ j = 1,(λ L,λU) 6= (0,0)

}
.

Definition 4.1. Let (ȳ, λ̄ L, λ̄U , µ̄) ∈ΩMW . We say that
(i) (ȳ, λ̄ L, λ̄U , µ̄) is a type-1 Pareto solution of (FIMDMW ), denoted by

(ȳ, λ̄ L, λ̄U , µ̄) ∈S1(FIMDMW ),

if there is no (y,λ L,λU ,µ) ∈ΩMW such that

L (ȳ, λ̄ L, λ̄U , µ̄)�LU L (y,λ L,λU ,µ).

(ii) (ȳ, λ̄ L, λ̄U , µ̄) is a type-2 weakly Pareto solution of (FIMDMW ), denoted by

(ȳ, λ̄ L, λ̄U , µ̄) ∈S w
2 (FIMDMW ),

if there is no (y,λ L,λU ,µ) ∈ΩMW such that

L (ȳ, λ̄ L, λ̄U , µ̄)�s
LU L (y,λ L,λU ,µ).

The following theorem describes weak duality relations between the primal problem (FIMP)
and the dual problem (FIMDMW ).
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Theorem 4.1 (Weak duality). Let x ∈Ω and (y,λ L,λU ,µ) ∈ΩMW .
(i) If (F,h) is generalized convex on S at y, then

F(x)⊀s
LU L (y,λ L,λU ,µ).

(ii) If (F,h) is strictly generalized convex on S at y, then

F(x)�LU L (y,λ L,λU ,µ).

Proof. Since x ∈Ω and (y,λ L,λU ,µ) ∈ΩMW , we have x,y ∈ S,

h j(x)≤ 0, ∑
j∈J

µ jh j(y)≥ 0, (4.1)

and

0 ∈∑
i∈I

λ L
i

gU
i (y)

[
∂ f L

i (y)−
f L
i (y)

gU
i (y)

∂
+gU

i (y)
]
+∑

i∈I

λU
i

gL
i (y)

[
∂ fU

i (y)−
fU
i (y)

gL
i (y)

∂
+gL

i (y)
]

+ ∑
j∈J

µ j∂h j(y)+N(y;S).

This implies that there exist x∗Li ∈ ∂ f L
i (y), x∗Ui ∈ ∂ fU

i (y), y∗Li ∈ ∂+gL
i (y), y∗Ui ∈ ∂+gU

i (y), i ∈ I,
z∗j ∈ ∂h j(y), j ∈ J, and ω∗ ∈ N(y;S) such that

∑
i∈I

λ L
i

gU
i (y)

[
x∗Li −

f L
i (y)

gU
i (y)

y∗Ui

]
+∑

i∈I

λU
i

gL
i (y)

[
x∗Ui −

fU
i (y)

gL
i (y)

y∗Li

]
+ ∑

j∈J
µ jz∗j =−ω

∗. (4.2)

We first prove (i). Suppose on the contrary that

F(x)≺s
LU L (y,λ L,λU ,µ),

or, equivalently,
Fi(x)≺s

LU Li(y,λ L,λU ,µ), ∀i ∈ I.

Then,
f L
i (x)

gU
i (x)

<
f L
i (y)

gU
i (y)

and
fU
i (x)

gL
i (x)

<
fU
i (y)

gL
i (y)

, ∀i ∈ I. (4.3)

By the generalized convex property of (F,h) on S at y, for such x, there exists ν ∈ [N(y,S)]◦

such that

∑
i∈I

λ L
i

gU
i (y)

[
〈x∗Li ,ν〉− f L

i (y)
gU

i (y)
〈y∗Ui ,ν〉

]
+∑

i∈I

λU
i

gL
i (y)

[
〈x∗Ui ,ν〉−

fU
i (y)

gL
i (y)
〈y∗Li ,ν〉

]
+ ∑

j∈J
µ j〈z∗j ,ν〉

≤∑
i∈I

λ L
i

gU
i (y)

[
f L
i (x)− f L

i (y)−
f L
i (y)

gU
i (y)

(gU
i (x)−gU

i (y))
]

+∑
i∈I

λU
i

gL
i (y)

[
fU
i (x)− fU

i (y)−
fU
i (y)

gL
i (y)

(gL
i (x)−gL

i (y))
]
+ ∑

j∈J
µ j(h j(x)−h j(y))

= ∑
i∈I

λ L
i

gU
i (y)

[
f L
i (x)−

f L
i (y)

gU
i (y)

gU
i (x)

]
+∑

i∈I

λU
i

gL
i (y)

[
fU
i (x)−

fU
i (y)

gL
i (y)

gL
i (x)

]
+ ∑

j∈J
µ j(h j(x)−h j(y)).
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It follows from (4.2) and relations ω∗ ∈ N(y;S) and ν ∈ [N(y,S)]◦ that

0≤∑
i∈I

λ L
i

gU
i (y)

[
〈x∗Li ,ν〉− f L

i (y)
gU

i (y)
〈y∗Ui ,ν〉

]
+∑

i∈I

λU
i

gL
i (y)

[
〈x∗Ui ,ν〉−

fU
i (y)

gL
i (y)
〈y∗Li ,ν〉

]
+ ∑

j∈J
µ j〈z∗j ,ν〉.

Thus,

0≤∑
i∈I

λ L
i

gU
i (y)

[
f L
i (x)−

f L
i (y)

gU
i (y)

gU
i (x)

]
+∑

i∈I

λU
i

gL
i (y)

[
fU
i (x)−

fU
i (y)

gL
i (y)

gL
i (x)

]
+ ∑

j∈J
µ j(h j(x)−h j(y)).

It together with (4.1) implies that

0≤∑
i∈I

λ L
i

gU
i (y)

[
f L
i (x)−

f L
i (y)

gU
i (y)

gU
i (x)

]
+∑

i∈I

λU
i

gL
i (y)

[
fU
i (x)−

fU
i (y)

gL
i (y)

gL
i (x)

]
. (4.4)

By (4.4) and the fact that (λ L,λU) 6= (0,0), it follows that there is i0 ∈ I such that

f L
i0(x)−

f L
i0(y)

gU
i0(y)

gU
i0(x)≥ 0 or fU

i0 (x)−
fU
i0 (y)

gL
i0(y)

gL
i0(x)≥ 0,

or, equivalently,
f L
i0(x)

gU
i0(x)

≥
f L
i0(y)

gU
i0(y)

or
fU
i0 (x)

gL
i0(x)

≥
fU
i0 (y)

gL
i0(y)

,

which contradicts (4.3) and therefore completes the proof of (i).
Next we prove (ii). Assume to the contrary that

F(x)�LU L (y,λ L,λU ,µ).

This means that {
Fi(x)≤LU Fi(y), ∀i ∈ I,
Fk(x)<LU Fk(y), for at least one k ∈ I.

(4.5)

Hence, x 6= y. By the strictly of (F,h) on S at y and the assumption that (λ L,λU) 6= (0,0), for
such x, there exists ν ∈ [N(y,S)]◦ such that

∑
i∈I

λ L
i

gU
i (y)

[
〈x∗Li ,ν〉− f L

i (y)
gU

i (y)
〈y∗Ui ,ν〉

]
+∑

i∈I

λU
i

gL
i (y)

[
〈x∗Ui ,ν〉−

fU
i (y)

gL
i (y)
〈y∗Li ,ν〉

]
+ ∑

j∈J
µ j〈z∗j ,ν〉

< ∑
i∈I

λ L
i

gU
i (y)

[
f L
i (x)− f L

i (y)−
f L
i (y)

gU
i (y)

(gU
i (x)−gU

i (y))
]

+∑
i∈I

λU
i

gL
i (y)

[
fU
i (x)− fU

i (y)−
fU
i (y)

gL
i (y)

(gL
i (x)−gL

i (y))
]
+ ∑

j∈J
µ j(h j(x)−h j(y))

= ∑
i∈I

λ L
i

gU
i (y)

[
f L
i (x)−

f L
i (y)

gU
i (y)

gU
i (x)

]
+∑

i∈I

λU
i

gL
i (y)

[
fU
i (x)−

fU
i (y)

gL
i (y)

gL
i (x)

]
+ ∑

j∈J
µ j(h j(x)−h j(y)).
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Continuing a similar procedure as in the proof of (i), we arrive at

0 < ∑
i∈I

λ L
i

gU
i (y)

[
f L
i (x)−

f L
i (y)

gU
i (y)

gU
i (x)

]
+∑

i∈I

λU
i

gL
i (y)

[
fU
i (x)−

fU
i (y)

gL
i (y)

gL
i (x)

]
.

Hence, there exists i0 ∈ I such that

f L
i0(x)

gU
i0(x)

>
f L
i0(y)

gU
i0(y)

or
fU
i0 (x)

gL
i0(x)

>
fU
i0 (y)

gL
i0(y)

.

It together with (4.5) gives a contradiction, which completes the proof. �

The following example asserts the importance of the generalized convexity of (F,h) on S
used in Theorem 4.1.This means that the conclusion of Theorem 4.1 may fail if this property
has been violated.

Example 4.1. We consider problem (FIMP) with m = 2, n = p = 1, S = (−∞,1], h(x) =−|x|,
f L
1 (x) = fU

1 (x) = 1−x3, f L
2 (x) = fU

2 (x) = 1−x5, gL
1(x) = gL

2(x) = x2+1, and gU
1 (x) = gU

2 (x) =
x2 +2. Then

F1(x) =
[

1− x3

x2 +2
,
1− x3

x2 +1

]
,F2(x) =

[
1− x5

x2 +2
,
1− x5

x2 +1

]
,

and Ω = S. Let x̄ = 1 ∈ Ω. We now consider the dual problem (FIMDMW ). By choosing
ȳ = 0 ∈ S, λ̄ L

1 = λ̄ L
2 = λ̄U

1 = λ̄U
2 = 1

4 , µ̄ = 0, we have (ȳ, λ̄ L, λ̄U , µ̄) ∈ΩMW and that

F(x̄) =
(
[0,0], [0,0]

)
≺s

LU L (ȳ, λ̄ L, λ̄U , µ̄) =

([
1
2
,1
]
,

[
1
2
,1
])

.

The reason is that the generalized convexity of (F,h) on S has been violated at ȳ.

Next we present a theorem that formulates strong duality relations between the primal prob-
lem (FIMP) and the dual problem (FIMDMW ).

Theorem 4.2 (Strong duality). Suppose that x̄ ∈ S w
2 (FIMP) and the (CQ) is satisfied at this

point. Then there exist (λ̄ L, λ̄U) ∈ (Rm
+×Rm

+)\{(0,0)}, and µ̄ ∈Rp
+ such that (x̄, λ̄ L, λ̄U , µ̄) ∈

ΩMW and F(x̄) = L (x̄, λ̄ L, λ̄U , µ̄). Furthermore,

(i) If (F,h) is generalized convex on S at x̄, then (x̄, λ̄ L, λ̄U , µ̄) is a type-2 weakly Pareto
solution of (FIMDMW ).

(ii) If (F,h) is strictly generalized convex on S at x̄, then (x̄, λ̄ L, λ̄U , µ̄) is a type-1 Pareto
solution of (FIMDMW ).

Proof. Since x̄ ∈S w
2 (FIMP) and the (CQ) is satisfied at this point, by Theorem 3.2, there exist

(λ̄ L, λ̄U) ∈ (Rm
+×Rm

+)\{(0,0)} and µ̄ ∈ Rp
+ such that (x̄, λ̄ L, λ̄U , µ̄) ∈ΩMW . Clearly,

F(x̄) = L (x̄, λ̄ L, λ̄U , µ̄).

(i) Since (F,h) is generalized convex on S at x̄, by Theorem 4.1(i), we have

F(x̄) = L (x̄, λ̄ L, λ̄U , µ̄)⊀s
LU L(y,λ L,λU ,µ)

for all (y,λ L,λU ,µ) ∈ΩMW . This means that (x̄, λ̄ L, λ̄U , µ̄) is a type-2 weakly Pareto solution
of (FIMDMW ).
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(ii) If (F,h) is strictly generalized convex on S at x̄, then by invoking Theorem 4.1(ii), we
obtain

F(x̄) = L (x̄, λ̄ L, λ̄U , µ̄)�LU L(y,λ L,λU ,µ)

for all (y,λ L,λU ,µ) ∈ ΩMW . Thus, (x̄, λ̄ L, λ̄U , µ̄) is a type-1 Pareto solution of (FIMDMW ),
which completes the proof. �

Remark 4.1. The (CQ) condition plays an important role in establishing the strong duality
results in Theorem 4.2. This means that if the (CQ) is not satisfied at a type-2 weakly Pareto
solution of (FIMP), then strong dual relations in Theorem 4.2 are no longer true at this point.
Indeed, let us look back at Example 3.1. We see that x̄= 0∈S w

2 (FIMP). Furthermore, the (CQ)
is not satisfied at x̄ and there do not exist a triple (λ̄ L, λ̄U , µ̄) such that (x̄, λ̄ L, λ̄U , µ̄) ∈ ΩMW .
Thus, in this case, we do not have strong dual relations.

We finish this section by establishing converse-like duality relations for Pareto solutions be-
tween the primal problem (FIMP) and the dual one (FIMDMW ).

Theorem 4.3 (Converse-like duality). Let (x̄, λ̄ L, λ̄U , µ̄) ∈ΩMW .
(i) If x̄∈Ω and (F,h) is generalized convex on S at x̄, then x̄ is a type-2 weakly Pareto solution

of (FIMP).
(ii) If x̄∈Ω and (F,h) is strictly generalized convex on S at x̄, then x̄ is a type-1 Pareto solution

of (FIMP).

Proof. (i) Since (x̄, λ̄ L, λ̄U , µ̄) ∈ΩMW , we have

0 ∈∑
i∈I

λ L
i

gU
i (x̄)

[
∂ f L

i (x̄)−
f L
i (x̄)

gU
i (x̄)

∂
+gU

i (x̄)
]
+∑

i∈I

λU
i

gL
i (x̄)

[
∂ fU

i (x̄)−
fU
i (x̄)

gL
i (x̄)

∂
+gL

i (x̄)
]

+ ∑
j∈J

µ j∂h j(x̄)+N(x̄;S),

∑
j∈J

µ jh j(x̄)≥ 0, ∑
i∈I

(λ L
i +λ

U
i )+ ∑

j∈J
µ j = 1,(λ L,λU) 6= (0,0). (4.6)

Since x̄ ∈Ω, one has h j(x̄)≤ 0 for all j ∈ J. Hence, µ jh j(x̄)≤ 0 for all j ∈ J. This together
with (4.6) yields µ jh j(x̄) = 0 for all j ∈ J. Thus, by the generalized convexity of (F,h) on S at
x̄ and Theorem 3.3(i), x̄ is a type-2 weakly Pareto solution of (FIMP).

The proof of (ii) is similar to that of (i) by using the strictly generalized convexity of (F,h)
and Theorem 3.3(ii), so omitted. �
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