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A SELF-ADAPTIVE INERTIAL ALGORITHM FOR SOLVING SPLIT NULL
POINT PROBLEMS AND COMMON FIXED POINT PROBLEMS
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Abstract. In this paper, we introduce a new self-adaptive inertial algorithm for finding a common so-
lution of a split null point problem and a common fixed point problem of two infinite families of strict
pseudo-contractive mappings and multivalued demicontractive mappings. We demonstrate a strong con-
vergence result without a priori estimate of the norm of the linear operator in Hilbert spaces. As ap-
plications, we apply our main result to the split feasibility problem and the split minimization problem.
Finally, we present a numerical example to show the efficient of the proposed algorithm.
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1. INTRODUCTION

Throughout this paper, let N be the set of all positive integers, and let H be the real Hilbert
space with inner product 〈·, ·〉 and norm ‖ · ‖, and let I be the identity operator on H. One
denotes the strong and weak convergence of a sequence {xn} ⊂ H to x ∈ H by xn → x and
xn ⇀ x, respectively. Let K be a closed, convex, and nonempty subset of H. The (metric)
projection from H onto K, denoted by PK , is defined, for each x ∈ H, by

‖x−PKx‖= d(x,K) := inf{‖x− z‖ : z ∈ K}.

where PKx is the unique element in K.
Let C be a nonempty subset of H, and let CB(C) be the family of nonempty, bounded and

closed subsets of C. A mapping f : H→H is called a τ-contractive mapping if ‖ f (x)− f (z)‖ ≤
τ‖x− z‖ with τ ∈ [0,1) for all x,z ∈H. The Pompeiu-Hausdorff metric on CB(C) is defined by

H(A,B) := max{sup
x∈A

d(x,B),sup
x∈B

d(x,A)}

for all A,B ∈CB(C). Let S : C→ 2C be a multivalued mapping. An element p ∈C is called a
fixed point of S if p ∈ Sp. The set of all fixed points of S is denoted by F(S). We say that S
satisfies the endpoint condition if Sp = {p} for all p ∈ F(S).
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In this paper, we study the split null point problem (SNPP), proposed by Byrne et al. [1] in
2012. That is, given two multivalued mappings B1 : H1→ 2H1 and B2 : H2→ 2H2 , a bounded
linear operator A : H1→ H2, the SNPP is formulated as finding a point x∗ ∈ H1 such that

x∗ ∈ B−1
1 0 and Ax∗ ∈ B−1

2 0, (1.1)

where B−1
1 0 := {x ∈ H1 : 0 ∈ B1x} and B−1

2 0 are the null point sets of B1 and B2, respectively.
We set the solutions of the SNPP to Γ = {x∗ ∈ B−1

1 0 and Ax∗ ∈ B−1
2 0}.

Byrne et al. [1] proposed two iterative algorithms for solving the SNPP (1.1) with two maxi-
mal monotone mappings B1 and B2 as follows:

xn+1 = JB1
λ
(xn− γA∗(I− JB2

λ
)Axn), n ∈ N, (1.2)

and {
u ∈ H1,

xn+1 = αnu+(1−αn)J
B1
λ
(xn− γA∗(I− JB2

λ
)Axn), n ∈ N, (1.3)

where JB1
λ

and JB2
λ

are the resolvents of B1 and B2, respectively, A∗ is the adjoint operator of
A. With the conditions that γ ∈ (0, 2/‖A‖2), αn ∈ (0, 1), lim

n→∞
αn = 0, and ∑

∞
n=1 αn = ∞, they

proved the weak and strong convergence results of algorithms (1.2) and (1.3), respectively.
Notice that the parameter γ in the above algorithms depends on the norm of the operator A,

which is not easy to calculate. In order to solve this problem, Suantai et al. [2] proposed the
following self-adaptive algorithm (1.4) for two maximal monotone mappings B1 and B2 and a
multivalued demicontractive mapping U :

yn = JB1
λn
(xn− γnA∗(I− JB2

λn
)Axn),

un = (1−ϑ)yn +ϑzn,
xn+1 = αn f (xn)+(1−αn)un, n ∈ N,

(1.4)

where zn ∈Uyn, and the stepsize γn is selected by:

γn =


ξn‖(I−JB2

λn
)Axn‖2

‖A∗(I−JB2
λn

)Axn‖2
, i f Axn /∈ B−1

2 0,

1, otherwise.
They obtained a strong convergence result without a priori estimate of the norm of the linear
operator.

Recently, Timilehin et al. [3] proposed the following iterative algorithm with self-adaptive
stepsizes for split equilbrium and fixed point problems:

wn = xn +θn(xn− xn−1),

zn = T F1
rn (wn + γnA∗(T F2

sn − I)Awn),
xn+1 = αnγ f (xn)+(I−αnD)[(1−βn)zn +βnWnzn],

(1.5)

where {Wn} is defined by the sequence of strictly pseudo-contractive mappings. They also
obtained the strong convergence result. The term θn(xn− xn−1) in (1.5), known as the inertial
step, is a crucial factor that makes the algorithm perform effectively. It is first proposed to speed
up the convergence properties of iterative algorithms by Polyak [4] in 1964.

Inspired and motivated by the above works, we first use an inertial iterative method and a
self-adaptive stepsize to construct an iterative algorithm for finding a common solution of the
split null point problem and common fixed point problems. Next, we demonstrate a strong
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convergence result under some mild conditions. Then, we apply our main results to the split
feasibility problems and the split minimization problems. Finally, we give a numerical example
to support our algorithm.

2. PRELIMINARIES

Now we recall some definitions and lemmas that we need in our study.

Definition 2.1. Let C be a nonempty, closed, and convex subset of H. A mapping S : C→C is
said to be
(i) firmly nonexpansive if

‖Sx−Sy‖2 ≤ ‖x− y‖2−‖(I−S)x− (I−S)y‖2, ∀x,y ∈C;

(ii) directed

‖x−Sx‖2 ≤ 〈x−Sx,x− p〉, ∀x ∈C, p ∈ F(S).

(iii) nonexpansive if

‖Sx−Sy‖ ≤ ‖x− y‖, ∀x,y ∈C;

(iv) k-strict pseudo-contractive if there exists a constant k ∈ [0,1) such that

‖Sx−Sy‖2 ≤ ‖x− y‖2 + k‖(I−S)x− (I−S)y‖2, ∀x,y ∈C;

We notice that a firmly nonexpansive mapping with nonempty fixed point sets is a directed
mapping.

Definition 2.2. Let C be a nonempty, closed, and convex subset of H. A mapping S :C→CB(C)
is said to be
(i) multivalued nonexpansive if

H(Sx,Sz)≤ ‖x− z‖, ∀x,z ∈C;

(ii) multivalued quasi-nonexpansive if F(S) 6= /0 and

H(Sx,Sp)≤ ‖x− p‖, ∀x ∈C, p ∈ F(S);

(iii) multivalued demicontractive [5] if F(S) 6= /0 and there exists k ∈ [0,1) such that

H(Sx,Sp)2 ≤ ‖x− p‖2 + kd(x,Sx)2, ∀x ∈C, p ∈ F(S);

We notice that the classes of multivalued quasi-nonexpansive mappings and multivalued non-
expansive mappings with nonempty fixed point sets are exactly the class of demicontractive
mappings. Then, is the demicontractive mapping quasi-nonexpansive? The answer is negative.
We can see this via the following example.

Example 2.1. Let H = R. For each i ∈ N, define

Six =
{ [
− 3i

2i+1x,− 4i
2i+1x

]
, i f x≤ 0,[

− 4i
2i+1x,− 3i

2i+1x
]
, i f x > 0.

Then Si : R→CB(R) is a multivalued demicontractive mapping, which is not quasi-nonexpansive.
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Indeed, for each i ∈ N, it is easy to check that F(Si) = {0}. For each 0 6= x ∈ R,

H(Six,Si0)2 = |− 4i
2i+1

x−0|2 = |x−0|2 +(
16i2

(2i+1)2 −1)|x|2 = |x−0|2 + 12i2−4i−1
4i2 +4i+1

|x|2.

Clearly, Si is not quasi-nonexpansive. We also have

d(x,Six)2 = |x− (− 3i
2i+1

x)|2 = (
5i+1
2i+1

)2|x|2 = 25i2 +10i+1
4i2 +4i+1

|x|2.

Therefore,

H(Six−Si0)2 = |x−0|2 + 12i2−4i−1
25i2 +10i+1

d(x,Six)2.

Hence Si is demicontractive with a constant k̃i =
12i2−4i−1
25i2+10i+1 ∈ (0,1).

Definition 2.3. A bounded linear operator D on H is called strongly positive if there exists a
constant γ > 0 such that 〈Dx,x〉 ≥ γ‖x‖2 for all x ∈ H.

Definition 2.4. [2] Let S :C→CB(C) be a multivalued mapping. The I−S is demiclosed at zero
if for any sequence {xn} in C which converges weakly to p ∈C and the sequence {‖xn− zn‖}
converges strongly to 0, where zn ∈ Sxn, p ∈ F(S).

Let C be a closed, convex, and nonempty subset of H. For every point x ∈ H, there exists a
unique nearest point in C, denoted by PCx, such that ‖x−PCx‖ ≤ ‖x− y‖ for all x,y ∈C. PC is
called the metric projection of H onto C. It is well known that PC is nonexpansive and firmly
nonexpansive. Moreover, PC is characterized by the following property:

〈u−PCu,v−PCu〉 ≤ 0, ∀v ∈C. (2.1)

For a maximal monotone operator B : H → 2H and λ > 0, we define the resolvent of B
with parameter λ by JB

λ
= (I + λB)−1. From [6], JB

λ
: H → dom(B) is single-valued, firmly

nonexpansive, and
‖JB

λ
x− JB

λ
y‖2 ≤ 〈JB

λ
x− JB

λ
y,x− y〉, ∀x,y ∈ H,

which is equivalent to
〈(JB

λ
x− x)− (JB

λ
y− y),JB

λ
x− JB

λ
y〉 ≤ 0

and F(JB
λ
) = B−10 = {x ∈H,0 ∈ Bx}. Moreover, I−JB

λ
is demiclosed at 0, and B−10 is convex

and closed.

Lemma 2.1. [2] Let C be a closed, convex, and nonempty subset of H. Let S : C→CB(C) be a
multivalued k̃-demicontractive mapping. Then
(i) F(S) is closed;
(ii) If S satisfies the endpoint condition, then F(S) is convex.

Lemma 2.2. [2] Let x,z ∈ H, and t ∈ R. Then the following inequalities hold on H:
(i) ‖x+ z‖2 ≤ ‖x‖2 +2〈z,x+ z〉;
(ii) ‖tx+(1− t)z‖2 = t‖x‖2 +(1− t)‖z‖2− t(1− t)‖x− z‖2.

Lemma 2.3. [7] Let H be a real Hilbert space, xi ∈ H and {αi}m
i=1 ⊂ (0,1) with ∑

m
i=1 αi =

1(1≤ i≤ m) . Then the following identity holds:

‖
m

∑
i=1

αixi‖2 =
m

∑
i=1

αi‖xi‖2−
m

∑
i, j=1,i 6= j

αiα j‖xi− x j‖2.
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Lemma 2.4. [2] Let A : H1 → H2 be a bounded linear operator, and let S : H2 → H2 be a
directed mapping with A−1(F(S)) 6= /0. If x ∈ H1 with Ax 6= S(Ax) and p ∈ A−1(F(S)), then

‖x− γA∗(I−S)Ax− p‖2 ≤ ‖x− p‖2− (2−ξ )ξ
‖(I−S)Ax‖4

‖A∗(I−S)Ax‖2 ,

where

γ := ξ
‖(I−S)Ax‖2

‖A∗(I−S)Ax‖2

and ξ ∈ (0,2).

Lemma 2.5. [8] Let C be a closed, convex, and nonempty subset of a real Hilbert space H
and T : C → C be a k-strict pseudo-contractive mapping. Define a mapping T

′
: C → C by

T
′
x = αx+(1−α)T x for all x ∈ C and α ∈ [k,1). Then T

′
is a nonexpansive mapping such

that F(T
′
) = F(T ).

Definition 2.5. [9] Let {Tn} be a sequence of kn-strict pesudo-contractive mappings. Define
T
′

n = tnI+(1− tn)Tn, tn ∈ [kn,1). Then, by Lemma 2.5, T
′

n is nonexpansive. Define the mapping
Wn by 

Un,n+1 = I,
Un,n = ζnT

′
nUn,n+1 +(1−ζn)I,

Un,n−1 = ζn−1T
′

n−1Un,n +(1−ζn−1)I,
· · · ,
Un,k = ζkT

′
kUn,k+1 +(1−ζk)I,

Un,k−1 = ζk−1T
′

k−1Un,k +(1−ζk−1)I,
· · · ,
Un,2 = ζ2T

′
2Un,3 +(1−ζ2)I,

Wn =Un,1 = ζ1T
′

1Un,2 +(1−ζ1)I,
where {ζn} is a sequence of real numbers such that 0≤ ζn ≤ 1. For each n≥ 1, such a mapping
Wn is nonexpansive.

The following lemmas relating to the mapping Wn are needed in proving our main result.

Lemma 2.6. [10] Let C be a nonempty, closed, and convex subset of a strictly convex Banach
space E. Let {T ′i } be an infinite family of nonexpansive mappings of C into itself such that
∩∞

i=1F(T
′

i ) 6= /0 and {ζi} be a real sequence such that 0 < ζi ≤ b̃ < 1 for all i≥ 1. Then
(i) Wn is nonexpansive and F(Wn) = ∩n

i=1F(T
′

i ) 6= /0 for each n≥ 1;
(ii) for each x ∈C and for each positive integer k, the limn→∞Un,kx exists;
(iii) the mapping W of C into itself, defined by Wx := limn→∞Wnx = limn→∞Un,1x for all x ∈
C, is a nonexpansive mapping satisfying F(W ) = ∩∞

i=1F(T
′

i ), which is called the modified W-
mapping generated by T1,T2, . . . ,ζ1,ζ2, . . . and t1, t2, . . . .

By Lemma 2.5 and Lemma 2.6, it follows that F(W ) = ∩∞
i=1F(T

′
i ) = ∩∞

i=1F(Ti).

Lemma 2.7. [11] Let C be a nonempty closed convex subset of a strictly convex Banach space E.
Let {T ′i } be an infinite family of nonexpansive mappings of C into itself such that ∩∞

i=1F(T
′

i ) 6= /0
and {ζi} be a real sequence such that 0 < ζi ≤ b̃ < 1 for all i ≥ 1, where b̃ is a positive real
number. If K is any bounded subset of C, then limn→∞ supx∈K ‖Wx−Wnx‖= 0.
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Lemma 2.8. [12] Each Hilbert space H satisfies the Opial condition, that is, for any sequence
{xn} with xn ⇀ x, the inequality liminfn→∞ ‖xn−x‖< liminfn→∞ ‖xn−y‖ holds for every y∈H
with y 6= x.

Lemma 2.9. [13] Suppose that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1−µn)an +µnσn + τn, n ∈ N,

where {µn},{σn} and {τn} satisfy the following conditions:
(i) {µn} ⊂ [0,1], ∑

∞
n=1 µn = ∞;

(ii) limsupn σn ≤ 0 or ∑
∞
n=1 |µnσn|< ∞;

(iii) τn ≥ 0 for all n ∈ N, ∑
∞
n=1 τn < ∞.

Then lim
n→∞

an = 0.

Lemma 2.10. [14] Let {tn} be a sequence of real numbers such that there exists a subsequence
{ni} o f {n}which satisfies tni < tni+1 for all i∈N. Define a sequence of positive integers {ρ(n)}
by ρ(n) := max{m < n : tm < tm+1} for all n ≥ n0 (for some n0 large enough). Then {ρ(n)}
is a nondecreasing sequence such that ρ(n)→ ∞ as n→ ∞, and it holds that tρ(n) ≤ tρ(n)+1,
tn ≤ tρ(n)+1.

3. MAIN RESULTS

In this section, we present our proposed algorithm and prove a strong convergence theorem.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces, and let C be a nonempty, convex,
and closed subset of H1. Let A : H1 → H2 be a bounded linear operator. For each i ∈ N, let
Si : C → CB(C) be a multivalued k̃i-demicontractive mapping such that I− Si is demiclosed
at zero and Si satisfies the endpoint condition. Assume that Ti : C→C is a ki-strictly pseudo-
contractive mapping and {ζi} is a real sequence such that 0 < ζi ≤ b̃ < 1 for all i ∈ N. Let
f : H1 → H2 be a τ-contrative mapping with τ ∈ (0,1). Let B1 : H1 → 2H1 and B2 : H2 →
2H2 be maximal monotone mappings such that dom(B1) is included in C. Suppose that Ω :=
(∩∞

i=1F(Si))∩Γ∩ (∩∞
i=1F(Ti)) 6= /0, where Γ = {x ∈ B−1

1 0 : Ax ∈ B−1
2 0}. Assume that {xn} is a

sequence iteratively generated by x1, x2 ∈ H1 and
vn = xn +θn(xn− xn−1),

yn = JB1
λn
(vn− γnA∗(I− JB2

λn
)Avn),

un = (1−δn)yn +δn
n
∑

i=1
αn,izn,i,

xn+1 = ϑn f (xn)+(1−ϑn)[(1−βn)un +βnWnun],

(3.1)

where n≥ 2 and zn,i ∈ Siyn, and θn is defined by

θn =

{
min

{
τn

‖xn−xn−1‖ ,
n−1

n+θ−1

}
, i f xn 6= xn−1,

n−1
n+θ−1 , otherwise,

where θ ≥ 3 and the stepsize γn is selected in a way:

γn =


ξn‖(I−JB2

λn
)Avn‖2

‖A∗(I−JB2
λn

)Avn‖2
, i f Avn /∈ B−1

2 0,

1, otherwise,
and the following conditions hold:
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(C1) {λn} ⊂ (0,∞) and liminf
n→∞

λn > 0;

(C2) {αn,i} ⊂ [0,1], ∑
n
i=1 αn,i = 1, 1−δn ∈ (k,1) and liminfn→∞ αn,i(1−δn− k)> 0, ∀i ∈ N,

where k = sup{k̃i : i ∈ N}< 1;
(C3) liminf

n→∞
δn > 0, liminf

n→∞
δn(1−δn− k)> 0;

(C4) 0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1;

(C5) {ϑn} ⊂ (0,1), lim
n→∞

ϑn = 0, ∑
∞
n=2 ϑn = ∞ and lim

n→∞

τn
ϑn

= 0;

(C6) {ξn} ⊂ (a,b)⊂ (0,2).

Then, the sequence {xn} generated by algorithm (3.1) converges strongly to a point x∗ ∈ Ω,
which is the unique solution of the following variational inequality problem:

〈 f (x∗)− x∗, p− x∗〉 ≤ 0, ∀ p ∈Ω. (3.2)

Remark 3.1. From the definition of θn and condition (C5), we have

lim
n→∞

θn‖xn− xn−1‖= 0 and lim
n→∞

θn

ϑn
‖xn− xn−1‖= 0.

Proof. Step1. Prove that problem (3.2) has a unique solution x∗ ∈Ω.
By Lemma 2.1, for each i ∈ N, we have F(Si) is closed and convex. Then, ∩∞

i=1F(Si) is also
closed and convex. Since B−1

1 0 and B−1
2 0 are closed and convex and A is a linear operator, then

Γ is closed and convex. From Lemma 2.6 (iii), W is a nonexpansive mapping, which indicates
that F(W ) = ∩∞

i=1F(Ti) is also closed and convex. Hence Ω is closed and convex. It is easy
to know that PΩ f is a contractive mapping. So by Banach fixed point theorom, there exists a
unique element x∗ ∈Ω such that x∗ = PΩ f (x∗). It follows from (2.1) that variational inequality
problem (3.2) has a unique solution x∗ ∈Ω.

Step 2. Prove that {xn} is bounded.
Since x∗ ∈ Ω, we have Six∗ = {x∗} for all i ∈ N, JB1

λn
x∗ = x∗, and JB2

λn
(Ax∗) = Ax∗. It follows

from the conditions (C2)-(C4) that there exists a positive integer n0 such that n > n∗0, λn > c,
αn,i(1− δn− k) > c, δn(1− δn− k) > c, and c < βn < d < 1, where 0 < c < 1 and 0 < d < 1
for all i ∈ N. From (3.1) we have the following inequalities:

‖vn− x∗‖= ‖xn +θn(xn− xn−1)− x∗‖ ≤ ‖xn− x∗‖+θn‖xn− xn−1‖ (3.3)

and
‖vn− x∗‖2 = ‖xn +θn(xn− xn−1)− x∗‖2

≤ ‖xn− x∗‖2 +2θn‖xn− xn−1‖‖xn− x∗‖+θ
2
n ‖xn− xn−1‖2.

(3.4)

From the definition of Wn and Lemma 2.6 (i), we have

‖Wnun− x∗‖= ‖Wnun−Wnx∗‖ ≤ ‖un− x∗‖. (3.5)

Put un = (1−βn)un +βnWnun. By (3.5), we obtain

‖un− x∗‖ ≤ (1−βn)‖un− x∗‖+βn‖Wnun− x∗‖
≤ (1−βn)‖un− x∗‖+βn‖un− x∗‖
= ‖un− x∗‖. (3.6)
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Since JB1
λn

is firmly nonexpansive, by Lemma 2.4, we get

‖yn− x∗‖2 = ‖JB1
λn
(vn− γnA∗(I− JB2

λn
))Avn− JB1

λn
x∗‖2

≤ ‖vn− γnA∗(I− JB2
λn
)Avn− x∗‖2

≤ ‖vn− x∗‖2− (2−ξn)ξn
‖(I− JB2

λn
)Avn‖4

‖A∗(I− JB2
λn
)Avn‖2

(3.7)

≤ ‖vn− x∗‖2− (2−ξn)ξn

‖A‖2 ‖(I− JB2
λn
)Avn‖2. (3.8)

Using Lemma 2.2 (ii), Lemma 2.3, and (3.8), we have

‖un− x∗‖2 = ‖
n

∑
i=1

αn,i[(1−δn)(yn− x∗)+δn(zn,i− x∗)]‖2

≤
n

∑
i=1

αn,i‖(1−δn)(yn− x∗)+δn(zn,i− x∗)‖2

=
n

∑
i=1

αn,i[(1−δn)‖yn− x∗‖2 +δn‖zn,i− x∗‖2−δn(1−δn)‖yn− zn,i‖2]

=
n

∑
i=1

αn,i[(1−δn)‖yn− x∗‖2 +δnd(zn,i,Six∗)2−δn(1−δn)‖yn− zn,i‖2]

≤
n

∑
i=1

αn,i[(1−δn)‖yn− x∗‖2 +δnH(Siyn,Six∗)2−δn(1−δn)‖yn− zn,i‖2]

≤
n

∑
i=1

αn,i[(1−δn)‖yn− x∗‖2 +δn[‖yn− x∗‖2 + kid(yn,Siyn)
2]

−δn(1−δn)‖yn− zn,i‖2]

≤ ‖yn− x∗‖2−δn(1−δn− k)
n

∑
i=1

αn,i‖yn− zn,i‖2 (3.9)

≤ ‖vn− x∗‖2− (2−ξn)ξn

‖A‖2 ‖(I− JB2
λn
)Avn‖2

−δn(1−δn− k)
n

∑
i=1

αn,i‖yn− zn,i‖2. (3.10)

Hence, when n > n∗0, we arrive at

‖un− x∗‖ ≤ ‖vn− x∗‖. (3.11)

Using (3.3), (3.6), and (3.11), we see that

‖un− x∗‖ ≤ ‖xn− x∗‖+θn‖xn− xn−1‖. (3.12)
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Therefore, by (3.12), we have

‖xn+1− x∗‖ = ‖ϑn f (xn)+(1−ϑn)un− x∗‖
≤ ϑn‖ f (xn)− x∗‖+(1−ϑn)‖un− x∗‖
≤ ϑn(‖ f (xn)− f (x∗)‖+‖ f (x∗)− x∗‖)+(1−ϑn)‖un− x∗‖
≤ ϑn(τ‖xn− x∗‖+‖ f (x∗)− x∗‖)+(1−ϑn)‖xn− x∗‖+θn(1−ϑn)‖xn− xn−1‖
≤ [1−ϑn(1− τ)]‖xn− x∗‖+ϑn‖ f (x∗)− x∗‖+θn(1−ϑn)‖xn− xn−1‖
≤ [1−ϑn(1− τ)]‖xn− x∗‖+ϑn(1− τ)M,

where

M = 2max

{
‖ f (x∗)− x∗‖

1− τ
,sup

n≥2

θn(1−ϑn)‖xn− xn−1‖
ϑn(1− τ)

}
.

It follows by induction that

‖xn+1− x∗‖ ≤ [1−ϑn(1− τ)]‖xn− x∗‖+ϑn(1− τ)M,

≤ max{‖xn− x∗‖,M}
...

≤ max{‖xn0− x∗‖,M}.
Hence, {xn} is bounded, so are {un}, {yn}, {vn}, {un}, and { f (xn)}.

Step 3. Prove that sequence {xn} converges strongly to x∗.
From Remark 3.1, we obtain lim

n→∞
θn‖xn− xn−1‖= 0. Using (3.4), (3.6) and (3.10), we have

‖xn+1− x∗‖2 = ‖ϑn f (xn)+(1−ϑn)un− x∗‖2

≤ ϑn‖ f (xn)− x∗‖2 +(1−ϑn)‖un− x∗‖2

≤ ϑn‖ f (xn)− x∗‖2 +‖un− x∗‖2

≤ ϑn‖ f (xn)− x∗‖2 +‖vn− x∗‖2− (2−ξn)ξn

‖A‖2 ‖(I− JB2
λn
)Avn‖2

−δn(1−δn− k)
n

∑
i=1

αn,i‖yn− zn,i‖2

≤ ϑn‖ f (xn)− x∗‖2 +‖xn− x∗‖2 +2θn‖xn− xn−1‖‖xn− x∗‖

+θ
2
n ‖xn− xn−1‖2− (2−ξn)ξn

‖A‖2 ‖(I− JB2
λn
)Avn‖2

−δn(1−δn− k)
n

∑
i=1

αn,i‖yn− zn,i‖2.

Hence,

δn(1−δn− k)αn,i‖yn− zn,i‖2

≤ (2−ξn)ξn

‖A‖2 ‖(I− JB2
λn
)Avn‖2 +δn(1−δn− k)

n

∑
i=1

αn,i‖yn− zn,i‖2

≤ ϑn‖ f (xn)− x∗‖2 +‖xn− x∗‖2−‖xn+1− x∗‖2

+2θn‖xn− xn−1‖‖xn− x∗‖+θ
2
n ‖xn− xn−1‖2. (3.13)
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Moreover, from Lemma 2.2 (ii), (3.5), and (3.11), we obtain

‖un− x∗‖2 = (1−βn)‖un− x∗‖2 +βn‖Wnun− x∗‖2−βn(1−βn)‖Wnun−un‖2

≤ (1−βn)‖un− x∗‖2 +βn‖un− x∗‖2−βn(1−βn)‖Wnun−un‖2

= ‖un− x∗‖2−βn(1−βn)‖Wnun−un‖2

≤ ‖vn− x∗‖2−βn(1−βn)‖Wnun−un‖2,

which together with (3.4) implies that

‖xn+1− x∗‖2 ≤ ϑn‖ f (xn)− x∗‖2 +(1−ϑn)‖un− x∗‖2

≤ ϑn‖ f (xn)− x∗‖2 +‖vn− x∗‖2−βn(1−βn)‖Wnun−un‖2

≤ ϑn‖ f (xn)− x∗‖2 +‖xn− x∗‖2 +2θn‖xn− xn−1‖‖xn− x∗‖
+θ

2
n ‖xn− xn−1‖2−βn(1−βn)‖Wnun−un‖2.

So

βn(1−βn)‖Wnun−un‖2 ≤ ϑn‖ f (xn)− x∗‖2 +‖xn− x∗‖2−‖xn+1− x∗‖2

+2θn‖xn− xn−1‖‖xn− x∗‖+θ
2
n ‖xn− xn−1‖2. (3.14)

From condition (C5) and (3.12), we obtain

‖xn+1− x∗‖2 = 〈ϑn( f (xn)− x∗)+(1−ϑn)(un− x∗),xn+1− x∗〉
= 〈ϑn( f (xn)− f (x∗)),xn+1− x∗〉+ 〈ϑn( f (x∗)− x∗),xn+1− x∗〉

+(1−ϑn)〈un− x∗,xn+1− x∗〉
≤ ϑnτ‖xn− x∗‖‖xn+1− x∗‖+ϑn〈 f (x∗)− x∗,xn+1− x∗〉

+(1−ϑn)(‖xn− x∗‖+θn‖xn− xn−1‖)‖xn+1− x∗‖
= [1−ϑn(1− τ)]‖xn− x∗‖‖xn+1− x∗‖+ϑn〈 f (x∗)− x∗,xn+1− x∗〉

+θn(1−ϑn)‖xn− xn−1‖‖xn+1− x∗‖

≤ 1−ϑn(1− τ)

2
(‖xn− x∗‖2 +‖xn+1− x∗‖2)+ϑn〈 f (x∗)− x∗,xn+1− x∗〉

+θn(1−ϑn)‖xn− xn−1‖‖xn+1− x∗‖

≤ 1−ϑn(1− τ)

2
‖xn− x∗‖2 +

1
2
‖xn+1− x∗‖2 +ϑn〈 f (x∗)− x∗,xn+1− x∗〉

+θn(1−ϑn)‖xn− xn−1‖‖xn+1− x∗‖,

which implies that

‖xn+1− x∗‖2 ≤ [1−ϑn(1− τ)]‖xn− x∗‖2 +2ϑn〈 f (x∗)− x∗,xn+1− x∗〉
+2θn(1−ϑn)‖xn− xn−1‖‖xn+1− x∗‖

= [1−ϑn(1− τ)]‖xn− x∗‖2 +ϑn(1− τ)bn, (3.15)

where

bn =
2

1− τ
〈 f (x∗)− x∗,xn+1− x∗〉+ 2θn(1−ϑn)

ϑn(1− τ)
‖xn− xn−1‖‖xn+1− x∗‖.
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Case 1. Assume that {‖xn−x∗‖} is a monotonicaly decreasing sequence. Hence {‖xn−x∗‖}
is convergent and

‖xn− x∗‖2−‖xn+1− x∗‖2→ 0, (3.16)

as n→ ∞. Combining conditions (C2)-(C6), (3.13), and (3.14), we have

lim
n→∞
‖(I− JB2

λn
)Avn‖= 0, (3.17)

lim
n→∞

∑
n
i=1 αn,i‖yn− zn,i‖2 = 0, (3.18)

lim
n→∞
‖yn− zn,i‖2 = 0, (3.19)

lim
n→∞
‖Wnun−un‖= 0, (3.20)

for all i ∈ N. Using (3.4), (3.6), (3.7), and (3.9), we have

‖un− x∗‖2 ≤ ‖un− x∗‖2 ≤ ‖yn− x∗‖2

≤ ‖vn− x∗‖2− (2−ξn)ξn
‖(I− JB2

λn
)Avn‖4

‖A∗(I− JB2
λn
)Avn‖2

= ‖vn− x∗‖2− (2−ξn)γn‖(I− JB2
λn
)Avn‖2

≤ ‖xn− x∗‖2 +2θn‖xn− xn−1‖‖xn− x∗‖
+θ

2
n ‖xn− xn−1‖2− (2−ξn)γn‖(I− JB2

λn
)Avn‖2.

So

‖xn+1− x∗‖2 ≤ ϑn‖ f (xn)− x∗‖2 +(1−ϑn)‖un− x∗‖2

≤ ϑn‖ f (xn)− x∗‖2 +‖xn− x∗‖2 +2θn‖xn− xn−1‖‖xn− x∗‖
+θ

2
n ‖xn− xn−1‖2− (2−ξn)γn‖(I− JB2

λn
)Avn‖2,

which implies that

(2−ξn)γn‖(I− JB2
λn
)Avn‖2 ≤ ϑn‖ f (xn)− x∗‖2 +‖xn− x∗‖2−‖xn+1− x∗‖2

+2θn‖xn− xn−1‖‖xn− x∗‖+θ
2
n ‖xn− xn−1‖2.

Therefore, it follows from conditions (C5) and (C6) and (3.16) that

lim
n→∞

γn‖(I− JB2
λn
)Avn‖= 0. (3.21)



60 S. CHEN, Y. WANG

By using Lemma 2.4, we have

‖yn− x∗‖2

= ‖JB1
λn
(vn− γnA∗(I− JB2

λn
)Avn)− JB1

λn
x∗‖2

≤ 〈JB1
λn
(vn− γnA∗(I− JB2

λn
))Avn− JB1

λn
x∗,vn− γnA∗(I− JB2

λn
)Avn− x∗〉

= 〈yn− x∗,vn− γnA∗(I− JB2
λn
)Avn− x∗〉

=
1
2
[‖yn− x∗‖2 +‖vn− γnA∗(I− JB2

λn
)Avn− x∗‖2−‖yn− vn + γnA∗(I− JB2

λn
)Avn‖2]

≤ 1
2
[‖yn− x∗‖2 +‖vn− x∗‖2−‖yn− vn + γnA∗(I− JB2

λn
)Avn‖2]

≤ 1
2
[‖yn− x∗‖2 +‖vn− x∗‖2−‖yn− vn‖2− γ

2
n‖A∗(I− JB2

λn
)Avn‖2

+2γn‖yn− vn‖‖A∗(I− JB2
λn
)Avn‖],

which implies that

‖yn− x∗‖2 ≤ ‖vn− x∗‖2−‖yn− vn‖2 +2γn‖yn− vn‖‖A∗(I− JB2
λn
)Avn‖. (3.22)

Combining (C5), (3.6), and (3.22) we have

‖xn+1− x∗‖2 ≤ ϑn‖ f (xn)− x∗‖2 +(1−ϑn)‖un− x∗‖2

≤ ϑn‖ f (xn)− x∗‖2 +(1−ϑn)‖un− x∗‖2

≤ ϑn‖ f (xn)− x∗‖2 +(1−ϑn)[(1−δn)‖yn− x∗‖2 +δn‖
n

∑
i=1

αn,izn,i− x∗‖2]

≤ ϑn‖ f (xn)− x∗‖2 +(1−δn)‖yn− x∗‖2 +δn

n

∑
i=1

αn,id(zn,i,Six∗)2

≤ ϑn‖ f (xn)− x∗‖2 +(1−δn)‖yn− x∗‖2 +δn

n

∑
i=1

αn,iH(Siyn,Six∗)2

≤ ϑn‖ f (xn)− x∗‖2 +(1−δn)‖yn− x∗‖2

+δn

n

∑
i=1

αn,i[‖yn− x∗‖2 + kid(yn,Siyn)
2]

≤ ϑn‖ f (xn)− x∗‖2 +‖yn− x∗‖2 +δnk
n

∑
i=1

αn,i‖yn− zn,i‖2

≤ ϑn‖ f (xn)− x∗‖2 +‖vn− x∗‖2−‖yn− vn‖2

+2γn‖yn− vn‖‖A∗(I− JB2
λn
)Avn‖+δnk

n

∑
i=1

αn,i‖yn− zn,i‖2.
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Hence, by (3.4), we have

‖yn− vn‖2 ≤ ϑn‖ f (xn)− x∗‖2 +‖vn− x∗‖2−‖xn+1− x∗‖2

+2γn‖yn− vn‖‖A∗(I− JB2
λn
)Avn‖+δnk

n

∑
i=1

αn,i‖yn,zn,i‖2

≤ ϑn‖ f (xn)− x∗‖2 +‖xn− x∗‖2−‖xn+1− x∗‖2

+2θn‖xn− xn−1‖‖xn− x∗‖+θ
2
n ‖xn− xn−1‖2

+2γn‖yn− vn‖‖A∗(I− JB2
λn
)Avn‖+δnk

n

∑
i=1

αn,i‖yn− zn,i‖2

≤ ϑn‖ f (xn)− x∗‖2 +‖xn− x∗‖2−‖xn+1− x∗‖2

+2θn‖xn− xn−1‖‖xn− x∗‖+θ
2
n ‖xn− xn−1‖2

+2γn‖yn− vn‖‖A‖‖(I− JB2
λn
)Avn‖+(1− k)k

n

∑
i=1

αn,i‖yn− zn,i‖2.

So, using condition (C5), (3.16), (3.18) and (3.21), we obtain

lim
n→∞
‖yn− vn‖= 0. (3.23)

From condition (C2), Remark 3.1, (3.18), and (3.20), we can obtain the following formulae:

‖un− yn‖2 ≤ δn
n
∑

i=1
αn,i‖yn− zn,i‖2 ≤ (1− k)

n
∑

i=1
αn,i‖yn− zn,i‖2→ 0, (3.24)

‖un−un‖2 ≤ βn‖Wnun−un‖2→ 0, (3.25)

‖vn− xn‖= θn‖xn− xn−1‖→ 0. (3.26)

Hence, it follows from condition (C5) and (3.23)-(3.26) that

‖xn+1− xn‖ ≤ ‖xn+1−un‖+‖un−un‖+‖un− yn‖+‖yn− vn‖+‖vn− xn‖
≤ ϑn‖ f (xn)−un‖+‖un−un‖+‖un− yn‖+‖yn− vn‖+‖vn− xn‖
→ 0.

Next we show that limsupn→∞〈 f (x∗)− x∗,xn− x∗〉 ≤ 0. To show this, let {xn j} be a subse-
quence of {xn} such that

limsup
n→∞

〈 f (x∗)− x∗,xn− x∗〉= lim
j→∞
〈 f (x∗)− x∗,xn j − x∗〉.

Since {xn} is bounded, there exists a subsequence {xn jk
} of {xn j} and p∈H1 such that xn jk

⇀ p.
Without loss of generality, we may assume that xn j ⇀ p. By (3.23), (3.24), and (3.26), we
have vn j ⇀ p, un j ⇀ p and yn j ⇀ p. So, for any i ∈ N, by (3.19) and the demiclosedness of
I−Si at zero, we obtain p ∈ ∩∞

i=1F(Si). Since A is a bounded linear, we have 〈z,Axn j −Ap〉=
〈A∗z,xn j − p〉 → 0 as j→ ∞ for all z ∈ H2. This implies that Axn j ⇀ Ap. From (3.17) and the
demiclosedness of I− JB2

λn
at zero, we have that Ap ∈ F(JB2

λn
) = B−1

2 0.

Now we show that p ∈ B−1
1 0. Indeed, due to yn = JB1

λn
(vn− γnA∗(I− JB2

λn
)Avn), we have

1
λn

(vn− yn− γnA∗(I− JB2
λn
)Avn) ∈ B1yn.
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By the monotonicity of B1, we have 〈yn− v, 1
λn
(vn− yn− γnA∗(I− JB2

λn
)Avn)−w〉 ≥ 0 for all

(v,w) ∈ G(B1). Taking n = n j, condition (C1), yn j ⇀ p, and (3.23) imply that 〈p− v,−w〉 ≥ 0.
Thus 0 ∈ B1 p, i.e., p ∈ B−1

1 0. Hence, p ∈ Γ. Suppose that p /∈ F(W ), i.e., W p 6= p. Since {un}
is bounded, there exists a bounded set K ⊂C such that {un} ⊂ K. It follows from Lemma 2.7
and (3.20) that

‖Wun−un‖ ≤ ‖Wun−Wnun‖+‖Wnun−un‖
≤ sup

x∈K
‖Wx−Wnx‖+‖Wun−Wnun‖→ 0. (3.27)

So it follows from Lemma 2.8 and (3.27) that

liminf
j→∞

‖un j − p‖< liminf
j→∞

‖un j −W p‖

≤ liminf
j→∞
{‖un j −Wun j‖+‖Wun j −W p‖}

≤ liminf
j→∞
{‖un j −Wun j‖+‖un j − p‖}

≤ liminf
j→∞

‖un j − p‖,

which is a contradiction. Therefore, Lemma 2.6 yields p ∈ F(W ) = ∩∞
i=1F(Ti). Hence, p ∈Ω.

Since x∗ satisfies inequality (3.2), we obtain

limsup
n→∞

〈 f (x∗)− x∗,xn− x∗〉= lim
j→∞
〈 f (x∗)− x∗,xn j − x∗〉= 〈 f (x∗)− x∗, p− x∗〉 ≤ 0.

It follows from (C5) and lim
n→∞
‖xn+1− xn‖= 0 that

limsup
n→∞

bn ≤
2

1− τ
limsup

n→∞

〈 f (x∗)− x∗,xn+1− x∗〉

+
2

1− τ
limsup

n→∞

2θn(1−ϑn)

ϑn
‖xn− xn−1‖‖xn+1− x∗‖

≤ 2
1− τ

limsup
n→∞

〈 f (x∗)− x∗,xn+1− xn〉

+
2

1− τ
limsup

n→∞

〈 f (x∗)− x∗,xn− x∗〉

≤ 2
1− τ

lim
j→∞
〈 f (x∗)− x∗,xn j − x∗〉

≤ 2
1− τ

〈 f (x∗)− x∗, p− x∗〉

≤ 0.

Hence, by applying Lemma 2.9 to (3.15), we can deduce that xn→ x∗ as n→ ∞.
Case 2. Suppose that {‖xn− x∗‖} is not a monotonicaly decreasing sequence. Then there

exsits a subsequence {ni} of {n} such that ‖xni − x∗‖ < ‖xni+1 − x∗‖ for all i ∈ N. Define a
positive integer sequence {ρ(n)} by

ρ(n) := max{m≤ n : ‖xm− x∗‖< ‖xm+1− x∗‖},
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for all n≥ n∗0. Combining this with Lemma 2.10, we obtain that

‖xρ(n)− x∗‖2 ≤ ‖xρ(n)+1− x∗‖2, (3.28)

and

‖xn− x∗‖2 ≤ ‖xρ(n)+1− x∗‖2. (3.29)

Take n = ρ(n) in (3.13) and (3.14). From the conditions (C2)-(C6), we have

lim
n→∞
‖(I− JB2

λρ(n)
)Avρ(n)‖= 0, (3.30)

lim
n→∞

∑
n
i=1 αρ(n),i‖yρ(n)− zρ(n),i‖2 = 0, (3.31)

lim
n→∞
‖yρ(n)− zρ(n),i‖2 = 0, (3.32)

lim
n→∞
‖Wρ(n)uρ(n)−uρ(n)‖= 0. (3.33)

From (3.2), (3.30)-(3.33) and by the similar proof of Case 1, we obtain

limsup
n→∞

bρ(n) ≤
2〈 f (x∗)− x∗, p− x∗〉

1− τ
≤ 0. (3.34)

From (3.15), we have

‖xρ(n)+1− x∗‖2 ≤ [1−ϑρ(n)(1− τ)]‖xρ(n)− x∗‖2 +ϑρ(n)(1− τ)bρ(n), (3.35)

which together with (3.28) implies

ϑρ(n)(1− τ)‖xρ(n)− x∗‖2 ≤ ‖xρ(n)− x∗‖2−‖xρ(n)+1− x∗‖2 +ϑρ(n)(1− τ)bρ(n)

≤ ϑρ(n)(1− τ)bρ(n).

Hence, it follows that ‖xρ(n)− x∗‖2 ≤ bρ(n). Then combining this with (3.34), we have

lim
n→∞
‖xρ(n)− x∗‖2 = 0.

Meanwhile, we also have lim
n→∞
‖xρ(n)+1− x∗‖2 = 0 due to (3.35) and condition (C5). Hence, it

follows from (3.29) that lim
n→∞
‖xn− x∗‖2 = 0, i.e., the sequence {xn} converges strongly to x∗.

This completes the proof. �

4. APPLICATIONS

Let C and Q be nonempty, closed, and convex subsets of H1 and H2, respectively, and let
A : H1→ H2 be a bounded linear operator. The split feasibility problem (SFP) is to find a point

x∗ ∈C such that Ax∗ ∈ Q. (4.1)

Applying Theorem 3.1, we obtain a strongly convergent result without a priori estimate of the
operator norm for finding a common solution of the SFP (4.1) and the common fixed point
problem for multivalued demicontractive mappings and strict pseudo-contractive mappings as
follows.
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Theorem 4.1. Let C and Q be nonempty, closed, and convex subsets of H1 and H2, respectively,
and let A : H1 → H2 be a bounded linear operator. Let Si : C→ CB(C) be a multivalued k̃i-
demicontractive mapping. Let Ti : C→C be a ki-strictly pseudo-contractive mapping, and let
{ζi} be a real sequence such that 0 < ζi ≤ b̃ < 1 for all i ∈N. Suppose that Ω := (∩∞

i=1F(Si))∩
A−1(Q)∩ (∩∞

i=1F(Ti)) 6= /0. Let f : H1 → H1 be a τ-contractive mapping with τ ∈ (0,1). Let
{xn} be a sequence generated iteratively by x1,x2 ∈C and

vn = xn +θn(xn− xn−1),
yn = PC(vn− γnA∗(I−PQ)Avn),

un = (1−δn)yn +δn
n
∑

i=1
αn,izn,i,

xn+1 = ϑn f (xn)+(1−ϑn)[(1−βn)un +βnWnun],

(4.2)

where n≥ 2, zn,i ∈ Siyn, and θn is defined by

θn =

{
min

{
τn

‖xn−xn−1‖ ,
n−1

n+θ−1

}
, i f xn 6= xn−1,

n−1
n+θ−1 , otherwise,

where θ ≥ 3 and the stepsize γn is selected in a way:

γn =

{
ξn‖(I−PQ)Avn‖2

‖A∗(I−PQ)Avn‖2 , i f Avn /∈ Q,

1, otherwise,

and the sequences {αn,i},{ϑn},{δn},{ξn},{τn} and {βn} satisfy the conditions (C2)-(C6) in
Theorem 3.1. If Si satisfies the endpoint condition and I−Si is demiclosed at zero for all i ∈ N,
then the sequence {xn} converges strongly to a point x∗ ∈Ω, where x∗ = PΩ f (x∗).

Proof. Setting B1 := NC = ∂ iC and B2 := NQ = ∂ iQ, we have that B1 and B2 are maximal
monotone. We also have JB1

λ
= PC and JB2

λ
= PQ for λ > 0, and B−1

1 0 = C and B−1
2 0 = Q.

Hence, the result is obtained by Theorem 3.1 immediately. �

Let g1 : H1 → (−∞,∞] and g2 : H2 → (−∞,∞] be two proper, lower semicontinuous, and
convex functions, and let A : H1 → H2 be a bounded linear operator. The split minimization
problem (SMP) is reduced to finding a point x∗ ∈ H1 such that

x∗ ∈ Argmin g1 and Ax∗ ∈ Argmin g2. (4.3)

Applying Theorem 3.1, we can obtain a strongly convergent result without a priori estimate of
the operator norm for finding a common solution of the SMP (4.3) and the common fixed point
problem of the multivalued demicontractive mappings and strict pseudo-contractive mappings
as follows.

Theorem 4.2. Let A : H1→H2 be a bounded linear operator. Let Si : H1→CB(H1) be a multi-
valued k̃i-demicontractive mapping. Let Ti : H1→H1 be ki-strictly pseudo-contractive mapping,
and let {ζi} be a real sequence such that 0 < ζi ≤ b̃ < 1 for all i ∈ N. Let g1 : H1→ (−∞,∞]
and g2 : H2 → (−∞,∞] be two proper, lower semicontinuous, and convex functions. Suppose
that Ω := (∩∞

i=1F(Si))∩Θ∩ (∩∞
i=1F(Ti)) 6= /0, where Θ = {x ∈ Argmin g1 : Ax ∈ Argmin g2}.

Let f : H1→ H1 be a τ-contractive mapping with τ ∈ (0,1). Let {xn} be a sequence generated
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iteratively by; x1,x2 ∈ H1, and
vn = xn +θn(xn− xn−1),
yn = Proxλng1(vn− γnA∗(I−Proxλng2)Avn),

un = (1−δn)yn +δn
n
∑

i=1
αn,izn,i,

xn+1 = ϑn f (xn)+(1−ϑn)[(1−βn)un +βnWnun],

where n≥ 2, zn,i ∈ Siyn, and θn is defined by

θn =

{
min

{
τn

‖xn−xn−1‖ ,
n−1

n+θ−1

}
, i f xn 6= xn−1,

n−1
n+θ−1 , otherwise,

where θ ≥ 3 and the stepsize γn is selected in a way:

γn =


ξn‖(I−Proxλng2

)Avn‖2

‖A∗(I−Proxλng2
)Avn‖2 , i f Avn /∈ Argmin g2,

1, otherwise,

and the sequences {λn},{αn,i},{ϑn},{δn},{ξn},{τn} and {βn} satisfy the conditions (C1)-(C6)
in Theorem 3.1. If Si satisfies the endpoint condition and I−Si is demiclosed at zero for all i∈N,
then the sequence {xn} converges strongly to a point x∗ ∈Ω, where x∗ = PΩ f (x∗).

Proof. Taking C =H1, B1 = ∂g1 and B2 = ∂g2, we have B1 and B2 are maximal monotone. One
can show that Argmin g1 = (∂g1)

−10 = B−1
1 0 and Argmin g2 = (∂g2)

−10 = B−1
2 0. Obviously,

the result is obtained by Theorem 3.1. �

5. NUMERICAL EXAMPLE

In this section, we present a numerical example to demonstrate the efficiency of our algo-
rithm.

Example 5.1. Let H1 = R and H2 = R3. For each i ∈N, define a multivalued mapping Si : R→
CB(R) as follows:

Six =
{ [
− 3i

2i+1x,− 4i
2i+1x

]
, i f x≤ 0,[

− 4i
2i+1x,− 3i

2i+1x
]
, i f x > 0.

Define a bounded linear operator A : R→ R3 by Ax := (15x,6x,−27x). For each n ∈ N, i ≥ 1,
let

αn,i =


1
2i (

n
n+1), i f n > i,

1− n
n+1(1− (1

2)
n−1), i f n = i,

0, otherwise.

Let B1 : R→ 2R be defined by

B1(x) :=
{
{u ∈ R : z2 + xz−2x2 ≥ (z− x)u, ∀ z ∈ [−9,3]}, i f x ∈ [−9,3],
/0, otherwise.

Define a maximal monotone mapping B2 : R3→ 2R3
by B2 := ∂g, where g : R3→ R is a function

defined by g(x,y,z) = |2x−5y+3z|2
2 . Take λn = 1,τn = 1/(n+ 3)2,θ = 3,λn = 1,δn = n/(6n+

1),ϑn = 1/(n+3),βn = (n+1)/(2n+3), and ξn =
√

3n+1
n+2 . Define a contraction f by f (x) =

(1/2)x with τ = 1/2 and an infinite family of mappings Tn : R → R by Tnx = −2
nx for all

x ∈ R, T
′

n = tnI +(1− tn)Tn, tn ∈ [kn,1). Let {ζn} be a sequence of nonnegative real numbers
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defined by ζn = n/(3n−1) for all n ∈N and {Wn} be generated by {Tn},{ζn}and{tn}. Choose
kn = tn = 1/(n+2) for all n∈N. Then the sequence {xn} generated by (3.1) converges strongly
to 0 = PΩ f (0).

Indeed, from Example 2.1, we know that Si is multivalued k̃i-demicontractive mapping with
k̃i =

12i2−4i−1
25i2+10i+1 ∈ (0,1), I− Si is demiclosed at zero for all i ∈ N, and k = supi∈N k̃i =

12
25 < 1.

By [15, Theorem 4.2], B1 is maximal monotone. The resolvents of B1 and B2 can be written by
JB1

1 x = x/4 and JB2
1 = Proxg = P−1, where

P =

 5 −10 6
−10 26 −15

6 −15 10

 .

It is no difficult to verify that Tn is kn-strict pseudo-contractive mapping for each n ∈ N. It
can also easily be checked that all the conditions on the control sequences in Theorem 3.1 are
satisfied. Then algorithm (3.1) reduces to

vn = xn +θn(xn− xn−1),

yn =
1
4(vn− γnA∗(I−P−1)Avn),

un =
5n+1
6n+1yn +

n
6n+1 ∑

n
i=1 αn,izn,i,

xn+1 =
1

2(n+3)xn +
n+2
n+3 [

n+2
2n+3un +

n+1
2n+3Wnun],

(5.1)

for all n≥ 2, where

γn :=

{ √
3n+1
n+2

‖(I−P−1)Avn‖2

‖A>(I−P−1)Avn
‖2, i f Avn 6= P−1(Avn),

1, otherwise,
and

zn,i :=
{
− 4i

2i+1yn, i f yn ≤ 0,
− 3i

2i+1yn, i f yn > 0.
Hence, the sequence {xn} generated by (5.1) converges strongly to 0 ∈Ω by Theorem 3.1.

We choose a pair of initial values to demonstrate the efficiency of our algorithm.
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FIGURE 1. Numerical result for Example 5.1 with x1 = 2 and x2 = 1.5.
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TABLE 1. The value of xn

n xn n xn
1 2 11 -0.0147
2 1.5 12 0.0171
3 0.4161 13 -0.0152
4 0.0842 14 0.0176
5 -0.0016 15 -0.0156
6 0.0162 16 0.0180
7 -0.0127 17 -0.0160
8 0.0154 18 0.0183
9 -0.0139 19 -0.0162
10 0.0164 20 0.0186

Thus we can obtain that the sequence {xn} generated by (5.1) converges to 0 ∈ Ω = {0}.
And we can see from the figure and the table that {xn} converges to 0. Therefore, the iterative
algorithm of Theorem 3.1 is well defined and efficient.
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[14] P.E. Maingé, Strong convergence of projected subgradient methods for nonsmoth and nonstrictly convex

minimization, Set-Valued Anal. 16 (2008), 899-912.
[15] S. Takahashi, W. Takahashi, M.T. Toyoda, Strong convergence theorems for maximal monotone operators

with nonlinear mapppings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), 27-41.


	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Applications
	5. Numerical Example
	References

