
Appl. Set-Valued Anal. Optim. 5 (2023), No. 1, pp. 69-84
Available online at http://asvao.biemdas.com
https://doi.org/10.23952/asvao.5.2023.1.05

NONSMOOTH INTERVAL-VALUED MULTIOBJECTIVE OPTIMIZATION
PROBLEMS AND GENERALIZED VARIATIONAL INEQUALITIES ON

HADAMARD MANIFOLDS

B.B. UPADHYAY1, LIJIE LI2,∗, PRIYANKA MISHRA3

1Department of Mathematics, Indian Institute of Technology Patna, Patna - 801103, Bihar, India
2Guangxi Colleges and Universities Key Laboratory of Complex System, Optimization and Big Data Processing,

Yulin Normal University, Yulin - 537000, Guangxi, China
3Mathematics Division, School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal-Indore

Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India

Abstract. In this paper, we study the classes of approximate Minty and Stampacchia type vector vari-
ational inequalities along with their local and weak versions on a Hadamard manifold, and a class of
nonsmooth interval-valued multiobjective optimization problems, respectively. We obtain the equiva-
lence between the solutions of considered approximate vector variational inequalities and LU-efficient
solutions of nonsmooth interval-valued multiobjective optimization problems in which the cost function
is assumed to be geodesic approximately LU-convex or geodesic LU-α-convex.
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1. INTRODUCTION

In recent years, several concepts and techniques related to optimization problems have been
extended from Euclidean spaces to Hadamard manifolds. In this direction, linear structure is
replaced by a geodesic. This extension has a plenty of significant advantages. For example,
the optimization problems involving nonconvex and non-monotone functions can be reduced to
generalized convex optimization problems via applying the relevant properties of Riemannian
metrics. Rapcsák [1] and Udriste [2] generalized the concept of the line segments between
two points by geodesic segments, and introduced the notion of geodesic convex functions. A
Hadamard manifold is a simply connected, complete Riemannian manifold with non-positive
sectional curvature. Recently, numerous authors studied the generalizations of convex sets and
functions on Riemannian and Hadamard manifolds; see, e.g., [3, 4, 5, 6, 7] and the references
cited therein.
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Since there are numerous optimization problems which arise from real world applications
always occurring with uncertainty. The theory of interval-valued has become a powerful math-
ematical tool to investigate the optimization problems with uncertainty because it can formulate
the deterministic optimization models to deal with the inexact, imprecise, or uncertain data. In
the research of interval-valued optimizations, it leads to an enormous difficulty that the objective
and constraint functions are usually considered by interval-valued functions. To deal with the
functions with interval coefficients, Moore [8, 9] introduced the concept of interval analysis. Wu
[10] established the Karush-Kuhn-Tucker (KKT) optimality conditions for interval-valued op-
timization problems. After that, Ghosh et al. [11] extended the KKT conditions for constrained
interval-valued optimization problems. Recently, Antczak [12] established the Fritz John, KKT
necessary and sufficient optimality conditions for a new kind of nonsmooth interval-valued
multiobjective optimization problems.

Convexity plays a central role in optimization theory and related areas. However, there are a
lot of mathematical modeling from the real world applications which have not convex construct.
Based on this motivation, several generalizations of the convexity notion were introduced and
studied. For recent survey and more exposition about generalized convex functions, we refer to
[13, 14].

In an effort to generalize the convexity notion, Luc et al. [15] introduced a new class of
generalized convex functions, namely, ε-convex functions which have applications in approx-
imate calculus. Ngai et al. [16] introduced an interesting class of generalized convex func-
tions, namely, approximately convex functions by employing ε-convex functions as a tool. The
class of approximately convex functions includes the classes of convex functions and weakly
and strongly convex functions, and is stable under the finite sum and finite supremum. More-
over, most of the known subdifferentials, such as Clarke [17], Ioffe [18], and Mordukhovich
[19, 20] have been coincided for approximately convex functions. Ngai and Penot [16] derived
several characterizations for approximately convex functions in terms of generalized subdiffer-
ential. Amini-Harandi and Farajzadeh [21] extended and refined the results of Daniilidis and
Georgiev [22] from Banach spaces to locally convex spaces. Upadhyay et al. [23] introduced a
class of generalized approximate LU-convex functions and derived the relations between a non-
smooth interval-valued multiobjective programming problem and a generalized Stampacchia
vector variational inequality.

Giannessi [24] introduced the vector valued version of variational inequalities studied by
Minty [25] and Stampacchia [26] in finite dimensional Euclidean spaces. Since then, vec-
tor variational inequalities and their generalizations have been widely used as an efficient tool
to study multiobjective optimization problems; see, e.g., [27, 28, 29, 30] and the references
cited therein. Németh [31] introduced variational inequalities on Hadamard manifolds and es-
tablished some results concerning the existence of solutions to a variational inequality. Li et
al. [32] investigated some existence results for the solutions and convexity of the solution set
for the variational inequalities with multivalued mappings on Riemannian manifolds. Chen
and Huang [33] studied the equivalence among Stampacchia and Minty vector variational in-
equalities and nonsmooth multiobjective optimization problems by using Clarke subdifferential,
and proved certain existence theorems under relaxed compactness assumption. Chen and Fang
[34] investigated the equivalence among Stampacchia and Minty vector variational inequalities
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and nonsmooth multiobjective optimization problems under pseudoconvexity assumptions. Re-
cently, Upadhyay et al. [35] studied the equivalence between the solutions of an interval-valued
multiobjective optimization problem and a generalized vector variational inequality involving
strongly geodesic LU-convex functions on a Hadamard manifold.

Motivated by the works of [33, 34, 35, 36, 37, 38], we consider the classes of approximate
Minty and Stampacchia vector variational inequalities and nonsmooth interval-valued multiob-
jective optimization problems. Under approximate geodesic LU-convexity and geodesic LU-
α-convexity assumptions, we establish the equivalence between the solutions of considered
approximate vector variational inequalities and LU-efficient solution of nonsmooth interval-
valued multiobjective optimization problem.

The organization of this paper is given as follows. In Section 2, we recall some basic defi-
nitions and preliminaries. In Section 3, we consider the classes of nonsmooth interval-valued
multiobjective optimization problems and approximate Stampacchia and Minty vector varia-
tional inequalities along with their weak and local versions. Certain equivalence relations be-
tween the solutions of considered approximate vector variational inequalities and nonsmooth
interval-valued multiobjective optimization problems are established under geodesic approxi-
mate LU-convexity and geodesic LU-α-convexity assumptions on Hadamard manifold. Section
4 ends this paper by providing conclusions and further research.

2. PRELIMINARIES

In what follows, we denote by Rn, Rn
+, and int(Rn

+) the n-dimensional Euclidean space, the
non-negative orthant of Rn, and the positive orthant of Rn, respectively.

For the reader’s convenience, we use the following symbols to describe the relation between
the vectors y,z ∈ Rn

(i) y = z ⇐⇒ y j = z j, ∀ j = 1, . . . ,n;
(ii) y < z ⇐⇒ y j < z j, ∀ j = 1, . . . ,n;

(iii) y5 z ⇐⇒ y j ≤ z j, ∀ j = 1, . . . ,n;
(iv) y≤ z ⇐⇒ y j ≤ z j, ∀ j = 1, . . . ,n, j 6= k and yk < zk for some k.

Also, we adopt the notion I to denote the class of all compact intervals inR, i.e., C = [cL,cU ]∈
I is a compact interval, where cL and cU denote the lower and upper bounds of C, respectively.
Let us recall the following algebra operations to intervals C = [cL,cU ], D = [dL,dU ] ∈I

(i) C+D = {c+d : c ∈C and d ∈ D}= [cL +dL,cU +dU ];
(ii) −C = {−c : c ∈C}= [−cU ,−cL];

(iii) C×D = {cd : c ∈C and d ∈ D}= [mincd,maxcd], where
mincd = min{cLdL,cLdU ,cU dL,cU dU} and maxcd = max{cLdL,cLdU ,cU dL,cU dU}.

Then, the minus operator and scalar multiplication to intervals C = [cL,cU ], D = [dL,dU ] ∈I
can be defined by

C−D =C+(−D) = [cL−dU ,cU −dL],

αC = {αc : c ∈C}=

{
[αcL,αcU ], α ≥ 0,
|α|[−cU ,−cL], α < 0,

with α ∈ R. The real number c can be considered as a closed interval Cc = [c,c].
For any C = [cL,cU ], D = [dL,dU ] ∈I , we define
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(i) C �LU D ⇐⇒ cL ≤ dL and cU ≤ dU ,
(ii) C ≺LU D ⇐⇒ C �LU D and C 6= D, that is, one of the following is satisfied:

(a) cL < dL and cU < dU ; or
(b) cL ≤ dL and cU < dU ; or
(c) cL < dL and cU ≤ dU .

Remark 2.1. In what follows, we say that intervals C = [cL,cU ], D = [dL,dU ] ∈I are compa-
rable if and only if C �LU D or C �LU D. So, it is easy to see that C and D are not comparable
if one of the following holds:

cL ≤ dL and cU > dU ; cL < dL and cU ≥ dU ; cL < dL and cU > dU ;

cL ≥ dL and cU < dU ; cL > dL and cU ≤ dU ; cL > dL and cU < dU .

Let C = (C1, . . . ,Cp) be an interval-valued vector, where each component Ck = [cL
k ,c

U
k ], k =

1,2, . . . , p is a compact interval. Let C and D be two interval-valued vectors. If Ck and Dk are
comparable for each k = 1,2, . . . , p, then

(i) C�LU D if and only if Ck �LU Dk for all k = 1,2, . . . , p;
(ii) C≺LU D if and only if Ck �LU Dk for all k = 1,2, . . . , p, k 6= r and Cr ≺LU Dr for some

r.
The function Ψ : Rn→I is called an interval-valued function, where Ψ(y) = [ΨL(y),ΨU(y)]
and ΨL, ΨU : Rn→ R are real valued functions satisfying ΨL(y)≤ΨU(y), for all y ∈ Rn.

We recall the following definitions and preliminaries about Riemannian manifold (see [1, 2]).
Let H be a connected manifold with finite dimension n. For z ∈ H, TzH and T H = ∪z∈HTzH

denote by the tangent space of H at z and the tangent bundle of H, respectively. Assume that H
is a Riemannian manifold endowed with a Riemannian metric 〈., .〉z on the tangent space TzH
with associated norm denoted by ‖.‖z, and Ω : [a,b]→ H is a piecewise differentiable curve
joining Ω(a) = p to Ω(b) = q. Then the length of Ω is defined by

L(Ω) :=
∫ b

a

∥∥Ω
′(λ )

∥∥
Ω(λ )

dλ .

For any p,q ∈ H, the Riemannian distance between p and q is defined by d(p,q) := infΩ L(Ω),
namely, the Riemannian distance between p and q is the infimum over all piecewise differen-
tiable curve joining p and q. It is not difficult to see that this distance function d induces the
original topology on H. Let χ(H) denote the space of all vector fields on H. Then, the Rie-
mannian metric induces a map Ψ 7→ grad Ψ ∈ χ(H), which associates to each Ψ its gradient
via the rule 〈dΨ,X〉= dΨ(X), for each X ∈ χ(H). It is well-known that on every Riemannian
manifold there exists one covariant derivation called Levi-Civita connection denoted by ∇XY
for any vector fields X ,Y ∈ H. We also recall that a geodesic is a C∞ smooth path Ω whose
tangent is parallel along the path Ω, that is, Ω satisfies the equation

∇ dΩ(λ )
dλ

dΩ(λ )

dλ
= 0.

It is known that a Levi-Civita connection ∇ can induce an isometry Pλ2
λ1,Ω

: TΩ(λ1)H→TΩ(λ2)H,

which is referred to as parallel translation along Ω from Ω(λ1) to Ω(λ2). We say that Ω is a
minimal geodesic, if Ω is a path joining p and q in H such that L(Ω) = d(p,q) is a geodesic. A
Riemannian manifold is said to be complete, if for any z ∈ H, all geodesics emananting from z
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are defined for all −∞ < λ < ∞. If H is complete, then any points in H can be joined by mini-
mal geodesic. Suppose that H is complete. The exponential map expz : TzH→H at z is defined
by expzv = Ωv(1,z), for every v ∈ TzH, where Ω(·) = Ωv(·,z) is the geodesic starting at z with
velocity v, that is Ω(0) = z and Ω′(0) = v. It is easy to see that expz(λv) = Ωv(λ ,z), for each
real number λ . We note that the map expz is differentiable on TzH, for every z ∈H. We say that
a Hadamard manifold is a simply connected complete Riemannian manifold with nonpositive
sectional curvature, if H is a Hadamard manifold such that expz : TpH→H is a diffeomorphism
for every p ∈ H and for any z,y ∈ H, there exists unique minimal geodesic joining z and y.

Let A : H → 2H be a multivalued vector field such that Az ⊆ TzH for each z ∈ H. Then the
domain D(A) of A is defined by D(A) := {z ∈ H : A(z) 6= /0}.

Definition 2.1. [37] Let H be a Hadamard manifold. A is said to be
(i) geodesic approximately monotone or geodesic submonotone at z̄∈H if, for every α > 0,

there exists δ > 0, such that, for every z,y ∈ B(z̄,δ )∩D(A), and for every ξ ∈ A(z),η ∈
A(y), 〈

P0
1,Ωξ −η ,exp−1

y z
〉
≥−α

∥∥exp−1
y z
∥∥ ;

(ii) geodesic α-monotone on H if, for given α > 0, for every z,y ∈ D(A), and for every
ξ ∈ A(z),η ∈ A(y),〈

P0
1,Ωξ −η ,exp−1

y z
〉
≥−α

∥∥exp−1
y z
∥∥ ,

where Ω(λ ) := expy(λ exp−1
y z),λ ∈ [0,1].

In addition, we also recall the following definitions concerning nonsmooth analysis from
[39, 40].

Definition 2.2. Let Ψ : H → ]−∞,∞] be a proper function. Ψ is said to be Lipschitz near
z̄ ∈ H if there exists a positive constant Lz̄, and δz > 0 such that |Ψ(z)−Ψ(y)| ≤ Lz̄d(z,y) for
all z,y ∈ B(z̄,δz), where Lz̄ is called Lipschitz constant of Ψ in the neighbourhood of z̄ and
B(z̄,δz) := {z ∈ H : d(z̄,z)< δz} . Moreover, Ψ is locally Lipschitz on H, if it is Lipschitz near
z̄ for every z̄ ∈ H.

Definition 2.3. A nonempty subset Γ of H is said to be geodesic convex set if, for any points
z,y ∈ Γ, the geodesic joining z to y is contained in Γ.

From now onwards, H is assumed to be a Hadamard manifold of dimension n, /0 6= Γ is
assumed to be a geodesic convex subset of H, and Ψ : Γ→R is assumed to be a locally Lipschitz
function on Γ, unless otherwise specified.

Definition 2.4. The Clarke generalized directional derivative of Ψ at z ∈ Γ in the direction of a
vector ν ∈ TzH, denoted by Ψ◦(z;ν), is defined as

Ψ
◦(z;ν) := limsup

y→z
λ↓0

Ψ(expyλ (d expz)exp−1
z yν)−Ψ(y)

λ
,

where (d expz)exp−1
z y is the differential of exponential mapping at exp−1

z y.

Definition 2.5. The Clarke generalized subdifferential of Ψ at z ∈ Γ, denoted by ∂cΨ(z), is the
subset of TzH∗ defined by ∂cΨ(z) := {ξ ∈ TzH∗ : Ψ◦(z;ν)≥ 〈ξ ,ν〉 ,∀ν ∈ TzH} .
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Lemma 2.1. Let H be a Riemannian manifold, and let Ψ : H→ R be a Lipschitz function near
z ∈ H. Then,

(i) ∂cΨ(z) is a nonempty weak*-compact subset of TzH∗, and ‖ξ‖ ≤ Lz for all ξ ∈ ∂cΨ(z),
where Lz is the Lipschitz constant of Ψ in the neighbourhood of z.

(ii) If {z j} and {ξ j} are sequences in H and T H∗, respectively such that ξ j ∈ ∂cΨ(z j)
for each j, and if {z j} converges to z, and ξ is a weak*-cluster point of the sequence
{Pz j

z,Ωξ j}, then ξ ∈ ∂cΨ(z).

Moreover, we recall geodesic approximately convex functions and geodesic α-convex func-
tions on a Hadamard manifold from [37].

Definition 2.6. Let Ψ : Γ→ R be a locally Lipschitz function. Then
(i) Ψ is said to be (geodesic strictly approximately convex) geodesic approximately convex

at z̄ ∈ Γ if, for all α > 0, there exists δ > 0, such that, for all z,y ∈ B(z̄,δ )∩Γ,

Ψ(Ω(λ ))(<)≤ λΨ(y)+(1−λ )Ψ(z)+αλ (1−λ )
∥∥exp−1

z y
∥∥ , ∀λ ∈ [0,1] ;

(ii) the function Ψ is said to be (geodesic strictly α-convex) geodesic α-convex on Γ if, for
all z,y ∈ Γ,

Ψ(Ω(λ ))(<)≤ λΨ(y)+(1−λ )Ψ(z)+αλ (1−λ )
∥∥exp−1

z y
∥∥ , ∀λ ∈ [0,1] ,

where Ω(λ ) := expz(λ exp−1
z y),λ ∈ [0,1].

Theorem 2.1. [37] Let Ψ : Γ→ R be a locally Lipschitz function. Then Ψ is geodesic approx-
imately convex at z̄ ∈ Γ if and only if, for every α > 0 there exists δ > 0 such that, for any
z,y ∈ B(z̄,δ )∩Γ and ξ ∈ ∂cΨ(z),

Ψ(y)−Ψ(z)≥
〈
ξ ,exp−1

z y
〉
−α

∥∥exp−1
z y
∥∥ . (2.1)

Theorem 2.2. [37] Let Ψ : Γ→R be a locally Lipschitz function. Then Ψ is geodesic α-convex
at z̄ ∈ Γ if and only if, for α > 0 and for every ξ ∈ ∂cΨ(z̄),

Ψ(y)−Ψ(z̄)≥
〈
ξ ,exp−1

z̄ y
〉
−α

∥∥exp−1
z̄ y
∥∥ ,∀y ∈ Γ.

The following theorem from [37] reveals the essential relationship between a geodesic ap-
proximately convex function and geodesic submonotonicity of its Clarke subdifferential on
Hadamard manifolds.

Theorem 2.3. Let Ψ : Γ→R be a locally Lipschitz function on Γ. Then, Ψ is geodesic approx-
imately convex at z̄ ∈ Γ if and only if ∂cΨ is geodesic submonotone at z̄ ∈ Γ.

Theorem 2.4. Let Ψ : Γ→R be a locally Lipschitz function on Γ. Then Ψ is geodesic α-convex
on Γ if and only if ∂cΨ is geodesic 2α-monotone on Γ.

Definition 2.7. An interval-valued function Ψ : Γ→I is geodesic approximately LU-convex
at ȳ ∈ Γ if the real-valued functions ΨL and ΨU are geodesic approximately convex at ȳ ∈ Γ.

Definition 2.8. An interval-valued function Ψ : Γ→I is geodesic LU-α-convex at ȳ∈ Γ if the
real-valued functions ΨL and ΨU are geodesic α-convex at ȳ ∈ Γ.

We consider the following nonsmooth interval-valued multiobjective optimization problem:
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(NIVMOP) minΨ(z) = (Ψ1(z),Ψ2(z), ...,Ψp(z))

subject to z ∈ Γ,

where Ψ j : Γ→I , j ∈ J := {1,2, ..., p} and ΨL
j and ΨU

j , j ∈ J are locally Lipschitz functions
on Γ.

The concepts of LU-efficient solutions and weakly LU-efficient solutions for (NIVMOP) are
defined as follows:

Definition 2.9. A point z̄ ∈ Γ is said to be an LU-efficient solution (local LU-efficient solution)
of (NIVMOP), if there does not exist any y ∈ Γ, (y ∈ B(z̄,δ )∩Γ, δ > 0), such that Ψ(y) ≺LU
Ψ(z̄).

Definition 2.10. A point z̄ ∈ Γ is said to be weakly LU-efficient solution (local weakly LU-
efficient solution) of (NIVMOP), if there does not exist any y∈ Γ, (y∈ B(z̄,δ )∩Γ, δ > 0), such
that Ψ j(y)≺LU Ψ j(z̄) for all j ∈ J.

We formulate the following approximate vector variational inequalities in terms of Clarke
subdifferential on a Hadamard manifold:

(ALMVVIP) Find a point z̄ ∈ Γ such that there exist a scalar β and δ > 0 satisfying(〈
ζ

L
1 ,exp−1

y z̄
〉
, . . . ,

〈
ζ

L
p ,exp−1

y z̄
〉)
� β

∥∥exp−1
y z̄
∥∥e,(〈

ζ
U
1 ,exp−1

y z̄
〉
, . . . ,

〈
ζ

U
p ,exp−1

y z̄
〉)
� β

∥∥exp−1
y z̄
∥∥e,

for all y ∈ B(z̄,δ )∩Γ, ζ L
j ∈ ∂cΨL

j (y), and ζU
j ∈ ∂cΨU

j (y), j ∈ J;
(AMVVIP) Find a point z̄ ∈ Γ such that there exists a scalar β satisfying(〈

ζ
L
1 ,exp−1

y z̄
〉
, . . . ,

〈
ζ

L
p ,exp−1

y z̄
〉)
� β

∥∥exp−1
y z̄
∥∥e,(〈

ζ
U
1 ,exp−1

y z̄
〉
, . . . ,

〈
ζ

U
p ,exp−1

y z̄
〉)
� β

∥∥exp−1
y z̄
∥∥e,

for all y ∈ Γ, ζ L
j ∈ ∂cΨL

j (y), and ζU
j ∈ ∂cΨU

j (y), j ∈ J;
(ALSVVIP) Find a point z̄ ∈ Γ such that there exist δ > 0, β > 0, ξ L

j ∈ ∂cΨL
j (z̄), and

ξU
j ∈ ∂cΨU

j (z̄), j ∈ J satisfying(〈
ξ

L
1 ,exp−1

z̄ y
〉
, . . . ,

〈
ξ

L
p ,exp−1

z̄ y
〉)
� β

∥∥exp−1
z̄ y
∥∥e,(〈

ξ
U
1 ,exp−1

z̄ y
〉
, . . . ,

〈
ξ

U
p ,exp−1

z̄ y
〉)
� β

∥∥exp−1
z̄ y
∥∥e,

for any y ∈ B(z̄,δ )∩Γ;
(ASVVIP) Find a point z̄∈ Γ such that there exist β > 0, ξ L

j ∈ ∂cΨL
j (z̄), and ξU

j ∈ ∂cΨU
j (z̄),

j ∈ J satisfying (〈
ξ

L
1 ,exp−1

z̄ y
〉
, . . . ,

〈
ξ

L
p ,exp−1

z̄ y
〉)
� β

∥∥exp−1
z̄ y
∥∥e,(〈

ξ
U
1 ,exp−1

z̄ y
〉
, . . . ,

〈
ξ

U
p ,exp−1

z̄ y
〉)
� β

∥∥exp−1
z̄ y
∥∥e,

for all y ∈ Γ, where e = (1,1, ...,1)︸ ︷︷ ︸
p times

.

Remark 2.2. It is easy to prove that
(i) if z̄ is a solution to (AMVVIP) with some constant β , then it is also the solution of the

same problem for all parameters β ′ ≥ β . Hence,



76 B.B. UPADHYAY, L. LI, P. MISHRA

solution set of
(AMVVIP) for β > 0

⊆ solution set of
(MVVIP)

⊆ solution set of
(AMVVIP)for β < 0

(ii) If β = 0, then (AMVVIP) and (ASVVIP) reduce to the Minty and Stampacchia vector
variational inequalities (MVVIP) and (SVVIP), respectively, which were considered by
Chen and Huang [33], respectively.

(iii) If H = Rn, then exp−1
z y = y− z. Moreover, for real-valued functions, when β = 0,

(ASVVIP) reduces to the Stampacchia vector variational inequality (VVIP) which was
considered by Mishra and Upadhyay [29] and Upadhyay et al. [30].

3. RELATIONSHIP BETWEEN VECTOR VARIATIONAL INEQUALITIES AND NONSMOOTH

INTERVAL-VALUED MULTIOBJECTIVE OPTIMIZATION PROBLEMS

This section is devoted to the certain relations between approximate vector variational in-
equality problems (AMVVIP), (ALMVVIP), (ASVVIP), (ALSVVIP), and the nonsmooth interval-
valued multiobjective optimization problem (NIVMOP), by using the tool of Clarke subdiffer-
entials and the notion of LU-efficiency, as well as the notions of geodesic approximate LU-
convexity and geodesic LU-α-convexity on Hadamard manifolds.

The proof of the following theorem follows on the lines presented in [41, Theorem 3(c)].

Theorem 3.1. Let Ψ j : Γ→I , j ∈ J be a geodesic approximately LU-convex function at z̄ on
Γ. If z̄ ∈ Γ solves (ALMVVIP), then z̄ is a local LU-efficient solution of (NIVMOP).

Theorem 3.2. Let Ψ j : Γ→I , j ∈ J, be a geodesic approximately LU-convex function at z̄∈Γ.
If z̄ is a local LU-efficient solution to the (NIVMOP), then z̄ solves (ALMVVIP).

Proof. Suppose that z̄ is a local LU-efficient solution to (NIVMOP), but z̄ is not a solution to
(ALMVVIP). Hence, for any β > 0, there exists δ ′ > 0 such that, for some y ∈ B(z̄,δ ′)∩Γ,

(
〈
ζ L

1 ,exp−1
y z̄
〉
, . . . ,

〈
ζ L

p ,exp−1
y z̄
〉
)≥ β

∥∥exp−1
y z̄
∥∥e, ∀ζ L

j ∈ ∂cΨL
j (y), j ∈ J,

(
〈
ζU

1 ,exp−1
y z̄
〉
, . . . ,

〈
ζU

p ,exp−1
y z̄
〉
)≥ β

∥∥exp−1
y z̄
∥∥e, ∀ζU

j ∈ ∂cΨU
j (y), j ∈ J.

(3.1)

Observe that each Ψ j is geodesic approximately LU-convex at z̄, Therefore, in particular, for
β > 0, there exists δ j > 0 such that, for every y∈B(z̄,δ j)∩Γ, ζ L

j ∈ ∂cΨL
j (y), and ζU

j ∈ ∂cΨU
j (y),

Ψ
L
j (z̄)−Ψ

L
j (y)≥

〈
ζ

L
j ,exp−1

y z̄
〉
−β

∥∥exp−1
y z̄
∥∥ , ∀ j ∈ J,

Ψ
U
j (z̄)−Ψ

U
j (y)≥

〈
ζ

U
j ,exp−1

y z̄
〉
−β

∥∥exp−1
y z̄
∥∥ , ∀ j ∈ J.

Define δ ′′=min{δ1,δ2, ...,δp}. Then, for any y∈B(z̄,δ ′′)∩Γ, ζ L
j ∈ ∂cΨL

j (y), and ζU
j ∈ ∂cΨU

j (y),

ΨL
j (z̄)−ΨL

j (y)≥
〈

ζ L
j ,exp−1

y z̄
〉
−β

∥∥exp−1
y z̄
∥∥ , ∀ j ∈ J,

ΨU
j (z̄)−ΨU

j (y)≥
〈

ζU
j ,exp−1

y z̄
〉
−β

∥∥exp−1
y z̄
∥∥ , ∀ j ∈ J.

(3.2)

Set δ =min{δ ′,δ ′′}. From (3.1) and (3.2), we can find δ > 0 such that, for every y∈B(z̄,δ )∩Γ,
it holds Ψ(y)≺LU Ψ(z̄). This contradiction leads to the consequence that z̄ is a local LU-efficient
solution to (NIVMOP). �

Theorem 3.3. Let Ψ j : Γ→I , j ∈ J, be a geodesic LU-α j-convex function on Γ. Then z̄ is an
LU-efficient solution to (NIVMOP) if and only if z̄ solves (AMVVIP).

Proof. The proof follows the lines of the proof of Theorems 3.1 and 3.2. �
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Remark 3.1. Theorem 3.3 generalizes [33, Theorem 3.1] and [36, Theorem 3.1] for a more
general problem, namely (NIVMOP), and for a more general class of functions, namely geo-
desic LU-α-convex functions.

The following theorem indicates that, under geodesic α-convexity assumption, a solution of
(ASVVIP) solves (AMVVIP) too.

Theorem 3.4. Let each Ψ j : Γ→ I , j ∈ J, be a geodesic LU-α j-convex function on Γ. If z̄
solves (ASVVIP), then z̄ is a solution to (AMVVIP).

Proof. Let z̄ be a solution of (ASVVIP). Assume to the contrary that z̄ is not a solution of
(AMVVIP). Then, for every β > 0, there exist y ∈ Γ, ζ L

j ∈ ∂cΨL
j (y), and ζU

j ∈ ∂cΨU
j (y) such

that, for all j ∈ J,

(
〈
ζ L

1 ,exp−1
y z̄
〉
, . . . ,

〈
ζ L

p ,exp−1
y z̄
〉
)≥ β‖exp−1

y z̄‖e,
(
〈
ζU

1 ,exp−1
y z̄
〉
, . . . ,

〈
ζU

p ,exp−1
y z̄
〉
)≥ β‖exp−1

y z̄‖e.
(3.3)

Since ΨL
j ,Ψ

U
j j ∈ J, are geodesic α j-convex at z̄, then ∂cΨL

j and ∂cΨU
j are geodesic 2α j-

monotone at z̄. Therefore, for all ξ L
j ∈ ∂cΨL

j (z̄),ζ
L
j ∈ ∂cΨL

j (y), ξU
j ∈ ∂cΨU

j (z̄),ζ
U
j ∈ ∂cΨU

j (y),
we have 〈

P0
1,Ωξ

L
j −ζ

L
j ,exp−1

y z̄
〉
≥−2α j

∥∥exp−1
y z̄
∥∥ , ∀ j ∈ J,〈

P0
1,Ωξ

U
j −ζ

U
j ,exp−1

y z̄
〉
≥−2α j

∥∥exp−1
y z̄
∥∥ , ∀ j ∈ J.

In particular, setting β = max{α1, ...,αp}, for all ξ L
j ∈ ∂cΨL

j (z̄), ζ L
j ∈ ∂cΨL

j (y), and ξU
j ∈

∂cΨU
j (z̄),ζ

U
j ∈ ∂cΨU

j (y), we obtain〈
P0

1,Ωξ L
j −ζ L

j ,exp−1
y z̄
〉
≥−2β

∥∥exp−1
y z̄
∥∥ , ∀ j ∈ J,〈

P0
1,ΩξU

j −ζU
j ,exp−1

y z̄
〉
≥−2β

∥∥exp−1
y z̄
∥∥ , ∀ j ∈ J.

(3.4)

From (3.3) and (3.4), we see that(〈
P0

1,Ωξ
L
1 ,exp−1

y z̄
〉
, . . . ,

〈
P0

1,Ωξ
L
p ,exp−1

y z̄
〉)
≥−β

∥∥exp−1
y z̄
∥∥e, ∀ξ L

j ∈ ∂cΨ
L
j (z̄), j ∈ J,(〈

P0
1,Ωξ

U
1 ,exp−1

y z̄
〉
, . . . ,

〈
P0

1,Ωξ
U
p ,exp−1

y z̄
〉)
≥−β

∥∥exp−1
y z̄
∥∥e, ∀ξU

j ∈ ∂cΨ
U
j (z̄), j ∈ J.

Hence,

(
〈

P1
0,Ω(P

0
1,Ωξ

L
1 ),P

1
0,Ωexp−1

y z̄
〉
, . . . ,

〈
P1

0,Ω(P
0
1,Ωξ

L
p ),P

1
0,Ωexp−1

y z̄
〉
)≥−β

∥∥exp−1
y z̄
∥∥e,

(
〈

P1
0,Ω(P

0
1,Ωξ

U
1 ),P1

0,Ωexp−1
y z̄
〉
, . . . ,

〈
P1

0,Ω(P
0
1,Ωξ

U
p ),P1

0,Ωexp−1
y z̄
〉
)≥−β

∥∥exp−1
y z̄
∥∥e,

for all ξ L
j ∈ ∂cΨL

j (z̄) and ξU
j ∈ ∂cΨU

j (z̄), j ∈ J, or

(
〈
ξ

L
1 ,−exp−1

z̄ y
〉
, . . . ,

〈
ξ

L
p ,−exp−1

z̄ y
〉
)≥−β

∥∥exp−1
y z̄
∥∥e, ∀ξ L

j ∈ ∂cΨ
L
j (z̄), j ∈ J,

(
〈
ξ

U
1 ,−exp−1

z̄ y
〉
, . . . ,

〈
ξ

U
p ,−exp−1

z̄ y
〉
)≥−β

∥∥exp−1
y z̄
∥∥e, ∀ξU

j ∈ ∂cΨ
U
j (z̄), j ∈ J,

that is,

(
〈
ξ L

1 ,exp−1
z̄ y
〉
, . . . ,

〈
ξ L

p ,exp−1
z̄ y
〉
)≤ β

∥∥exp−1
y z̄
∥∥e, ∀ξ L

j ∈ ∂cΨL
j (z̄), j ∈ J,

(
〈
ξU

1 ,exp−1
z̄ y
〉
, . . . ,

〈
ξU

p ,exp−1
z̄ y
〉
)≤ β

∥∥exp−1
y z̄
∥∥e, ∀ξU

j ∈ ∂cΨU
j (z̄), j ∈ J.

(3.5)
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In view of
∥∥exp−1

y z̄
∥∥= ∥∥exp−1

z̄ y
∥∥ , (3.5) leads to

(
〈
ξ

L
1 ,exp−1

z̄ y
〉
, . . . ,

〈
ξ

L
p ,exp−1

z̄ y
〉
)≤ β

∥∥exp−1
z̄ y
∥∥e, ∀ξ L

j ∈ ∂cΨ
L
j (z̄), j ∈ J,

(
〈
ξ

U
1 ,exp−1

z̄ y
〉
, . . . ,

〈
ξ

U
p ,exp−1

z̄ y
〉
)≤ β

∥∥exp−1
z̄ y
∥∥e, ∀ξU

j ∈ ∂cΨ
U
j (z̄), j ∈ J,

which contradicts that z̄ is a solution of (ASVVIP). �

The following theorem delivers the important result that if the cost function is geodesic ap-
proximately LU-convex, then a solution of (ALSVVIP) is also a local LU-efficient solution to
(NIVMOP).

Theorem 3.5. Let Ψ j : Γ→ I , j ∈ J, be geodesic a approximately LU-convex function at
z̄ ∈ Γ. If z̄ solves (ALSVVIP), then z̄ is a local LU-efficient solution to (NIVMOP). Moreover, z̄
is a solution to (ALMVVIP).

Proof. Since z̄ ∈ Γ is a solution to (ALSVVIP), one sees that there exist β > 0, δ ′ > 0, ξ L
j ∈

∂cΨL
j (z̄), and ξU

j ∈ ∂cΨU
j (z̄) such that, for all y ∈ B(z̄,δ ′)∩Γ,

(
〈
ξ L

1 ,exp−1
z̄ y
〉
, . . . ,

〈
ξ L

p ,exp−1
z̄ y
〉
)� β‖exp−1

z̄ y‖e,
(
〈
ξU

1 ,exp−1
z̄ y
〉
, . . . ,

〈
ξU

p ,exp−1
z̄ y
〉
)� β‖exp−1

z̄ y‖e.
(3.6)

Since each Ψ j, j ∈ J is geodesic approximately LU-convex at z̄, one sees that, for β > 0, there
exists δ j > 0, such that

Ψ
L
j (y)−Ψ

L
j (z̄)≥

〈
ξ

L
j ,exp−1

z̄ y
〉
−β‖exp−1

z̄ y‖, ∀ j ∈ J,

Ψ
U
j (y)−Ψ

U
j (z̄)≥

〈
ξ

U
j ,exp−1

z̄ y
〉
−β‖exp−1

z̄ y‖, ∀ j ∈ J,

for all y ∈ B(z̄,δ j)∩Γ. Set δ ′′ = min{δ1,δ2, ...,δp}. For all y ∈ B(z̄,δ ′′)∩Γ, we have

ΨL
j (y)−ΨL

j (z̄)≥
〈

ξ L
j ,exp−1

z̄ y
〉
−β‖exp−1

z̄ y‖, ∀ j ∈ J,

ΨU
j (y)−ΨU

j (z̄)≥
〈

ξU
j ,exp−1

z̄ y
〉
−β‖exp−1

z̄ y‖, ∀ j ∈ J.
(3.7)

Let δ = min{δ ′,δ ′′}. From (3.6) and (3.7), there does not exist any y ∈ B(z̄,δ )∩Γ such that
Ψ(y) ≺LU Ψ(z̄). This means that z̄ is a local LU-efficient solution to (NIVMOP). Moreover, it
from Theorem 3.2 admits that z̄ is a solution to (ALMVVIP). �

Remark 3.2. The converse of Theorem 3.5 does not hold in general. To illustrate the fact,
we consider the following interval-valued multiobjective optimization problem on Hadamard
manifold:

(P) min Ψ(z) = (Ψ1(z),Ψ2(z)),

subject to z ∈ Γ⊆ H,

where Ψ1,Ψ2 : Γ→ I are interval-valued functions defined on Γ = {y : y = eλ ,λ ∈ [−1,1]}
and H = {z ∈ R : z > 0} is the Riemannian manifold with Riemannian metric g(z) = z−2 and
sectional curvature κ = 0. It is clear that H is a Hadamard manifold and the set Γ is geodesic
convex set.

The tangent plane at any point z ∈ H, denoted by TzH, equals R. The Riemannian distance
function d : H×H→R is given by d(z,y) = ‖exp−1

z y‖= | ln z
y |. The geodesic curve Ω :R→H

starting from Ω(0) = z and with tangent unit vector Ω′ = w ∈ TzH of Ω at the starting point z is
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given by Ω(λ ) = expz(λw) = ze(
w
z )λ . The inverse of exponential map for any z,y ∈ H is given

by exp−1
z y = z ln(y

z ). Consider the functions ΨL
1 ,Ψ

U
1 ,Ψ

L
2 ,Ψ

U
2 : Γ→ R given by

Ψ
L
1(z) =

{
z3− 3

8 , z≥ 1
2

z2− z, z < 1
2

and Ψ
U
1 (z) =

{
z3 + z− 7

8 , z≥ 1
2

z2−2z+ 1
2 , z < 1

2
,

Ψ
L
2(z) =

{
z2 + z, z≥ 1

2
−2z+ 7

4 , z < 1
2

and Ψ
U
2 (z) =

{
2z2 + z, z≥ 1

2
z2−2z+ 7

4 , z < 1
2
.

It is clear that the functions ΨL
1 ,Ψ

U
1 ,Ψ

L
2 and ΨU

2 are locally Lipschitz continuous on Γ. The
subdifferential of ΨL

1 ,Ψ
U
1 ,Ψ

L
2 ,Ψ

U
2 are given by

∂cΨ
L
1(z) =


3z4, z > 1

2
[0, 3

16 ], z = 1
2

2z3− z2, z < 1
2

and ∂cΨ
U
1 (z) =


3z4 + z2, z > 1

2
[−1

4 ,
7
16 ], z = 1

2
2z3−2z2, z < 1

2

.

Similarly, we have

∂cΨ
L
2(z) =


2z3 + z2, z > 1

2
[−1

2 ,
1
2 ], z = 1

2
−2z2, z < 1

2

and ∂cΨ
U
2 (z) =


4z3 + z2, z > 1

2
[−1

4 ,
3
4 ], z = 1

2
2z3−2z2, z < 1

2

.

We can verify that ΨL
1 and ΨU

1 are geodesic approximately LU-convex at z̄ = 1
2 . As for all

α1 > 0, there exists 0 < δ1 <
−1+

√
1+1.5α1
3 such that condition (2.1) holds. Similarly, ΨL

2 and
ΨU

2 are geodesic approximately LU-convex at z̄ = 1
2 , as for all α2 > 0, there exists δ2 ∈ (0,1) ,

such that the condition (2.1) holds. The point z̄ = 1
2 is a local LU-efficient solution for (P) as

for δ = min{δ1,δ2} > 0. the following does not hold Ψ(y) ≺LU Ψ(z̄) for all y ∈ B(z̄,δ )∩Γ.
However, we see that z̄ = 1

2 is not a solution to (ALSVVIP) as there exists δ > 0 and β > 1 such
that (〈

ξ
L
1 ,exp−1

z̄ y
〉
,
〈
ξ

L
2 ,exp−1

z̄ y
〉)
≤ β

∥∥exp−1
z̄ y
∥∥e,(〈

ξ
U
1 ,exp−1

z̄ y
〉
,
〈
ξ

U
2 ,exp−1

z̄ y
〉)
≤ β

∥∥exp−1
z̄ y
∥∥e,

for every y ∈ B(z̄,δ )∩Γ and ξ L
j ∈ ∂cΨL

j (z̄), ξU
j ∈ ∂cΨU

j (z̄), j = 1,2.

Theorem 3.6. Let Ψ j : Γ→I , j ∈ J, be a geodesic LU-α j-convex function on Γ. If z̄ ∈ Γ is a
solution to (ASVVIP), then it is an LU-efficient solution to (NIVMOP).

Proof. The proof is similar to that of Theorem 3.5. �

We formulate the following weak forms of (ALMVVIP), (AMVVIP), (ALSVVIP), and (ASVVIP)
in terms of Clarke subdifferentials on a Hadamard manifold:

(WALMVVIP) Find a point z̄ ∈ Γ such that, for any β > 0, there exists δ > 0 such that(〈
ζ

L
1 ,exp−1

y z̄
〉
, . . . ,

〈
ζ

L
p ,exp−1

y z̄
〉)
≯ β

∥∥exp−1
y z̄
∥∥e,(〈

ζ
U
1 ,exp−1

y z̄
〉
, . . . ,

〈
ζ

U
p ,exp−1

y z̄
〉)
≯ β

∥∥exp−1
y z̄
∥∥e,

for all y ∈ B(z̄,δ )∩Γ, ζ L
j ∈ ∂cΨL

j (y), and ζU
j ∈ ∂cΨU

j (y), j ∈ J;



80 B.B. UPADHYAY, L. LI, P. MISHRA

(WAMVVIP) Find a point z̄ ∈ Γ such that(〈
ζ

L
1 ,exp−1

y z̄
〉
, . . . ,

〈
ζ

L
p ,exp−1

y z̄
〉)
≯ β

∥∥exp−1
y z̄
∥∥e,(〈

ζ
U
1 ,exp−1

y z̄
〉
, . . . ,

〈
ζ

U
p ,exp−1

y z̄
〉)
≯ β

∥∥exp−1
y z̄
∥∥e,

for any β > 0, y ∈ Γ, ζ L
j ∈ ∂cΨL

j (y), and ζU
j ∈ ∂cΨU

j (y), j ∈ J;
(WALSVVIP) Find a point z̄ ∈ Γ such that there exist β > 0, δ > 0, ξ L

j ∈ ∂cΨL
j (z̄), and

ξU
j ∈ ∂cΨU

j (z̄), satisfying(〈
ξ

L
1 ,exp−1

z̄ y
〉
, . . . ,

〈
ξ

L
p ,exp−1

z̄ y
〉)
≮ β

∥∥exp−1
z̄ y
∥∥e,(〈

ξ
U
1 ,exp−1

z̄ y
〉
, . . . ,

〈
ξ

U
p ,exp−1

z̄ y
〉)
≮ β

∥∥exp−1
z̄ y
∥∥e,

for all y ∈ B(z̄,δ )∩Γ,;
(WASVVIP) Find a point z̄∈ Γ such that there exist β > 0, ξ L

j ∈ ∂cΨL
j (z̄), and ξU

j ∈ ∂cΨU
j (z̄)

satisfying (〈
ξ

L
1 ,exp−1

z̄ y
〉
, . . . ,

〈
ξ

L
p ,exp−1

z̄ y
〉)
≮ β

∥∥exp−1
z̄ y
∥∥e,(〈

ξ
U
1 ,exp−1

z̄ y
〉
, . . . ,

〈
ξ

U
p ,exp−1

z̄ y
〉)
≮ β

∥∥exp−1
z̄ y
∥∥e,

for any y ∈ Γ, where e = (1,1, ...,1)︸ ︷︷ ︸
p times

.

Remark 3.3. If β = 0, then (WAMVVIP) and (WASVVIP) reduce to the Minty and Stam-
pacchia vector variational inequalities (WMVVIP) and (WSVVIP), respectively, which were
considered by Chen and Huang [33].

For weakly LU-efficient solutions of (NIVMOP), we have the following results.

Theorem 3.7. Let ΨL
j ,Ψ

U
j : Γ→ R, j ∈ J, be geodesic strictly approximately convex functions

on Γ. If z̄ is a solution to (WALSVVIP), then it is also a local weakly LU-efficient solution to
(NIVMOP).

Proof. Suppose that z̄ ∈ Γ is a solution to (WALSVVIP). Assume that z̄ ∈ Γ is not a local
weakly LU-efficient solution to (NIVMOP). Then, for all δ > 0, there exists y ∈ B(z̄,δ )∩Γ

such that Ψ j(y) ≺LU Ψ j(z̄) for all j ∈ J. Observe that ΨL
j , and ΨU

j , j ∈ J, are geodesic strictly
approximately convex at z̄. From Theorem 2.1 for any α j > 0, we find that δ > 0 such that, for
all y ∈ B(z̄,δ )∩Γ, the inequalities are valid

〈ξ L
j ,exp−1

z̄ y〉−α j
∥∥exp−1

z̄ y
∥∥< 0, ∀ξ L

j ∈ ∂cΨ
L
j (z̄), j ∈ J,

〈ξU
j ,exp−1

z̄ y〉−α j
∥∥exp−1

z̄ y
∥∥< 0, ∀ξU

j ∈ ∂cΨ
U
j (z̄), j ∈ J.

In particular, setting β = max
{

α1, . . . ,αp
}
, we can obtain some y ∈ B(z̄,δ )∩Γ such that(

〈ξ L
1 ,exp−1

z̄ y〉, . . . ,〈ξ L
p ,exp−1

z̄ y〉
)
< β

∥∥exp−1
z̄ y
∥∥e, ∀ξ L

j ∈ ∂cΨ
L
j (z̄), j ∈ J,(

〈ξU
1 ,exp−1

z̄ y〉, . . . ,〈ξU
p ,exp−1

z̄ y〉
)
< β

∥∥exp−1
z̄ y
∥∥e, ∀ξU

j ∈ ∂cΨ
U
j (z̄), j ∈ J.

This contradicts the fact that z̄ is a solution of (WALSVVIP). �

Theorem 3.8. Let ΨL
j ,Ψ

U
j : Γ→ R, j ∈ J, be geodesic strictly α j-convex functions on Γ. If z̄ is

a solution to (WASVVIP), then it is also a weakly LU-efficient solution to (NIVMOP).
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Proof. The proof is similar to that of Theorem 3.7. �

Theorem 3.9. Let Ψ j : Γ→ I , j ∈ J, be a geodesic approximately LU-convex function at
z̄ ∈ Γ. If z̄ ∈ Γ is a local weakly LU-efficient solution to (NIVMOP), then z̄ is also a solution to
(WALMVVIP).

Proof. Assume that z̄ is a local weakly LU-efficient solution to (NIVMOP). Suppose to the
contrary that z̄ is not a solution of (WALMVVIP). Hence, for any β and all δ > 0, there exists
y ∈ B(z̄,δ )∩Γ such that(

〈ζ L
1 ,exp−1

y z̄〉, . . . ,〈ζ L
p ,exp−1

y z̄〉
)
> β

∥∥exp−1
y z̄
∥∥e,(

〈ζU
1 ,exp−1

y z̄〉, . . . ,〈ζU
p ,exp−1

y z̄〉
)
> β

∥∥exp−1
y z̄
∥∥e,

for all ζ L
j ∈ ∂cΨL

j (y) and ζU
j ∈ ∂cΨU

j (y). This demonstrates that

〈ζ L
j ,exp−1

y z̄〉−β
∥∥exp−1

y z̄
∥∥> 0, ∀ζ L

j ∈ ∂cΨL
j (y), j ∈ J,

〈ζU
j ,exp−1

y z̄〉−β
∥∥exp−1

y z̄
∥∥> 0, ∀ζU

j ∈ ∂cΨU
j (y), j ∈ J.

(3.8)

Recall that Ψ j is geodesic approximately LU-convex at z̄. From Definition 2.6, for any α j > 0,
there exists δ > 0 such that, for all y ∈ B(z̄,δ )∩Γ, ζ L

j ∈ ∂cΨL
j (y), and ζU

j ∈ ∂cΨU
j (y),

〈ζ L
j ,exp−1

y z̄〉−α j
∥∥exp−1

y z̄
∥∥≤Ψ

L
j (z̄)−Ψ

L
j (y), ∀ j ∈ J,

〈ζU
j ,exp−1

y z̄〉−α j
∥∥exp−1

y z̄
∥∥≤Ψ

U
j (z̄)−Ψ

U
j (y), ∀ j ∈ J.

Let β = max{α1, ...,αp}. Hence,

〈ζ L
j ,exp−1

y z̄〉−β
∥∥exp−1

y z̄
∥∥≤ΨL

j (z̄)−ΨL
j (y), ∀ j ∈ J,

〈ζU
j ,exp−1

y z̄〉−β
∥∥exp−1

y z̄
∥∥≤ΨU

j (z̄)−ΨU
j (y), ∀ j ∈ J.

(3.9)

By using (3.8) and (3.9), we find y ∈ B(z̄,δ )∩Γ such that Ψ j(y)≺LU Ψ j(z̄) for all j ∈ J. This
contradicts the fact that z̄ is a local weakly LU-efficient solution of (NIVMOP). �

Theorem 3.10. Let Ψ j : Γ→ R, j ∈ J, be a geodesic LU-α j-convex function on Γ. If z̄ ∈ Γ is a
weakly LU-efficient solution to (NIVMOP), then z̄ is also a solution to (WAMVVIP).

Proof. The proof is similar to that of Theorem 3.9. �

Remark 3.4. Theorem 3.10 generalizes Chen and Huang [33, Theorem 3.5] and Jayswal et al.
[36, Theorem 3.7 ] for a more general problem, namely (NIVMOP) and for a more general class
of functions, namely the geodesic LU-α-convex function.

From Theorems 3.7 and 3.9, we have the following relationship between the solution sets of
(WALSVVIP) and (WALMVVIP).

Theorem 3.11. Let ΨL
j ,Ψ

U
j : Γ→R, j ∈ J, be a geodesic strictly approximately convex function

at z̄ ∈ Γ. If z̄ solves (WALSVVIP), then z̄ is a solution to (WALMVVIP).

From Theorems 3.8 and 3.10, we have the following relationship between the solution of
(WASVVIP) and (WAMVVIP).

Theorem 3.12. Let ΨL
j , ΨU

j : Γ→ R, j ∈ J, be a geodesic strictly α j-convex function on Γ. If z̄
solves (WASVVIP), then z̄ is a solution to (WAMVVIP).
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4. CONCLUSIONS AND THE FUTURE RESEARCH

In this paper, we considered the classes of approximate Minty and Stampacchia type vec-
tor variational inequalities (ALMVVIP), (AMVVIP), (ASVVIP), and (ALSVVIP) with their
weaker forms, namely (WALMVVIP), (WAMVVIP), (WALSVVIP), and (WASVVIP). Under
the assumption that the cost function is geodesic approximate LU-convex or geodesic LU-α-
convex, we established the relations between the solutions of considered approximate vari-
ational inequalities (ALMVVIP), (AMVVIP), (ALSVVIP), and (ASVVIP), and LU-efficient
solutions of nonsmooth interval-valued multiobjective optimization problem (NIVMOP). Fur-
thermore, we also derived the equivalence among the solutions of the weak versions of consid-
ered approximate vector variational inequalities (WALMVVIP), (WAMVVIP), (WALSVVIP),
(WASVVIP), and weakly LU-efficient solutions of considered nonsmooth interval-valued mul-
tiobjective problem (NIVMOP). The results established in this paper extend and generalize
some earlier results of Giannessi [27], Lee and Lee [28], Osuna-Gomez et al. [42], and Yang
[43] to the nonsmooth case as well as to a more general class of functions and the works of Chen
and Huang [33], Chen and Fang [34], Jayswal et al. [36] and Upadhyay et al. [37] to a more
general problem, that is, the nonsmooth interval-valued multiobjective optimization problem.
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