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MODIFIED FORWARD-BACKWARD SPLITTING METHOD FOR SPLIT
EQUILIBRIUM, VARIATIONAL INCLUSION, AND FIXED POINT PROBLEMS
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Abstract. In the recent time, the problem of finding common solutions of fixed point problems (FPPs)
of nonlinear mappings and optimization problems (OPs) has received great research attention due to its
potential applications to mathematical models whose constraints can be expressed as the FPPs and OPs.
In this paper, we study the problem of finding a common solution of a split equilibrium problem (SEP),
a variational inclusion problem (VIP) and the FPP with a finite family of multivalued demicontractive
mappings. We propose a new inertial iterative method, which employs the forward-backward splitting
technique together with the viscosity method for approximating the solution of the problem in Hilbert
spaces. The proposed method uses variable step sizes, which do not depend on the norm of the bounded
linear operator. We prove strong convergence results under some mild conditions. Finally, we present
some numerical experiments to demonstrate the efficiency and applicability of the proposed method. Our
result improves and extends several existing results in the current literature in this direction.
Keywords. Adaptive step size; Forward-backward splitting method; Inclusion problem; Inertial tech-
nique; Split equilibrium problem; Multivalued demicontractive mappings.
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1. INTRODUCTION

Let H be a real Hilbert space with inner project 〈·, ·〉 and induced norm ‖ · ‖, and let C be a
nonempty, convex, and cosed subset of H. Let F : C×C→R be a bifunction. The Equilibrium
problem (EP) is to find x∗ ∈ C such that F(x∗, p) ≥ 0 for all p ∈ C. The (EP), introduced in
1994 by Blum and Oetti [1], has a far-reaching impact and applications in several areas and
fields of research, such as computers, engineering, economics, physics, and so on; see [2] and
the references therein. The EP is also known to be a generalisation of many important prob-
lems in nonlinear analysis, such as variational inequality problems, nonlinear complementarity
problems, saddle point problems, fixed point problems, the Nash equilibra problem, and several
other problems, see, e.g., [3, 4, 5, 6, 7], and the references therein.

In this work, we consider the problem of finding a point x∗ ∈C1 satisfying:

F1(x∗,x)≥ 0, ∀x ∈C1, (1.1)
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such that p∗ = Gx∗ ∈M satisfies

F2(p∗, p)≥ 0, ∀p ∈C2, (1.2)

where C1 ⊆H1 and C2 ⊆H2 are nonempty, convex, and closed subsets of Hilbert spaces H1 and
H2, respectively, F1 : C1×C1→ R and F2 : C2×C2→ R are bifunctions, and G : H1→ H2 is a
bounded linear operator.

The problem (1.1)-(1.2) is known as the split equilibrium problem (SEP). We denote the
solution sets of EP (1.1) and EP (1.2) by EP(F1) and EP(F2), respectively and we denote the
set of solution of the SEP by

SEP(F1,F2) := {p ∈ EP(F1) : Gp ∈ EP(F2)}.

Numerous researchers presented interesting results in finding the solutions of the SEP (1.1)-
(1.2) and also found applications in various areas; see, e.g., [8, 9] and the references therein.
Let H be a real Hilbert space, A : H → H be a single-valued operator, and B : H → 2H be
a multivalued operator. The variational inclusion problem (V IP), considered by Rockafellar
[10], is to find a point x∗ ∈ H such that

0 ∈ (A+B)x∗. (1.3)

The solution set of the V IP (1.3) is referred to as the set of zero points of A+B. The problem
of finding the zero points of the sum of two monotone operators is an active area of research
interest and has various applications in the field of nonlinear analysis, such as convex opti-
mization problems and variational inequality problems. It is a well known fact that the convex
minimization problem can be transformed into finding zero points of a maximal monotone op-
erator defined on Hilbert spaces (see [11] and the references). In an attempt to find the solution
to the V IP (1.3), several methods have been proposed and studied by researchers; see, e.g.,
[12, 13, 14, 15, 16] and the references therein. The most common and efficient of these meth-
ods is the famous forward-backward method introduced by [17] and defined as follows:

xn+1 = (I +λnB)−1(I−λnA)(xn),

where λn is a positive parameter, (I−λnA) is the forward operator, and (I +λnB)−1 is called
the resolvent operator, also known as the backward operator. Numerous real world problems
in image processing, machine learning, linear inverse problems, and optimization problems can
easily be modelled into V IP (1.3), which makes it a hot area of research interest to researchers.

Let S : C→C be a non linear mapping. A point p in C is called a fixed point of S if Sp = p.
We denote the set of all fixed points of S by Fix(S), that is, Fix(S) = {p ∈C : Sp = p}. If S is a
multivalued mapping, i.e., S : C→ 2C, then p ∈C is called a fixed point of S if p ∈ Sp.

Over the years, researchers have done numerous interesting works on the common solution
of the fixed point problem (FPP) of nonlinear (single-valued or multi-valued) mappings and
various optimization problems; see, e.g., [18, 19, 20, 21] and the references therein. It is a well
known fact that several real world problems in image recovery, network resource allocation,
signal processing, bandwidth theory, data compression, computerised tomography, and so on
can be directly modelled into mathematical problems in the form of fixed point problems of
nonlinear mappings and various optimization problems, which has made it a centre of attraction
to researchers in the recent time; see, e.g., [22, 23]. This forms the bedrock of our research
interest in investigating the common solution of these problems.
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In 2018, Abass et al. [24] proposed an iterative algorithm for finding the common solution
of the SEP and the FPP for an infinite family of quasi-nonexpansive multi-valued mappings
{Ti}+i=1∞ in real Hilbert spaces as follows:

un = T F1
rn (xn +ξnG∗(T F2

rn − I)Gxn);
yn = λ0un +∑

+
i=1 ∞λizi

n;
xn+1 = γnτ f (xn)+(I− γnD)yn, n≥ 1;

(1.4)

where zi
n ∈ Tiun, rn ⊂ (0,+∞), and the step size ξn is chosen such that, for some ε > 0,

ξn ∈

(
ε,
‖(T F2

rn − I)Gxn‖2

‖G∗(T F2
rn − I)Gxn‖2

− ε

)
;

for all T F2
rn Gxn 6= Gxn, and ξn = ξ , otherwise (ε being any nonnegative real number). Under the

conditions that γn and rn satisfy the following conditions:
(i) limn→+∞ γn = 0 and ∑

+
i=1 ∞γn =+∞;

(ii) γn ∈ (0,1), 0 < τ < τ

µ
, and 0 < γn < 2µ;

(iii) liminfn→+∞ rn > 0;
(iv) λ0, λi ∈ (0,1), such that ∑

+
i=0 ∞λi = 1;

the authors proved that the sequence generated by (1.4) converges strongly to the solution of
the problem.

To accelerate the rate of convergence of iterative methods, researchers often employ the iner-
tial extrapolation technique, which was first introduced by Polyak [25]. The inertial method is
a two-step iteration where the next iterate is defined by making use of the previous two iterates.
Recently, a growing interest has been paid to the study of inertial type algorithms and several
authors have developed fast iterative methods by employing the inertial technique; see, e.g.,
[26, 27] and the references therein.

Recently, Cholamjiak et al. [28] proposed a modified inertial forward-backward splitting
method for solving the common solution of the SEP and the V IP in Hilbert spaces as follows:

yn = xn +θn(xn− xn−1),

zn = αnyn +(1−αn)T
F1

rn (I− γG∗(I−T F2
rn )G)yn,

xn+1 = βnzn +(1−βn)J
Q
λn
(I−λnV )zn, n≥ 1,

(1.5)

where JQ
λn

= (I +λnQ)−1, {λn} ⊂ (0,2σ), {θn} ⊂ [0,θ ], θ ∈ [0,1),{rn} ⊂ (0,+∞) with γ ∈
(0, 1

L) such that L is the spectral radius of G∗G, and {αn} and {βn} are sequences in [0,1]. They
proved a weak convergence result for the proposed algorithm.

A major setback with Algorithm 1.5 is the fact that the step size depends on the norm of
the bounded linear operator, however, in most cases the norm of the bounded linear operator
is difficult to calculate or even almost impossible to estimate in some cases. This makes the
implementation of the algorithm more computationally expensive and time consuming. More-
over, the authors were only able to obtain weak convergence result for the proposed algorithm.
In solving optimization problems, strong convergence results are more desirable and applicable
than weak convergence results.

In this work, we propose a new iterative method, which employs the inertial technique and the
step size, which is independent on the norm of the bounded linear operator, for approximating
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the common solution of the SEP, the V IP, and the FPP. Our proposed algorithm has the
following features:

(i) our algorithm solves simultaneously three different problems, that is, the split equilib-
rium problem, the variational inclusion problem, and the fixed point problem;

(ii) our algorithm solves the fixed point problem of a family of multivalued demicontractive
mappings, which is a more general problem than the results in [9, 29];

(iii) our algorithm generates a sequence, which converges strongly to the solution of the
problem;

(iv) our algorithm combines the forward-backward splitting method with the inertial tech-
nique to speed up convergence rate.

The remaining part of this paper is organised as follows. In section 2, we present relevant
definitions and lemmas, used in the course of this study. In section 3, we present our algorithm.
Section 4 contains the convergence analysis of the proposed iterative scheme. In section 5, we
present some numerical examples to test the computational efficiency of our algorithm over
other methods in literature while in Section 6 we give some concluding remarks.

2. PRELIMINARIES

In this section, we recall some useful definitions and lemmas needed in establishing our
main results. Let C be a nonempty, convex, and closed subset of a real Hilbert space H, with
inner product 〈·, ·〉 and norm ‖.‖. One knows that each Hilbert space H satisfies the Opial
condition [30], that is, for any sequence {xn}with xn ⇀ x, the inequality liminfn→+∞ ‖xn−n‖<
liminfn→+∞ ‖xn− y‖ holds for every y ∈ H with y 6= x. Recall that a bounded linear operator
D : C→ H is strongly positive if there exist a constant γ̄ > 0 such that 〈Dx,x〉 ≥ γ̄‖x‖2 for all
x ∈C. From [31], one knows that ||I−ρD|| ≤ 1−ργ̄, where 0 < ρ ≤ ||D||−1. For all x,y ∈ H,
one knows that

(1) ||x+ y||2 ≤ ||x||2 +2〈y,x+ y〉;
(2) ||x+ y||2 = ||x||2 +2〈x,y〉+ ||y||2;
(3) ||δx+(1−δ )y||2 = δ ||x||2 +(1−δ )||y||2−δ (1−δ )||x− y||2, where δ ∈ (0,1).

Let the weak and strong convergence of the sequence {xn}+n=1∞ to x as n→ +∞ be denoted
by xn ⇀ x, and xn → x, respectively. We denote the metric projection of H onto C by PC:
‖x− PCx‖ ≤ ‖x− y‖ for all x ∈ H,y ∈ C. It is known that PC is nonexpansive and has the
following properties:

(i) z = PCx⇐⇒ 〈x− z,z− y〉 ≥ 0 for all x ∈ H and y ∈C;
(ii) ‖y−PCx‖2 +‖x−PCx‖2 ≤ ‖x− y‖2 for all x ∈ H and y ∈C;

(iii) 〈x− y,PCx−PCy〉 ≥ ‖PCx−PCy‖2 for all x,y ∈ H.

For a given sequence {xn} ⊂ H, wω(xn) denotes the set of weak limits of {xn}, that is,

wω(xn) :=
{

x ∈ H : xnk ⇀ x, for some subsequence {xnk} of {xn}
}

Recall that a mapping T : H→ H is said to be

(1) L- Lipschitz continuous on H if there exists a constant L > 0 such that ‖T x− Ty‖ ≤
L‖x− y‖, ∀x,y ∈ H. If L ∈ [0,1), then T is called a contraction.

(2) nonexpansive on H if T is 1-Lipschitz continuous.
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(3) averaged if it can be written as T = (1−α)I +αS, where α ∈ (0,1), S : H → H is
nonexpansive, and I is the identity mapping on H.

(4) monotone on H if 〈T x−Ty,x− y〉 ≥ 0, ∀x,y ∈ H.
(5) k-inverse strongly monotone (k-ism) on H if there exists a constant k > 0 such that
〈T x−Ty,x− y〉 ≥ k‖T x−Ty‖2, ∀x,y ∈ H.

(6) firmly nonexpansive on H if ‖T x−Ty‖2 ≤ 〈T x−Ty,x− y〉, ∀x,y ∈ H, or equivalently

‖T x−Ty‖2 ≤ ‖x− y‖2−‖(I−T )x− (I−T )y‖2.

Recall that a subset K of H is called proximinal if, for each x ∈ H, there exists y ∈ K such
that ‖x−y‖= d(x,K) = inf{‖x− z‖ : z ∈ K}. In the course of this work, we denote the families
of all nonempty, closed, and bounded subsets, nonempty, closed, and convex subsets, nonempty
and compact subsets, and nonempty, proximinal, and bounded subsets of C by CB(C), CC(C),
KC(C), and P(C), respectively. The Pompeiu-Hausdorff metric on CB(C) is defined by:

H(A,B) := max
{

sup
x∈A

d(x,B), sup
y∈B

(y,A)
}
, ∀A,B ∈CB(C),

where d(x,B) = infb∈B ‖x−b‖.
Let S : C→ 2C be a multivalued mapping. S is said to satisfy the end point condition if Sd =
{d} for all d ∈ Fix(S). For multivalued mappings, Si : C→ 2C (i ∈N) with

⋂+∞

i=1 Fix(Si) 6= /0, Si
is said to satisfy the common endpoint condition if Si(d) = {d} for all i∈N, d ∈

⋂+
i=1 ∞Fix(Si).

Recall that a multivalued mapping S : C→CB(C) is said to be:

(i) nonexpansive if H(Sa,Sb)≤ ‖a−b‖ for all a,b ∈C;
(ii) quasi-nonexpansive if F(S) 6= /0 and H(Sa,Sd)≤ ‖a−d‖ for all a ∈C, d ∈ Fix(S);

(iii) nonspreading if 2H(Sa,Sb)2 ≤ d(b,Sa)2 +d(a,Sb)2 for all a,b ∈C;
(iv) k-hybrid if there exists k ∈ R such that

(1+ k)H(Sa,Sb)2 ≤ (1− k)‖a−b‖2 + kd(b,Sa)2 + kd(a,Sb)2, ∀a,b ∈C;

(iv) λ -demicontractive for 0≤ λ < 1 if F(S) 6= /0 and

H(Sa,Sd)2 ≤ ‖a−d‖2 +λd(a,Sa)2, ∀a ∈C,d ∈ Fix(S).

It is easy to note from the definition above that the class of λ -demicontractive mappings is
more general than all other types of mappings listed above.

Recall that the best approximation operator PS for a multivalued mapping S : C→ P(C) is
defined by PS(a) := {b ∈ Sa : ‖a−b‖= d(a,Sa)}. It is a known fact that Fix(S) = Fix(PS) and
PS satisfies the endpoint condition; see [32] for an example of a best approximation operator
PS, which is nonexpansive but S is not necessarily nonexpansive. Let S : C → CB(C) be a
multivalued mapping. The multivalued mapping I− S is said to be demiclosed at zero if, for
any sequence {xn} ⊂C which converges weakly to d and the sequence {‖xn− tn‖} converges
strongly to 0, where tn ∈ Sxn, d ∈ Fix(S).

Lemma 2.1. [33] Let H be a real Hilbert space and let T : H→ H be a given operator.

(i) T is firmly nonexpansive if and only if its complement I−T is firmly nonexpansive.
(ii) T is averaged if and only if its complement I−T is β -ism for some β > 1

2 . Indeed, for
α ∈ (0,1),T is α-averaged if and only if I−T is 1

2α
-ism.
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Lemma 2.2. [34] For each x1,x2, ...xm ∈H and α1, ...,αm ∈ [0,1] with ∑
m
i=1 αi = 1, the following

holds: ‖α1x1 + ...+αmxm‖2 = ∑
m
i=1 αi‖xi‖2−∑1≤i< j≤m αiα j‖xi− x j‖2.

Lemma 2.3. [35] Let A : H→ H be a k-inverse strongly mapping, then

(1) A is 1
k - Lipschitz continuous and monotone mapping;

(2) If λ is any constant in (0,2k], then the mapping (I−λA) is nonexpansive, where I is the
identity mapping on H.

Lemma 2.4. [36] Let {an}, {cn} ⊂ R+, {σn} ⊂ (0,1), and {bn} ⊂ R be sequences such that
an+1 ≤ (1−σ)an +bn + cn for all n≥ 0. Assume ∑

+∞

n=0 |cn|<+∞. Then

(1) If bn ≤ βσn for some β ≥ 0, then {an} is a bounded sequence.
(2) If ∑

+∞

n=0 σn =+∞ and limsupn→+∞
bn
σn
≤ 0, then lim

n→+∞
an = 0.

Lemma 2.5. [37] Let {an} be a sequence of nonnegative real numbers, {αn} be a sequence
in (0,1) with ∑

+∞

n=1 αn = +∞, and bn be a sequence of real numbers. Assume that an+1 ≤
(1−α)an +αnbn for all n ≥ 1, if limsupk→+∞ bnk ≤ 0 for every subsequence {ank} of {an}
satisfying liminfk→+∞(ank+1−ank)≥ 0, then limn→+∞ an = 0.

Assumption 2.1. In solving the equilibrium problem (EP), we assume that F : C×C → R
satisfies the following conditions:

(A1) F(x,x) = 0, for all x ∈C;
(A2) F(x,y)+F(y,x)≤ 0 for all x,y ∈C;
(A3) limt↓0 F(tz+(1− t)x,y)≤ F(x,y) for all x,y,z ∈C;
(A4) y 7→ F(x,y) is convex and lower semicontinuous for each x ∈C.

Lemma 2.6. [38] Let C be a nonempty, convex, and closed subset of a Hilbert space H, and
let F : C×C→ R be a bifunction satisfying Assumption 2.1. For r > 0 and x ∈ H, define a
mapping T F

r : H → C by T F
r (x) = {z ∈ C : F(z,y)+ 1

r (y− z,z− x) ≥ 0,∀y ∈ C}. Then, T F
r is

well defined and the following hold:

(1) For each x ∈ H, T F
r (x) 6= /0;

(2) T F
r is single-valued;

(3) T F
r is firmly nonexpansive;

(4) Fix(T F
r ) = EP(F);

(5) EP(F) is convex and closed.

Let B : H → 2H be a multivalued monotone mapping. The effective domain of B, denoted
by Dom(B), is defined as D(B) = {x ∈ H : Bx 6= /0}. The graph of (B) is denoted by G(B) =
{(p,q) ∈ H ×H : q ∈ Bp}. The range denoted, by R(B), is defined by R(B) =

⋃
x∈H Bx. B is

called monotone if, for all x,y ∈H, p ∈ Bx and q ∈ By implies that 〈p−q,x−y〉 ≤ 0. B is called
maximal monotone if it is monotone and if for any (x, p) ∈ H×H, 〈p−q,x− y〉 ≥ 0 for every
(y,q) ∈Graph(B) implies that p ∈ Bx. Recall that the resolvent mapping JB

λ
: H→H associated

with a multivalued maximal monotone mapping B is defined by JB
λ
(x) = (I + λB)−1(x) for

all x ∈ H, for some λ > 0, where I is the identity operator on H. It is a known fact that if
B : H → 2H is a multivalued maximal monotone mapping and λ > 0, then Dom(JB

λ
) = H and

JB
λ

is a single-valued and firmly nonexpansive mapping.
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Lemma 2.7. [39] Let H be a real Hilbert space. Let B : H → 2H be a maximal monotone
operator and A : H → H be a k-inverse strongly monotone mapping on H. Define Tλ = (I +
λB)−1(I−λA), λ > 0. Then,

(i) F(Tλ ) = (A+B)−1(0);
(ii) for 0 < s≤ λ and x ∈ H, ‖x−Tsx‖ ≤ 2‖x−Tλ x‖.

3. THE ALGORITHM

In this section, we present our proposed algorithm and highlight its main features. We
also state the conditions needed to establish the strong convergence theorem for the proposed
method.

Condition B
(B1) H1 and H2 are two real Hilbert spaces and C1 ⊆ H1, C2 ⊆ H2 are nonempty, closed and

convex subsets of H1 and H2, respectively.
(B2) G : H1→ H2 is a bounded linear operator with adjoint G∗, Q : H1→ 2H1 is a maximal

monotone operator, and V : H1→ H1 is a σ -ism.
(B3) F1 : C1×C1→R and F2 : C2×C2→R are two bifunctions satisfying conditions (A1)−

(A4) with F2 being upper semicontinuous in the first argument.
(B4) D : H1→ H1 is a strongly positive bounded linear operator with coefficient η̄ , and f :

H1→ H1 is a contraction with coefficient ρ ∈ (0,1) such that 0 < η < η̄

ρ
.

(B5) Si : C1→CB(C1) is a finite family of multivalued demicontractive mappings with con-
stant κi such that I−Si is demiclosed at zero, Si(p) = {p} for all p ∈

⋂m
i=1 Fix(Si), and

κ = max{κi}, i = 1,2, . . . ,m.
(B6) The solution set ϒ = SEP(F1,F2)∩ (Q+V )−1(0)∩

⋂m
i=1 Fix(Si) is nonempty.

Condition C
(C1) {ψn} ⊂ (0,1) such that limn→+∞ ψn = 0 and ∑

+
n=1 ∞ψn =+∞.

(C2) {βn,i} ⊂ (0,1), ∑
m
i=0 βn,i = 1, and liminfn→+∞(βn,0− k)βn,i > 0 for each 1≤ i≤ m.

(C3) 0 < liminfn→+∞ λn ≤ limsupn→+∞ λn < 2σ , and 0 < a≤ φn ≤ b < 2.
(C4) Let ν > 0 and {εn} be a positive sequence such that εn = o(ψn), i.e., lim

n→+∞

εn
ψn

= 0.

(C5) {rn}⊂ (0,+∞) and {sn}⊂ (0,+∞) such that liminfn→+∞ rn > 0 and liminfn→+∞ sn > 0.
Now, we present the algorithm as follows:

Algorithm 3.1. The Inertial Forward-Backward Splitting Method
Step 0. Select initial data x0,x1 ∈ H1 and set n = 1.
Step 1. Given the (n− 1)th and nth iterates, choose νn such that 0 ≤ νn ≤ ν̂n, ∀n ∈ N with ν̂n

defined by

ν̂n =

{
min

{
ν , εn
||xn−xn−1||

}
, if xn 6= xn−1,

ν , otherwise.
Step 2. Compute ln = xn +νn(xn− xn−1).

Step 3. Compute gn = T F1
rn (ln + γnG∗(T F2

sn − I)Gln), where

γn =


φn||(T

F2
sn −I)Gln||2

||G∗(T F2
sn −I)Gln||2

, if T F2
sn Gln 6= Gln,

γ, otherwise (γ being a nonnegative real number).
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Step 4. Compute 
tn = βn,0gn +∑

m
i=1 βn,ihn,i; hn,i ∈ Sign;

zn = (I +λnQ)−1(I−λnV )tn = JQ
λn
(I−λnV )tn;

xn+1 = ψnη f (ln)+(I−ψnD)zn.

Set n := n+1 and return to Step 1.

Remark 3.1. By conditions (C1) and (C4), we find from (4.26) that

lim
n→+∞

νn‖xn− xn−1‖= 0 and lim
n→+∞

νn

ψn
‖xn− xn−1‖= 0.

We present some features of our proposed algorithm as following.

Remark 3.2. (i) The algorithm employs the inertial technique to accelerate the rate of con-
vergence. Moreover, the first step of the algorithm is easily implemented since the value
of ‖xn−xn−1‖ is known prior to choosing νn. These features make our algorithm is less
computationally expensive.

(ii) The step size γn is self-adaptive, that is, it is independent of the norm of the bounded
linear operator.

(iii) Our proposed algorithm solves the problem of finding a common solution of the split
equilibrium problem, the variational inclusion problem, and the common fixed point
problem of a finite family of multivalued demicontractive mappings, which is a more
general problem than the ones considered in [22, 29] and several other results in the
literature.

Now, we demonstrate that the step size of the algorithm is well defined.

Lemma 3.1. The step size {γn} of the Algorithm 3.1 defined by (4.27) is well defined.

Proof. Let d ∈ ϒ. Then T F1
rn d = d,T F2

rn Gd = Gd. Since T F2
rn is averaged, we conclude from

Lemma 2.1(ii) that

‖G∗(I−T F2
rn
)Gln‖‖ln−d‖ ≥ 〈G∗(I−T F2

rn
)Gln, ln−d〉

= 〈(I−T F2
rn
)Gln− (I−T F2

rn
)Gd,Gln−Gd〉

≥ β‖(I−T F2
rn
)Gln‖2,

for some β > 1
2 . It follows that ‖G∗(I−T F2

rn )Gln‖ > 0 when ‖(I−T F2
rn )Gln‖ 6= 0. Hence, {γn}

is well defined.
�

4. THE CONVERGENCE ANALYSIS

First, we establish some lemmas, which are relevant in the convergence analysis of the pro-
posed algorithm.

Lemma 4.1. Let {xn} be the sequence generated by Algorithm 3.1. Then, {xn} is bounded.
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Proof. First, we need to establish that Pϒ(I−D+η f ) is a contraction on H1. For all x,y ∈ H1,
we have

‖Pϒ(I−D+η f )(x)−Pϒ(I−D+η f )(y)‖ ≤ ‖(I−D+η f )(x)− (I−D+η f )(y)‖
≤ ‖(I−D)x− (I−D)y‖+η‖ f x− f y‖
≤ (1− (η̄−ηρ))‖x− y‖.

This demonstrates that Pϒ(I −D + η f ) is a contraction. Hence, by the Banach contraction
principle, there exists an element d ∈ ϒ such that d = Pϒ(I−D+η f )(d). Since d ∈ ϒ, then
d = T F1

rn d, Gd = T F2
sn (Gd),d = JQ

λn
(I−λnV )d, and Si(d) = {d} for each i = 1,2, . . . ,m. Since

T F1
rn and I−T F1

rn are firmly nonexpansive, we obtain from Lemma 2.1(i), the definition of γn, and
the condition on φn that

‖gn−d‖2 = ‖T F1
rn
(ln + γnG∗(T F2

sn
− I)Gln)−d‖2

≤ ‖ln + γnG∗(T F2
sn
− I)Gln−d‖2 (4.1)

= ‖ln−d‖2 + γ
2
n‖G∗(T F2

sn
− I)Gln‖2 +2γn〈ln−d,G∗(T F2

sn
− I)Gln〉

= ‖ln−d‖2 + γ
2
n‖G∗(T F2

sn
− I)Gln‖2 +2γn〈Gln−Gd,(T F2

sn
− I)Gln− (T F2

sn
− I)Gd〉

≤ ‖ln−d‖2− γn(2−φn)‖(T F2
sn
− I)Gln‖2 (4.2)

≤ ‖ln−d‖2. (4.3)

From Lemma 2.2, (4.3), and the fact that Si is demicontractive for each i = 1,2, . . . ,m, we have

‖tn−d‖2 = βn,0‖gn−d‖2 +
m

∑
i=1

βn,i‖hn,i−d‖2−βn,0

m

∑
i=1

βn,i‖hn,i−gn‖2

≤ βn,0‖gn−d‖2 +
m

∑
i=1

βn,iH(Sign,Sid)−βn,0

m

∑
i=1

βn,i‖hn,i−gn‖2

≤ βn,0‖gn−d‖2 +
m

∑
i=1

βn,i[‖gn−d‖2 +κi‖gn−hn,i‖2]−βn,0

m

∑
i=1

βn,i‖hn,i−gn‖2

≤ ‖gn−d‖2−
m

∑
i=1

βn,i(βn,0−κ)‖gn−hn,i‖2 (4.4)

≤ ‖gn−d‖2. (4.5)

In view of the conditions imposed on the control parameters, we have

‖zn−d‖2 = ‖(I +λnQ)−1(I−λnV )tn− (I +λnQ)−1(I−λnV )d‖2

≤ ‖tn−d−λn(Vtn−V d)‖2

= ‖tn−d‖2−2λn〈Vtn−V d, tn−d〉+λ
2
n ‖Vtn−V d‖2

≤ ‖tn−d‖2− (2σ −λn)λn‖Vtn−V d‖2 (4.6)

≤ ‖tn−d‖2. (4.7)

By the definition of ln, we have

‖ln−d‖= ‖xn +νn(xn− xn−1)−d‖ ≤ ‖xn−d‖+ψn ·
νn

ψn
‖xn− xn−1‖
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From Remark 3.1, we see that νn
ψn
‖xn− xn−1‖ → 0 as n→ +∞. Thus there exists a constant

J1 > 0 such that νn
ψn
‖xn−xn−1‖ ≤ J1 for all n≥ 1. Hence, ‖ln−d‖ ≤ ‖xn−d‖+ψnJ1. It follows

from (4.3), (4.5), and (4.7) that

‖xn+1−d‖
≤ ψn‖η f (ln)−Dd‖+(1−ψnη̄)‖zn−d‖
= ψn[η‖ f (ln)− f (d)‖+‖η f (d)−Dd‖]+ (1−ψnη̄)‖zn−d‖
≤ ψn[ηρ‖ln−d‖+‖η f (d)−Dd‖]+ (1−ψnη̄)‖zn−d‖
≤ ψnηρ[‖xn−d‖+ψnJ1]+ψn‖η f (d)−Dd‖+(1−ψnη̄)[‖xn−d‖+ψnJ1]

= [1−ψn(η̄−ηρ)]‖xn−d‖+ψn(η̄−ηρ)

[
‖η f (d)−Dd‖

η̄−ηρ
+

[1−ψn(η̄−ηρ)]J1

η̄−ηρ

]
≤ [1−ψn(η̄−ηρ)]‖xn−d‖+ψn(η̄−ηρ)J∗,

where

J∗ = sup
n∈N

{
‖η f (d)−Dd‖

η̄−ηρ
+

[1−ψn(η̄−ηρ)]J1

η̄−ηρ

}
.

Setting an := ‖xn−d‖, bn := ψn(η̄−ηρ)J∗, cn := 0, and σn := ψn(η̄−ηρ), and using Lemma
2.4(1) and the assumptions on the control sequences, we have that {‖xn−d‖} is bounded, which
implies that {xn} is bounded. Therefore, {ln}, {gn}, {tn}, and {zn} are also bounded. �

Lemma 4.2. The following inequality holds for all d ∈ ϒ and n ∈ N :

‖xn+1−d‖2 ≤

(
1− 2ψn(η̄−ψnηρ)

(1−ψnηρ)

)
‖xn−d‖2

+
2ψn(η̄−ηρ)

(1−ψnηρ)

{
ψnη̄2

2(η̄−ηρ)
J3 +

((1−ψnη̄)2 +ψnηρ)

2(η̄−ηρ)
3J2

νn

ψn
‖xn− xn−1‖

+
1

(η̄−ηρ)
〈η f (d)−Dd,xn+1−d〉

}

− (1−ψnη̄)2

(1−ψnηρ)

{
γn(2−φn)‖(T F2

sn
− I)Gln‖2 +2(σn−λn)λn‖Vtn−V d‖2

+
m

∑
i=1

βn,i(βn,0−κ)‖gn−hn,i‖2

}
.

Proof. Let d ∈ ϒ. Then, by applying the Cauchy-Schwarz inequality, we have

‖ln−d‖2 = ‖xn +ν(xn− xn−1)−d‖2

≤ ‖xn−d‖2 +νn‖xn− xn−1‖(νn‖xn− xn−1‖+2‖xn−d‖)

≤ ‖xn−d‖2 +3J2ψn
νn

ψn
‖xn− xn−1‖, (4.8)
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where J2 := supn∈N{‖xn−d‖,νn‖xn− xn−1‖}> 0. Now, by using (4.2), (4.4), (4.6), and (4.8),
we have

‖xn+1−d‖2 ≤ (1−ψnη̄)2‖zn−d‖2 +2ψn〈η f (ln)−Dd, xn+1−d〉

≤ (1−ψnη̄)2[‖tn−d‖2− (2σ −λn)λn‖Vtn−V d‖2]

+2ψn〈η f (ln)−η f (d), xn+1−d〉+2ψn〈η f (d)−Dd, xn+1−d〉

≤ (1−ψnη̄)2[‖gn−d‖2−
m

∑
i=1

βn,i(βn,0−κ)‖gn−hn,i‖2− (2σ −λn)λn‖Vtn−V d‖2]

+2ψnη〈 f (ln)− f (d), xn+1−d〉+2ψn〈η f (d)−Dd, xn+1−d〉

≤ (1−ψnη̄)2[‖ln−d‖2− γn(2−φn)‖(T F2
sn
− I)Gln‖2

−
m

∑
i=1

βn,i(βn,0−κ)‖gn−hn,i‖2− (2σ −λn)λn‖Vtn−V d‖2]

+ψnηρ(‖ln−d‖2 +‖xn+1−d‖2)+2ψn〈η f (d)−Dd, xn+1−d〉

≤ [(1−ψnη̄)2 +ψnηρ]‖xn−d‖2 +ψnηρ‖xn+1−d‖2

+[(1−ψnη̄)2 +ψnηρ]3J2ψn
νn

ψn
‖xn− xn−1‖+2ψn〈η f (d)−Dd, xn+1−d〉

− (1−ψnη̄)2{γn(2−φn)‖(T F2
sn
− I)Gln‖2 +

m

∑
i=1

βn,i(βn,0−κ)‖gn−hn,i‖2

+(2σ −λn)λn‖Vtn−V d‖2},
(4.9)

which in turn implies that

‖xn+1−d‖2

≤ (1−2ψnη̄ +(ψnη̄2)+ψnηρ)

(1−ψnηρ)
‖xn−d‖2 +

((1−ψnη̄)2 +ψnηρ)

(1−ψnηρ)
3J2ψn

νn

ψn
‖xn− xn−1‖

+
2ψn

(1−ψnηρ)
〈η f (d)−Dd, xn+1−d〉− (1−ψnη̄)2

(1−ψnηρ)
{γn(2−φn)‖(T F2

sn
− I)Gln‖2

+(2σ −λn)λn‖Vtn−V d‖2 +
m

∑
i=1

βn,i(βn,0−κ)‖gn−hn,i‖2}

=
(
1− 2ψn(η̄−ηρ)

(1−ψnηρ)

)
‖xn−d‖2 +

2ψn(η̄−ηρ)

(1−ψnηρ)

{
ψnη̄2

2(η̄−ηρ)
J3

+
((1−ψnη̄)2 +ψnηρ)

2(η̄−ηρ)
3J2

νn

ψn
‖xn− xn−1‖+

1
η̄−ηρ

〈η f (d)−Dd, xn+1−d〉
}

− (1−ψnη̄)2

(1−ψnηρ)
{γn(2−φn)‖(T F2

sn
− I)Gln‖2 +(2σ −λn)λn‖Vtn−V d‖2

+
m

∑
i=1

βn,i(βn,0−κ)‖gn−hn,i‖2},

where J3 = sup{‖xn−d‖2 : n ∈ N}. This completes the proof. �
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Lemma 4.3. The following inequality holds for all d ∈ ϒ and n ∈ N

‖xn+1−d‖2 ≤ (1−ψnη̄)2‖xn−d‖2 +3J2(1−ψnη̄)2
ψn

νn

ψn
‖xn− xn−1‖

+2ψn〈η f (d)−Dd, xn+1−d〉+2J4(1−ψnη̄)2‖Vtn−V d‖

+2J5(1−ψnη̄)2‖G∗(T F2
sn
− I)Gln‖− (1−ψnη̄)2{‖gn− ln‖2 +‖tn− zn‖2},

where J4 := supn∈N{λn‖tn− zn‖} and J5 := supn∈N{γn‖gn− ln‖}.

Proof. Let d ∈ ϒ. From the fact that (I +λnQ)−1 is firmly nonexpansive and I−λnV is nonex-
pansive, we have

‖zn−d‖2 = ‖(I +λnQ)−1(I−λnV )tn− (I +λnQ)−1(I−λnV )d‖2

≤ 〈zn−d, (I−λnV )tn− (I−λnV )d〉

≤ 1
2
‖tn−d‖2 +

1
2
‖zn−d‖2− 1

2
‖tn− zn‖2− 1

2
λ

2
n ‖Vtn−V d‖2 +λn‖tn− zn‖‖Vtn−V d‖,

So, we have

‖zn−d‖2 ≤ ‖tn−d‖2−‖tn− zn‖2 +2J4‖Vtn−V d‖, (4.10)

where J4 := supn∈N{λn‖tn− zn‖}. From (4.1) and (4.3), we arrive at

‖ln + γnG∗(T F2
sn
− I)Gln−d‖2 ≤ ‖ln−d‖2.

By the firmly nonexpansivity of T F1
rn , we have

‖gn−d‖2 = ‖T F1
rn
(ln + γnG∗(T F2

sn
− I)Gln)−T F1

rn
d‖2

≤ 〈gn−d, ln + γnG∗(T F2
sn
− I)Gln−d〉

=
1
2
{‖gn−d‖2 +‖ln + γnG∗(T F2

sn
− I)Gln−d‖2

−‖(gn−d)− (ln + γnG∗(T F2
sn
− I)Gln−d)‖2}

≤ 1
2
{‖gn−d‖2 +‖ln−d‖2−‖gn− ln− γnG∗(T F2

sn
− I)Gln‖2}

=
1
2
{‖gn−d‖2 +‖ln−d‖2− (‖gn− ln‖2 + γ

2
n‖G∗(T F2

sn
− I)Gln‖2

−2γn〈gn− ln, G∗(T F2
sn
− I)Gln〉)}

≤ 1
2
{‖gn−d‖2 +‖ln−d‖2−‖gn− ln‖2 +2γn‖gn− ln‖‖G∗(T F2

sn
− I)Gln‖}.

Thus

‖gn−d‖2 ≤ ‖ln−d‖2−‖gn− ln‖2 +2γn‖gn− ln‖‖G∗(T F2
sn
− I)Gln‖

≤ ‖ln−d‖2−‖gn− ln‖2 +2J5‖G∗(T F2
sn
− I)Gln‖, (4.11)

where J5 := supn∈N{γn‖gn− ln‖}. Using (4.5), (4.8), and (4.11) in (4.10), we arrive at

‖zn−d‖2 ≤ ‖xn−d‖2 +3J2ψn
νn

ψn
‖xn− xn−1‖−‖gn− ln‖2

+2J5‖G∗(T F2
sn
− I)Gln‖−‖tn− zn‖2 +2J4‖Vtn−V d‖. (4.12)
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Substituting (4.12) into (4.9) yields that

‖xn+1−d‖2 ≤ (1−ψnη̄)2

[
‖xn−d‖2 +3J2ψn

νn

ψn
‖xn− xn−1‖

−‖gn− ln‖2 +2J5‖G∗(T F2
sn
− I)Gln‖−‖tn− zn‖2 +2J4‖Vtn−V d‖

]
+2ψn〈η f (d)−Dd, xn+1−d〉

= (1−ψnη̄)2‖xn−d‖2 +3J2(1−ψnη̄)2
ψn

νn

ψn
‖xn− xn−1‖

+2ψn〈η f (d)−Dd, xn+1−d〉

+2J4(1−ψnη̄)2‖Vtn−V d‖+2J5(1−ψnη̄)2‖G∗(T F2
sn
− I)Gln‖

− (1−ψnη̄)2[‖gn− ln‖2 +‖tn− zn‖2],

which is the required inequality. �

Theorem 4.1. Let H1 and H2 be two real Hilbert spaces, and let C1 ⊂ H1 and C2 ⊂ H2 be
nonempty, convex, and closed subsets. Let G : H1 → H2 be a bounded linear operator with
adjoint G∗. Let F1 : C1×C1→R and F2 : C2×C2→R be two bifunctions satisfying conditions
(A1)-(A4) with F2 being upper semi-continuous in the first argument. Let D : H1 → H1 be a
strongly positively bounded linear operator with coefficient η̄ and f : H1→H1 be a contraction
with coefficient ρ ∈ (0,1) such that 0 < η < η̄

ρ
. Suppose that Q : H1 → 2H1 is a maximal

monotone operator and V : H1 → H1 is a σ -ism. Let Si : C1 → CB(C1) be a finite family of
multivalued demicontractive mappings with constant κi such that I− Si is demiclosed at zero,
Si(d) = {d} for all d ∈

⋂m
i=1 Fix(Si), and κ = max{κi} for each i = 1,2, ...,m. Suppose that

Condition B and Condition C are satisfied. Then, the sequence {xn} generated by Algorithm
3.1 converges strongly to a point x∗ ∈ ϒ, where x∗ = Pϒ(I−D+η f )(x∗).

Proof. Let x∗ = Pϒ(I−D+η f )(x∗). It follows from Lemma 4.2 that

‖xn+1− x∗‖2 ≤

(
1− 2ψn(η̄−ηρ)

1−ψnηρ

)
‖xn− x∗‖2

+
2ψn(η̄−ηρ)

(1−ψnηρ)

{
ψnη̄2

2(η̄−ηρ)
J3 +

(3J2(1−ψnη̄)2 +ψnηρ)

2(η̄−ηρ)

νn

ψn
‖xn− xn−1‖

+
1

(η̄−ηρ)
〈η f (x∗)−Dx∗, xn+1− x∗〉

}
. (4.13)

Next, we claim limn→+∞ ‖xn− x∗‖= 0. By Lemma 2.5, it suffices to demonstrate that

limsup
k→+∞

〈η f (x∗)−Dx∗, xn+1− x∗〉 ≤ 0

for every subsequence {‖xnk− x∗‖} of {‖xn− x∗‖} satisfying

liminf
k→+∞

(‖xnk+1− x∗‖−‖xnk− x∗‖)≥ 0.
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So, we suppose that {‖xnk− x∗‖} is a subsequence of ‖xn− x∗‖ such that

liminf
k→∞

(‖xnk+1− x∗‖−‖xnk− x∗‖)≥ 0. (4.14)

Again, from lemma 4.2, we have

(1−ψnk η̄)2

(1−ψnkηρ)
(2σ −λnk)λnk‖Vtnk−V d‖2

≤
(

1−
2ψnk(η̄−ηρ)

(1−ψnkηρ)

)
‖xnk−d‖2−‖xnk+1−d‖2 +

2ψnk(η̄−ηρ)

(1−ψnkηρ)

{
ψnk η̄2

2(η̄−ηρ)
J3

+
(3J2(1−ψnk η̄)2 +ψnkηρ)

2(η̄−ηρ)

νnk

ψnk

‖xnk− xnk−1‖+
1

(η̄−ηρ)
〈η f (d)−Dd, xnk+1−d〉

}
.

From the fact that limk→+∞ ψnk = 0 and (4.14), we have

(1−ψnk η̄)2

(1−ψnkηρ)
(2σ −λnk)λnk‖Vtnk−V d‖2→ 0, k→+∞.

Consequently, we obtain ‖Vtnk −V d‖ → 0 as k→ +∞. By following a similar argument, we
find from Lemma 4.2 that

lim
k→∞
‖gnk−hnk,i‖= 0, ∀i = 1,2, ...,m, (4.15)

and limk→∞ γnk(2−φnk)‖(T
F2

snk
− I)Glnk‖2 = 0. From the definition of γn, we have

φnk(2−φnk)
‖(T F2

snk
− I)Glnk‖4

‖G∗(T F2
snk
− I)Gl2

nk
‖2
→ 0, k→+∞.

By the condition of φn, we have that

‖(T F2
snk
− I)Glnk‖2

‖G∗(T F2
snk
− I)Glnk‖

→ 0, k→+∞.

Since ‖G∗(T F2
snk
− I)Glnk‖ is bounded, we arrive at

lim
k→∞
‖(T F2

snk
− I)Glnk‖= 0. (4.16)

It follows that

‖G∗(T F2
snk
− I)Glnk‖ ≤ ‖G

∗‖‖(T F2
snk
− I)Glnk‖= ‖G‖‖(T

F2
snk
− I)Glnk‖→ 0 (4.17)

as k→+∞. Similarly, from Lemma 4.3, we have

(1−ψnk η̄)2‖gnk− lnk‖
2

≤ (1−ψnk η̄)2‖xnk−d‖2−‖xnk+1−d‖2 +3J2(1−ψnk η̄)2
ψnk

νnk

ψnk

‖xnk− xnk−1‖

+2ψnk〈η f (d)−Dd, xnk+1−d〉+2J4(1−ψnk η̄)2‖Vtnk−V d‖

+2J5(1−ψnk η̄)2‖G∗(T F2
snk
− I)Glnk‖.
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From (4.14), (4.17), and Remark 3.1, we have

lim
k→∞
‖gnk− lnk‖→ 0. (4.18)

Following the similar argument, from Lemma 4.3, we have

lim
k→∞
‖tnk− znk‖= 0. (4.19)

It follows from Remark 3.1 that

lim
k→∞
‖lnk− xnk‖= νnk‖xnk− xnk−1‖= 0. (4.20)

By (4.15), we have

‖tnk−gnk‖= ‖βnk,0gnk +
m

∑
i=1

βnk,ihnk,i−gn,k‖

≤ βnk,0‖gnk−gnk‖+
m

∑
i=1

βnk,i‖hnk,i−gn,k‖→ 0, k→+∞

Furthermore, letting k→+∞, we have

‖gnk− xnk‖→ 0; ‖tnk− xnk‖→ 0; ‖znk− xnk‖→ 0; ‖znk− lnk‖→ 0; ‖hnk,i− xnk‖→ 0. (4.21)

Moreover, by (4.15) we have

lim
k→+∞

d(gnk ,Signk)≤ lim
k→∞
‖gnk−hnk,i‖→ 0, i = 1,2, . . . ,m.

From the fact that lim
k→+∞

ψnk = 0, we have

‖xnk+1− xnk‖ ≤ ψnk‖η f (lnk)−Dxnk‖+(1−ψnk η̄)‖znk− xnk‖→ 0, k→+∞. (4.22)

To complete the proof, we need to establish that wω(xn) ⊂ ϒ. We first prove that wω(xn) ⊂⋂m
i=1 Fix(Si). Since {xn} is bounded, then wω(xn) is nonempty. Let x̂ ∈ wω(xn) be an arbitrary

element. Then, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x̂ as k→+∞. Then, we
have that gnk ⇀ x̂. Since I−Si is demiclosed at zero for each i = 1, ...,m, then it follows from
(4.15) that x̂ ∈ Fix(Si) for all i = 1, ...,m. This implies that x̂ ∈

⋂m
i=1 Fix(Si). Hence, wω(xn)⊂⋂m

i=1 Fix(Si).
Next, we prove that wω(xn) ⊂ (A + B)−1(0). Let Tnk = (I + λnkQ)−1(I − λnkV ). From

the definition of zn and (4.19), we have limk→∞ ‖Tnktnk − tnk‖ = limk→∞ ‖znk − tnk‖ = 0. Since
liminfk→∞ λnk > 0, there exists δ > 0 such that λnk ≥ δ for all k ≥ 1. By Lemma 2.7(ii), we
have limk→∞ ‖Tδ tnk − tnk‖ ≤ 2limk→∞ ‖Tnktnk − tnk‖ = 0. By Lemma 2.7(ii), we have that Tδ is
nonexpansive. In view of tnk ⇀ x̂, we obtain from the demiclosedness of I−Tδ that x̂ ∈ F(Tδ ).
By Lemma 2.7(i), we obtain x̂ ∈ (A+B)−1(0). Hence, we have that wω(xn)⊂ (A+B)−1(0).

Finally, we prove that wω(xn) ⊂ SEP(F1,F2). First, we prove that wω(xn) ⊂ EP(F1). Since
gnk = T F1

rnk
(lnk + γnkG∗(Tsnk

− I)Glnk), we have that

F1(gnk ,y)+
1

rnk

〈y−gnk ,gnk− lnk− γnkG∗(T F2
snk
− I)Glnk〉 ≥ 0, y ∈C1,

which implies that

F1(gnk ,y)+
1

rnk

〈y−gnk ,gnk− lnk〉−
1

rnk

〈y−gnk ,γnkG∗(T F2
snk
− I)Glnk〉 ≥ 0, y ∈C1.
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So, from the monotonicity of F1, we have

1
rnk

〈y−gnk ,gnk− lnk〉−
1

rnk

〈y−gnk ,γnkG∗(T F2
snk
− I)Glnk〉 ≥ F1(y,gnk), y ∈C1.

Since gnk ⇀ x̂, then it follows from (4.17), and (4.18), liminfk→+∞ rnk > 0, and condition (A4)
that

F1(y, x̂)≤ 0, y ∈C1. (4.23)

Now, for y ∈ C1, let ya := ay+(1− a)x̂, for all a ∈ (0,1]. Then we have that ya ∈ C1, and it
follows from (4.23) that F1(ya, x̂)≤ 0. By applying assumptions (A1)-(A4), we have

0 = F1(ya,ya)≤ aF1(ya,y)+(1−a)F1(ya, x̂)≤ aF1(ya,y).

It follows that F1(ya,y)≥ 0, ∀y∈C1. Letting a→ 0 by Condition (A3), we have that F1(x̂,y)≥ 0,
∀y ∈C1. This implies that x̂ ∈ EP(F1).

Finally, we prove that Gx̂ ∈ EP(F2). Since G is a bounded linear operator and wω(xn) =
wω(ln) by (4.20), then Glnk ⇀ Gx̂. It follows from (4.16) that

T F2
snk

Glnk ⇀ Gx̂, k→+∞. (4.24)

By definition of T F2
snk

Glnk , we have

F2(T F2
snk

Glnk ,y)+
1

snk

〈y−T F2
snk

Glnk ,T
F2

snk
Glnk−Glnk〉 ≥ 0, y ∈C2.

Since F2 is upper semi-continuous in the first argument, it follows from (4.16), (4.24), and
limsupk→∞ snk > 0 that F2(Gx̂,y)≥ 0, ∀y∈C2. This proves that Gx̂∈ EP(F2). Hence, wω(xn)⊂
ϒ as required. From (4.21), we see that wω(xn){gnk} = wω(xn){xnk}. Since {xnk} is bounded,
then there exist a subsequence {xnk j

} of {xnk} such that xnk j
⇀ x+ and

lim
j→∞
〈η f (x∗)−Dx∗,xnk j

− x∗〉= limsup
k→∞

〈η f (x∗)−Dx∗,xnk− x∗〉

= limsup
k→∞

〈η f (x∗)−Dx∗,gnk− x∗〉. (4.25)

Since x∗ = Pϒ(I−D+η f )(x∗), it follows from (4.25) that

limsup
k→∞

〈η f (x∗)−Dx∗,xnk− x∗〉= lim
j→∞
〈η f (x∗)−Dx∗,xnk j

− x∗〉

= 〈η f (x∗)−Dx∗,x+− x∗〉 ≤ 0,

which together with (4.22) yields that

limsup
k→∞

〈η f (x∗)−Dx∗,xnk+1− x∗〉

= limsup
k→∞

〈η f (x∗)−Dx∗,xn+1− xnk〉+ limsup
k→+∞

〈η f (x∗)−Dx∗,xnk− x∗〉

= 〈η f (x∗)−Dx∗,x+− x∗〉 ≤ 0.

Applying Lemma 2.5 to (4.13) and using Remark 3.1 and the condition on ψn, we have that
limn→+∞ ‖xn− x∗‖= 0 as required. �

By the properties of best approximation operators, we have the following result.
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Corollary 4.2. Let H1 and H2 be two real Hilbert spaces, and let C1 ⊂ H1 and C2 ⊂ H2 be
nonempty, convex, and closed subsets. Let G : H1 → H2 be a bounded linear operator with
adjoint G∗, and let F1 : C1×C1 → R and F2 : C− 2×C2 → R be two bifunctions satisfying
conditions (A1)-(A4) with F2 being upper semi-continuous in the first argument. Let D : H1→
H1 be a strongly positively bounded linear operator with coefficient η̄ , and and let f : H1→ H1
be a contraction with coefficient ρ ∈ (0,1) such that 0 < η < η̄

ρ
. Suppose that Q : H1→ 2H1 is a

maximal monotone operator and V : H1→H1 is a σ -ism. Let Si : C1→ P(C1) be a finite family
of multivalued mappings such that PSi is κi- demicontractive and I−PSi is demiclosed at zero
with κ = max{κi} for each i = 1,2, ...,m. Let {xn} be a sequence generated as follows:

Step 0. Select initial data x0,x1 ∈ H1 and set n = 1.
Step 1. Given the (n− 1)th and nth iterates, choose νn such that 0 ≤ νn ≤ ν̂n, ∀n ∈ N with ν̂n

defined by

ν̂n =

{
min

{
ν , εn
||xn−xn−1||

}
, if xn 6= xn−1,

ν , otherwise.
(4.26)

Step 2. Compute ln = xn +νn(xn− xn−1).

Step 3. Compute gn = T F1
rn (ln + γnG∗(T F2

sn − I)Gln), where

γn =


φn||(T

F2
sn −I)Gln||2

||G∗(T F2
sn −I)Gln||2

, if T F2
sn Gln 6= Gln,

γ, otherwise (γ being a nonnegative real number).
(4.27)

Step 4. Compute 
tn = βn,0gn +∑

m
i=1 βn,ihn,i; hn,i ∈ PSi(gn);

zn = (I +λnQ)−1(I−λnV )tn = JQ
λn
(I−λnV )tn;

xn+1 = ψnη f (ln)+(I−ψnD)zn.

Set n := n+1 and return to Step 1.
Suppose that Condition B and Condition C are satisfied. Then, the sequence {xn} gener-

ated above converges strongly to a point x∗ ∈ ϒ, where x∗ = Pϒ(I −D+ η f )(x∗) and ϒ :=
SEP(F1,F2)∩ (Q+V )−1(0)∩

⋂m
i=1 Fix(Si) is nonempty.

Proof. Since PSi satisfies the common endpoint condition, F(Si) = F(PSi), and I−PSi is demi-
closed at zero for each i= 1,2, ...,m, then the result follows immediately from Theorem 4.1. �

Remark 4.1. Our result in Section 4 improves on existing works in the following aspects:

(i) Our result involves the problem of fixed points of a finite family of multivalued demi-
contractive mappings, which is a more general class of mappings than the ones studied
in [9, 24, 29].

(ii) Our result improves on the results in [28, 40], which require prior knowledge of the
norm of the bounded linear operator while our result employs a self-adaptive step size.

(iii) The result in this paper extends the result in [24] from the problem of common solutions
of the SEP and the FPP of a family of multivalued quasi-nonexpansive mappings to
the problem of common solutions of the SEP, the V IP, and the FPP of a family of
multivalued demicontractive mappings in Hilbert spaces.
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(iv) Unlike the result in [24], our algorithm utilizes the inertial technique to speed up the
convergence of the proposed algorithm.

(v) We obtain the strong convergence of the proposed algorithm without following the con-
ventional ”two-case approach” employed by numerous authors in the literature.

5. NUMERICAL EXAMPLES

In this section, we present some numerical experiments to demonstrate the computational
efficiency of our Algorithm 3.1 in comparison with Algorithm (1.5), Appendix 6.1, Appendix
6.2, and Appendix 6.3 in the literature. All numerical computations were carried out using
Matlab version R2019(b).

In the numerical computations, we choose η = 2
7 ,ψn =

1
2n+1 ,εn =

1
(2n+1)2 ,βn,0 =

n
2n+1 ,βn,i =

n+1
5(2n+1) , i= 1,2, . . . ,5,λn =

2n
3n+1 ,φn = 0.8,ν = 0.85, and rn = sn =

n+1
3n+5 , select αn =

2n
3n+2 ,βn =

3n
5n+1 , and θn =

n
3n+1 in Algorithm (1.5), Appendix 6.1, Appendix 6.2, and Appendix 6.3, and

take φ1 = φ2 = 0 in Appendix 6.1 and Appendix 6.3.

Example 5.1. Let H1 =R=H2,C1 = [−3,0] and C2 =(−+∞,0]. For all x∈R, let the operators
G,Q,V :R→R be defined by G(x) = 3x, Qx= 4x, and V x= 3x, respectively. For i= 1,2, . . . ,5,
define multivalued mappings Si : C1→CB(C1) by

Si(x) =

{[
− i|x|

i|x|+1 ,0
]
, x ∈ [−3,−2);

{0}, x ∈ [−2,0];

It can easily be verified that Si is a hybrid multivalued mapping with Fix(Si) = {0} for each
i. Hence, Si is 0-demicontractive. Moreover, for each x,y ∈C1, define the bifunction F1 : C1×
C1→R by F1(x,y) = xy+y−x−x2, and for each u,v∈C2, define the bifunction F2 : C2×C2→
R by F2(u,v) = uv+10v−10u−u2. It can easily be verified that F1,F2 both satisfy conditions
(A1)-(A4). After simple calculations, we obtain from Lemma 2.6 that

T F1
r (u) =

u− r
1+ r

, ∀ u ∈C1,

and

T F2
s (v) =

v−10s
1+ s

, ∀ v ∈C2.

We choose f (x) = x
3 ,D(x) = x

5 . It can easily be checked that all the conditions of Theorem 4.1
are satisfied.

We choose four different initial values as follows with γ = 0.05 in each case:
Case I: x0 = 29, x1 = 394;
Case II: x0 =−65, x1 =−500;
Case III: x0 =−59.45, x1 = 491;
Case IV: x0 = 125, x1 =−542.

We compare the performance of Algorithm 3.1 with Algorithm (1.5), Appendix 6.1, Appen-
dix 6.2, and Appendix 6.3. The stopping criterion used for our computation is |xn+1− xn| <
10−2. We plot the graphs of errors against the number of iterations in each case. The numerical
results are reported in Figure 1 and Table 1.
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TABLE 1. Numerical Results for Example 5.1

Alg. 1.5 App 6.1 App. 6.2 App. 6.3 Alg. 3.1
Case I No. of Iter. 15 15 11 11 5

CPU time
(sec)

0.0047 0.0059 0.0249 0.0111 0.0122

Case II No. of Iter. 15 15 11 11 5
CPU time
(sec)

0.0048 0.0059 0.0224 0.0106 0.0121

Case III No. of Iter. 15 15 11 11 5
CPU time
(sec)

0.0055 0.0044 0.0177 0.0044 0.0055

Case IV No. of Iter. 15 15 11 11 5
CPU time
(sec)

0.0055 0.0065 0.0325 0.0113 0.0158
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FIGURE 1. Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom
right: Case IV.
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Example 5.2. Let H1 = H2 = l2(R). Define C1 := {x ∈ l2 : ‖x‖ ≤ 1} and C2 := {y ∈ l2 : ‖y‖ ≤
1}. Let F1 : C1×C1 → R be defined by F1(x,y) = xy− y2, where x = (x1,x2, ...,xi, ...) and
y = (y1,y2, ...,yi, ...) ∈ C1,, and let F2 : C2×C2 ∈ R be defined by F2(u,v) = u2 + uv− 2v2,
where u = (u1,u2, ...,ui, ...) and v = (v1,v2, ...,vi, ...)∈C2. One can easily verify that conditions
(A1)-(A4) are satisfied. After some steps of calculations with Lemma 2.6, we have

T F1
r (w) =

w
1− r

, w = (v1,w2, ...,wi, ...) ∈C1

and
T F2

s (z) =
z

3s+1
, z = (z1,z2, ...,zi, ...) ∈C2.

For all x ∈ l2, let the operators G,Q,V : l2 → l2 be defined by G(x) = 2
3x, Qx = 2x, and

V x = 1
2x, respectively. For i = 1,2, . . . ,5, define Si : H1 → H1 by Six = x

2i for all x ∈ l2. We
choose f (x) = 2

3x and D(x) = 2
7x. It is clear that all the conditions of Theorem 4.1 are satisfied.

We choose four different initials as follows with γ = 0.08 in each case:
Case I: x0 = (2,−1,−1

2 , · · ·), x1 = (1
5 ,

1
10 ,

1
20 , · · ·),

Case II: x0 = (2, 4
5 ,

8
25 , · · ·), x1 = (1, 1

10 ,
1

100 , · · ·),
Case III: x0 = (2,1, 1

2 , · · ·), x1 = (1
5 ,−

1
10 ,

1
20 , · · ·),

Case IV: x0 = (5
2 ,

5
4 ,

5
8 , · · ·), x1 = (2, 1

5 ,
1
50 , · · ·).

We compare the performance of Algorithm 3.1 with Appendix 6.2, and Appendix 6.3. The
stopping criterion used for our computation is ‖xn+1−xn‖< 10−2. We plot the graphs of errors
against the number of iterations in each case. The numerical results are reported in Figure 2 and
Table 2.

TABLE 2. Numerical results for Example 5.2

Alg. 1.5 App 6.1 App. 6.2 App. 6.3 Alg. 3.1
Case I No. of Iter. 8 8 13 13 4

CPU time
(sec)

0.0079 0.0067 0.0124 0.0140 0.0144

Case II No. of Iter. 7 7 13 13 5
CPU time
(sec)

0.0070 0.0111 0.0101 0.0231 0.0298

Case III No. of Iter. 8 8 13 13 4
CPU time
(sec)

0.0069 0.0112 0.0100 0.0138 0.0196

Case IV No. of Iter. 8 8 14 14 5
CPU time
(sec)

0.0063 0.0056 0.0067 0.0067 0.0145

Remark 5.1. We point out that the algorithms in Appendix 6.1 and Appendix 6.3 can solve
the common solution of split mixed equilibrium problems and variational inclusion problems.
But for fair comparison in the numerical examples, we take φ1 = φ2 = 0 in the two algorithms
so that the problem reduces to the problem of finding a common solution of split equilibrium
problems and variational inclusion problems.
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FIGURE 2. Top left: Case I; Top right: Case II; Bottom left: Case III; Bottom
right: Case IV.

Remark 5.2. By using different initials in each of Examples 5.1 and 5.2, we obtain the nu-
merical results displayed in Tables 1 and 2, and Figures 1 and 2. We compared our proposed
Algorithm 3.1 with the methods of Cholamjiak et al. and Arfat et al. (Algorithm 1.5, Appendix
6.1, Appendix 6.2, and Appendix 6.3) in Examples 5.1 and 5.2.

Furthermore, we note the following from our numerical examples:

• In Examples 5.1 and 5.2, we can see from the tables and graphs that the number of
iterations for our proposed method is almost the same (well-behaved) for all initials.
Also, there is no significant difference in the CPU time as we vary the initials.
• From the tables and figures, we can clearly see that, in terms of number of iterations, our

Algorithm 3.1 outperforms the methods of Cholamjiak et al. and Arfat et al. (Algorithm
1.5, Appendix 6.1, Appendix 6.2, and Appendix 6.3) in Examples 5.1 and 5.2.

6. CONCLUSION

We studied the problem of finding a common solution of the split equilibrium problem, the
variational inclusion problem, and the common fixed point problem of multivalued demicon-
tractive mappings. We introduced a new iterative scheme, which combines inertial technique
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and adaptive step sizes with viscosity and forward-backward splitting methods for approximat-
ing the common solution of the aforementioned problem in Hilbert spaces. We proved strong
convergence of the proposed algorithm without a prior knowledge of the operator norm. We also
presented some numerical experiments to illustrate the efficiency of our method in comparison
with some other methods in literature.
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Appendix 6.1. [40, Theorem 3.1]
Let {xn}, {yn}, and {un} be sequences generated by x0,x1 ∈ H1 and

yn = xn +θn(xn− xn−1),

un = αnyn +(1−αn)T
(F1,φ1)

rn (I− γG∗(I−T (F2,φ2)
rn )G)yn,

xn+1 = βnun +(1−βn)Jnun, n≥ 1,

(6.1)

where Jn =(I+λnB)−1(I−λnA), with {λn}⊂ (0,2α), {θn}⊂ [0,θ ], for some θ ∈ [0,1),{rn}⊂
(0,+∞) with γ ∈ (0, 1

L), such that L is the spectral radius of G∗G, and {αn}, {βn} are sequences
in [0,1].

Appendix 6.2. [28, Theorem 3.2]
Let {xn}, {yn}, and {zn} be sequences generated by x0,x1 ∈ H1 (satisfying the assumptions
made on the control parameters) and

yn = xn +θn(xn− xn−1),

zn = αnyn +(1−αn)T
F1

rn (I− γG∗(I−T F2
rn )G)yn,

wn = βnzn +(1+βn)J
Q
λn
(I−λnV )zn,

Cn+1 = {z ∈Cn : ||wn− z||2 ≤ ||xn− z||2 +2θ 2
n ||xn− xn−1||2−2θn〈xn− z,xn−1− xn〉},

xn+1 = PCn+1x1, n≥ 1,
(6.2)

where JQ
λn

= (I +λnQ)−1, {λn} ⊂ (0,2σ), {θn} ⊂ [0,θ ], θ ∈ [0,1),{rn} ⊂ (0,+∞) with γ ∈
(0, 1

L), such that L is the spectral radius of G∗G and {αn}, {βn} are sequences in [0,1].

Appendix 6.3. [40, Algorithm 4.1]
Let {xn}, {yn}, {zn} and {un} be sequences generated by x0,x1 ∈ H1 and:

yn = xn +θn(xn− xn−1),

un = αnyn +(1−αn)T
(F1,φ1)

rn (I− γG∗(I−T (F2,φ2)
rn )G)yn,

zn = βnun +(1−βn)Jnun,

Cn+1 = {z ∈Cn : ‖zn− z‖2} ≤ ‖xn− z‖2 +2θ 2
n ‖xn− xn−1‖2−2θn〈xn− z,xn−1− xn〉},

xn+1 = PCn+1x1, n≥ 1,
(6.3)

where Jn =(I+λnB)−1(I−λnA), with {λn}⊂ (0,2α), {θn}⊂ [0,θ ], for some θ ∈ [0,1),{rn}⊂
(0,+∞) with γ ∈ (0, 1

L), such that L is the spectral radius of G∗G, and {αn}, {βn} are sequences
in [0,1].
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