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Abstract. In this paper, we investigate the approximate efficient solution and minimal sets of vector
optimization problems. Firstly, we propose a new scalar function through the Gerstewitz function and
discuss some of its properties. Secondly, we apply this scalar function to address the connectedness of
the approximate efficient solution sets. Finally, the connectedness of the minimal sets is studied based
on the above results.
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1. INTRODUCTION

Vector optimization is one of the most developed areas of Applied Mathematics. It has great
influence on many fields, such as Economics, Engineering, Medicine, etc. The structure of
solution sets is the most common topic for optimization models in which allowing to move
continuously between one optimal solution to another along optimal alternatives plays a vital
role [1, 2]. This possibility is assured if the efficient set is arcwise connected or at least con-
nected, and in the theory of differential equations, it is also known as the Kneser condition; see,
e.g., [3, 4]. Therefore, connectedness conditions in optimization have received an increasing
attention from many researchers recently such as for vector optimization problems [5, 6, 7],
for vector equilibrium problems [8, 9, 10, 11], for vector variational inequalities [12, 13, 14],
and for many different types of minimal solution sets in the class of set optimization problems
[15, 16].

Now let us present a brief overview of connectedness conditions for vector optimization
problems (VOP). In [17], Gong used the convexity conditions of constraint sets and objective
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functions to study the connectedness for nondominate sets and efficient sets of vector opti-
mization problems. Then, motivated by this work, Sun [18] replaced the convex conditions of
objective functions by strict quasiconvexity conditions to discuss sufficient conditions of the
connectedness for the efficient sets of multiobjective optimization problems. After that, in [5],
by applying the linear scalar method, Han and Huang generalized the results of [18] to (VOP)
in normed spaces, which, in company with nonlinear scalars is one of the best methods to study
(VOP). Later on, Han and Huang [16] used the strictly natural quasiconvexity, a slightly reduced
version of the strictly quasiconvexity, to consider the connectedness of efficient sets of (VOP)
in normed spaces via linear scalarization method. Recently, Anh et al. [7] introduced concepts
related to generalized convexlikeness of a vector mapping and a nonlinear scalarization func-
tion concerning the Hiriart-Urruty oriented distance, and then by employing these results, the
authors formulated connectedness conditions of efficient and nondominate sets of nonconvex
vector optimization problems.

Motivated by above observations, in this paper, we aim to study the connectedness of the
approximate efficient solution and approximate minimal sets to vector optimization problems
without using any convexity conditions. Precisely, based on the Gerstewitz function, we in-
troduce a nonlinear scalar function and discuss its properties, including generalized convexity,
extended connectedness and continuity. Then, by using these results we investigate connected-
ness conditions for approximate efficient solution sets of nonconvex vector optimization prob-
lems via the nonlinear scalarization function. Finally, we use the above results to build the
connectedness for approximate minimal sets to such problems.

2. PRELIMINARIES

Let X and Y be normed spaces, and let C be a pointed, closed, and convex cone with
nonempty interior (intC 6= /0) in Y. We first recall some notions needed in the sequel.

Definition 2.1. Let X be a nonempty subset of X.

(a) [19, page 10]) For each x1,x2 ∈X, the set Sx1,x2 :=
⋃

t∈[0,1]Lx1,x2(t) is called a line segment
between x1 and x2, where Lx1,x2(t) = (1− t)x1 + tx2. Then, X is said to be convex if
Sx1,x2 ⊂X for all x1,x2 ∈X .

(b) [20, Definition 2.1] For each pair of given points x1,x2 ∈ X, let Ax1,x2 : [0,1]→ X be a
continuous vector-valued mapping such that Ax1,x2(0) = x1 and Ax1,x2(1) = x2. Then, Ax1,x2

is called an arc on X with endpoints x1,x2. The set X is said to be arcwise connected if,
for each pair of points x1,x2 in X , there is an arc Ax1,x2 on X .

(c) [21, page 540] The set X is said to be separated if there are two open subsets U ,V of X
such that X ∩U 6= /0, X ∩V 6= /0, U ∩V = /0 and X ⊂U ∪V . The set X is said to be
connected if it is not separated.

Definition 2.2. A vector-valued mapping f : X→ Y is said to be

(a) [22, Definition 6.1] segmented C -convex (C -convex) on a convex subset X of X if, for
x1,x2 ∈X and t ∈ [0,1],

f (Lx1,x2(t)) ∈ (1− t) f (x1)+ t f (x2)−C ;
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(b) [20, Definition 2.2] arcwise connected C -convex on an arcwise connected subset X of X
if, for x1,x2 ∈X , there exists an arc Ax1,x2 on X such that, for all t ∈ [0,1],

f (Ax1,x2(t)) ∈ (1− t) f (x1)+ t f (x2)−C ;

(c) [11, Definition 3.2] connected C -convex on a connected subset X of X if, for x1,x2 ∈X ,
there exists a connected set Kx1,x2 ⊂X containing x1,x2 such that the set⋃

t∈[0,1]
{x ∈Kx1,x2 : f (x) ∈ (1− t) f (x1)+ t f (x2)−C }

is connected.

Definition 2.3. A vector-valued mapping f : X→ Y is said to be
(a) [23, Definition 2.1] naturally quasisegmented C -convex (naturally C -quasiconvex) on a

convex subset X of X if, for x1,x2 ∈X and t ∈ [0,1], there exists s ∈ [0,1] such that

f (Lx1,x2(t)) ∈ (1− s) f (x1)+ s f (x2)−C ;

(b) [11, Definition 3.3] naturally quasiarcwise connected C -convex on an arcwise connected
subset X of X if, for x1,x2 ∈ X , there exists an arc Ax1,x2 on X such that, for each
t ∈ [0,1], we can find some s ∈ [0,1],

f (Ax1,x2(t)) ∈ (1− s) f (x1)+ s f (x2)−C ;

(c) [11, Definition 3.3] naturally quasiconnected C -convex on a connected subset X of X if,
for x1,x2 ∈X , there exists a connected subset Kx1,x2 ⊂X containing x1,x2 such that for
all x ∈Kx1,x2 , we can find some s ∈ [0,1],

f (x) ∈ (1− s) f (x1)+ s f (x2)−C .

Remark 2.1. In view of Definitions 2.2 and 2.3, the following statements hold true.
(a) If f is segmented C -convex (arcwise connected C -convex, respectively), then f is arcwise

connected C -convex (connected C -convex, respectively).
(b) If f is naturally quasisegmented C -convex (naturally quasiarcwise connected C -convex, re-

spectively), then f is naturally quasiarcwise connected C -convex (naturally quasiconnected
C -convex, respectively).

(c) If f is is segmented C -convex (arcwise connected C -convex, connected C -convex, respec-
tively), then f is naturally quasisegmented C -convex (naturally quasiarcwise connected
C -convex, naturally quasiconnected C -convex, respectively).

Remark 2.2. (a) A function f is segmented C -concave (arcwise connected C -concave, con-
nected C -concave, respectively) if− f is segmented C -convex (arcwise connected C -convex,
connected C -convex, respectively).

(b) A function f is naturally quasisegmented C -concave (naturally quasiarcwise connected C -
concave, naturally quasiconnected C -concave, respectively) if − f is naturally quasiseg-
mented C -convex (naturally quasiarcwise connected C -convex, naturally quasiconnected
C -convex, respectively).

Definition 2.4. [24, Definition 2.5.1] A set-valued mapping F : X⇒ Y is said to be
(a) upper semicontinuous (usc) at x0 ∈ X if, for any neighborhood V of F(x0), there is some

neighborhood U of x0 such that F(U )⊂ V ;
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(b) lower semicontinuous (lsc) at x0 ∈ X if, for any open subset V of Y with F(x0)∩V 6= /0,
there is some neighborhood U of x0 such that F(x)∩V 6= /0 for all x ∈U ;

(c) continuous at x0 ∈ X if it is both usc and lsc at x0.

Definition 2.5. [22, Definition 5.1] A vector-valued mapping f : X→ Y is said to be
(a) C -lower semicontinuous (C -lsc) at x0 ∈X if, for any neighborhood V of f (x0), there exists

some neighborhood U of x0 such that f (x) ∈ V +C for all x ∈U ;
(b) C -upper semicontinuous (C -usc) at x0 ∈ X if − f is C -lsc at x0;
(c) C -continuous at x0 ∈ X if it is both C -usc and C -lsc at x0.

In the following, a mapping is considered to satisfy a given property on X if it holds this
property at every point of X , and if X = X, then we omit “on X” in the statement.

Lemma 2.1. [2, Theorem 3.1] Assume that X is a connected subset of X, and a set-valued
mapping W : X⇒Y is lower semicontinuous (upper semicontinuous) with connected values on
X . Then, W (X ) is connected.

Lemma 2.2. [1, Theorem 4.3.2] Let f : X→ Y be a continuous mapping. Then, f (X ) is
connected if X is a nonempty connected subset of X.

In order to finalize this section, we consider the following result played an important role in
our analysis.

Lemma 2.3. Let A ,B be nonempty subsets of X with A ⊂B ⊂ clA . Then, B is connected
if A is connected.

Proof. Suppose on the contrary that B is not connected. Then, there exist open subsets U ,V
of X such that

U ∩B 6= /0, V ∩B 6= /0, (2.1)
U ∩V ∩B = /0, U ∪V ⊃B. (2.2)

If U ∩A = /0 then, by B ⊂ clA ⊂ X \U , we obtain U ∩B = /0 which contradicts (2.1).
Consequently

U ∩A 6= /0. (2.3)
By the same arguments, we also have

V ∩A 6= /0. (2.4)

From (2.2) and the assumption A ⊂B, one has

U ∩V ∩A = /0, U ∪V ⊃A .

This together with (2.3) and (2.4) yields that A is not connected, which is absurd. Hence, B is
connected. �

3. A NONLINEAR SCALARIZATION FUNCTION

Definition 3.1. [24, Equation 2.23 ] Let e be given in intC . The nonlinear scalarization function
ϕe,C : Y→ R is defined by

ϕe,C (y) := inf{λ ∈ R : y ∈ λe−C }, ∀y ∈ Y.

We now recall important properties of the above function as follows.
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Lemma 3.1. [24, Theorem 2.3.1] The following statements hold true.

(a) ϕe,C is continuous;
(b) ϕe,C is convex if C is convex;
(c) for all λ ∈ R, ϕe,C (y)< λ if and only if y ∈ λe− intC ;
(d) for all λ ∈ R, ϕe,C (y) = λ if and only if y ∈ λe−bdC ;
(e) for all λ ∈ R,y ∈ Y, ϕe,C (y+λe) = ϕe,C (y)+λ ,

where intC and bdC stand for the interior and the boundary of C , respectively.

Lemma 3.2. [24, Theorem 2.3.1] Let y1,y2 ∈ Y. Then,

(a) y1 ∈ y2−C implies that ϕe,C (y1)≤ ϕe,C (y2);
(b) y1 ∈ y2− intC implies that ϕe,C (y1)< ϕe,C (y2).

In the remaining part of this section, based on the Gerstewitz function [25], a new nonlinear
scalarization function along with its properties is introduced and discussed, which are used to
scalarize vector optimization problems in the next section.

Let f : X→Y be a vector-valued mapping. We consider the function ξ : X×X→R defined
by

ξ (z,x) := ϕe,C ( f (z)− f (x)), ∀x,z ∈ X. (3.1)

Example 3.1. Let X=R,Y=R2,X =]0,1[,C =R2
+,e = (1,1) and f (x) = (x,x2). Then, f is

R2
+-convex. Indeed, for all x1,x2 ∈X and t ∈ [0,1], one has

f ((1− t)x1 + tx2) = ((1− t)x1 + tx2, [(1− t)x1 + tx2]
2)

∈ (1− t)(x1,x2
1)+ t(x2,x2

2)−R2
+

∈ (1− t) f (x1)+ t f (x2)−R2
+.

Taking arbitrarily x,z ∈X with f (z)− f (x) ∈ λe−R2
+, we have{

z− x≤ λ ,

z2− x2 ≤ λ .
(3.2)

Combining (3.1) and (3.2), we gain

ξ (z,x) = ϕe,C ( f (z)− f (x))

= inf{λ ∈ R : f (z)− f (x) ∈ λe−R2
+}

= max{z− x,z2− x2}

=


z− x, if 0 < z+ x≤ 1,z≥ x,
z− x, if 1≤ z+ x < 2,z≤ x,
z2− x2, if 0 < z+ x≤ 1,z≤ x,
z2− x2, if 1≤ z+ x < 2,z≥ x.

Then, ξ is twice differentiable with non-negative in the first variable on X , and hence ξ (·,x)
is segmented R+-convex on X .
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Example 3.2. Let X=X =Y=R,C =R+,e = 1, and f (x) = x3. Clearly, f is not segmented
R+-convex on R, but it is arcwise connected C -convex. Indeed, for every z1,z2 ∈ X , we
consider an arc Az1,z2on X defined by

Az1,z2(t) =
3
√
(1− t)z3

1 + tz3
2, ∀t ∈ [0,1].

Then, for all t ∈ [0,1], f (Az1,z2(t)) = (1− t)z3
1 + tz3

2 = (1− t) f (z1)+ t f (z2), and consequently
f is arcwise connected R+-convex on X .

Now we demonstrate that ξ (·,x) is arcwise connected R+-convex. If f (Az1,z2(t))− f (x) ∈
λe−R+ for some x ∈X , t ∈ [0,1] and λ ∈ R, then (1− t)z3

1 + tz3
2− x3 ≤ λ . Consequently,

ξ (Az1,z2(t),x) = ϕe,C ( f (Az1,z2(t))− f (x))

= inf{λ ∈ R : f (Az1,z2(t))− f (x) ∈ λe−R+}

= (1− t)z3
1 + tz3

2− x3

= (1− t)(z3
1− x3)+ t(z3

2− x3)

= (1− t)ξ (z1,x)+ tξ (z2,x).

Thus ξ is arcwise connected R+-convex in the first variable on X .

The following results give us sufficient conditions for convexity and connectedness properties
of the function ξ in the first variable discussed as in above examples.

Lemma 3.3. Let f : X→ Y be a vector valued mapping and X be a nonempty and convex
subset of X. Then,

(a) ξ is segmented R+-convex in the first variable on X if f is segmented C -convex on X ;
(b) ξ is naturally quasisegmented R+-convex in the first variable on X if f is naturally qua-

sisegmented C -convex on X .

Proof. We prove only Statement (a), and the other case can be discussed similarly. Since f is
segmented C -convex on X , for all z1,z2 ∈X and t ∈ [0,1], one has

f ((1− t)z1 + tz2) ∈ (1− t) f (z1)+ t f (z2)−C .

Consequently,

f ((1− t)z1 + tz2)− f (x) ∈ (1− t)[ f (z1)− f (x)]+ t[ f (z2)− f (x)]−C , ∀x ∈X .

This together with Lemmas 3.1 (b) and 3.2 (a) imply that

ξ ((1− t)z1 + tz2,x)≤ ϕe,C ((1− t)[ f (z1)− f (x)]+ t[ f (z2)− f (x)])

≤ (1− t)ϕe,C ( f (z1)− f (x))+ tϕe,C ( f (z2)− f (x))

≤ (1− t)ξ (z1,x)+ tξ (z2,x).

Thus, ξ is segmented R+-convex in the first variable on X . �

Lemma 3.4. Let f : X→ Y be a vector valued mapping and X be a nonempty and convex
subset of X. Then,

(a) ξ is arcwise connected R+-convex in the first variable on X if f is arcwise connected
C -convex on X ;
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(b) ξ is naturally quasiarcwise connected R+-convex in the first variable on X if f is naturally
quasiarcwise connected C -convex on X ;

(c) ξ is connected R+-convex in the first variable on X if f is connected C -convex on X ;
(d) ξ is naturally quasiconnected R+-convex in the first variable on X if f is naturally quasi-

connected C -convex on X .

Proof. Because of the similarity of the techniques, we only prove the case (a).
Due to the arcwise connected C -convexity of f , for all x1,x2 ∈X , there is an arc Ax1,x2 on

X such that
f (Ax1,x2(t)) ∈ (1− t) f (x1)+ t f (x2)−C , ∀t ∈ [0,1].

We obtain

f (Ax1,x2(t))− f (z) ∈ (1− t)[ f (x1)− f (z)]+ t[ f (x2)− f (z)], ∀z ∈X .

Combining this with Lemmas 3.1 (b) and 3.2 (a), one has

ξ (Ax1,x2(t),z)≤ ϕe,C ((1− t)[ f (x1)− f (z)]+ t[ f (x2)− f (z)])

≤ (1− t)ϕe,C ( f (x1)− f (z))+ tϕe,C ( f (x2)− f (z))

≤ (1− t)ξ (x1,z)+ tξ (x2,z).

Hence, ξ is arcwise connected R+-convex in the first variable on X . �

By using the same arguments as in the proofs for Lemmas 3.3 and 3.4, we also obtain the
results of convexity and connectedness of the function ξ in the second variable shown in the
following results.

Lemma 3.5. Let f : X→ Y be a vector valued mapping and X be a nonempty and convex
subset of X. Then
(a) ξ is segmented R+-convex in the second variable on X if f is segmented C -concave on

X ;
(b) ξ is naturally quasisegmented R+-convex in the second variable on X if f is naturally

quasisegmented C -concave on X .

Lemma 3.6. Let f : X→ Y be a vector valued mapping and X be a nonempty and convex
subset of X. Then,
(a) ξ is arcwise connected R+-convex in the second variable on X if f is arcwise connected

C -concave on X ;
(b) ξ is naturally quasiarcwise connected R+-convex in the second variable on X if f is nat-

urally quasiarcwise connected C -concave on X ;
(c) ξ is connected R+-convex in the second variable on X if f is connected C -concave on X ;
(d) ξ is naturally quasiconnected R+-convex in the second variable on X if f is naturally

quasiconnected C -concave on X .

We will finalize this section with discussing the semicontinuity and continuity properties of
the function ξ .

Lemma 3.7. Let W be a normed space and a vector-valued mapping g : W→ Y. Then, φ :=
ϕe,C ◦g is
(a) lower semicontinuous at x0 ∈W if g is C -lower semicontinuous at x0;
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(b) upper semicontinuous at x0 ∈W if g is C -upper semicontinuous at x0;
(c) continuous at x0 ∈W if g is C -continuous at x0.

Proof. Due to the continuity of ϕe,C , for all µ > 0, there is a neighborhood U of g(x0) such
that

ϕe,C (y)≥ ϕe,C (g(x0))−µ, ∀y ∈U . (3.3)

Since g is C -lower semicontinuous at x0, there exists a neighborhood V of x0 such that g(x) ∈
U +C for all x ∈ V . Then, for each x ∈ V , there is y0 ∈ U such that g(x) ∈ y0 +C . Conse-
quently, y0 ∈ g(x)−C . Applying Lemma 3.2 (a), one has ϕe,C (g(x))≥ ϕe,C (y0). This together
with (3.3) implies that ϕe,C (g(x)) ≥ ϕe,C (g(x0))− µ for all x ∈ V . Thus, φ(x) ≥ φ(x0)− µ,
or equivalently φ is lower semicontinuous at x0. By the same discussions, we also obtain the
remaining results of this lemma. �

Lemma 3.8. Let f : X→ Y be a vector-valued mapping and X be a nonempty subset of X.
Then, the following statements hold:
(a) ξ is lower semicontinuous in the first variable and upper semicontinuous in the second

variable on X if f is C -lower semicontinuous on X ;
(b) ξ is upper semicontinuous in the first variable and lower semicontinuous in the second

variable on X if f is C -upper semicontinuous on X ;
(c) ξ is continuous on X ×X if f is C -continuous on X .

Proof. For given vectors x̄, z̄∈X , we define vector-valued mappings η1,η2 : X→Y as follows

η1(z) := f (z)− f (x̄), η2(x) := f (z̄)− f (x).

Then, η1 is C -lower semicontinuous on X and η2 is C -upper semicontinuous on X as f
is C -lower semicontinuous on X . Combining this with (3.1) and Lemma 3.7 (a), we derive
that ξ (·, x̄) = ϕe,C (η1(·)) is lower semicontinuous on X and ξ (z̄, ·) = ϕe,C (η2(·)) is upper
semicontinuous on X . By employing the above arguments, we also get Statement (b). For
Statement (c), we set the vector-valued mappings g1(z,x) = f (z) and g2(z,x) = f (x) for all
x,z ∈ X. A vector-valued mapping ψ : X×X→ Y is defined by

ψ(z,x) = g1(z,x)−g2(z,x).

Since f is C -continuous on X , g is C -continuous on X ×X . Applying Lemma 3.7 (c), we
gain the continuity of the function ξ . �

4. CONNECTEDNESS PROPERTIES OF EFFICIENT AND MINIMAL SETS TO VECTOR

OPTIMIZATION PROBLEMS

Let X,Y,C be defined as in Section 2, X be a nonempty subset of X, and f : X→ Y be a
vector-valued mapping. The aim of this section is to study connectedness properties of efficient
and minimal sets to the following vector optimization problem:

(VOP) min f (x) subject to x ∈X .

Motivated by [17], for each ε > 0, we define ε-minimal and ε-efficient points of (VOP) as
follows.

Definition 4.1. A vector y0 ∈ f (X ) is called
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(a) an ε-minimal point of (VOP), written as y0 ∈Min( f ,X ,ε), if

( f (X )− y0 + εe)∩ (−C \{0}) = /0;

(b) an ε-weakly minimal point of (VOP), written as y0 ∈WMin( f ,X ,ε), if

( f (X )− y0 + εe)∩ (− intC ) = /0.

Definition 4.2. A vector x0 ∈X is called

(a) an ε-efficient solution of (VOP), written as x0 ∈ Eff( f ,X ,ε), if f (x0) ∈Min( f ,X ,ε), or
equivalently

Min( f ,X ,ε) = f (Eff( f ,X ,ε));

(b) an ε-weakly efficient solution of (VOP), written as x0 ∈WEff( f ,X ,ε), if f (x0) is an ele-
ment of WMin( f ,X ,ε), or equivalently

WMin( f ,X ,ε) = f (WEff( f ,X ,ε)).

For each a ∈X and ε > 0, we set

E(a,ε) = {x ∈X : ξ (z,a)+ ε > ξ (x,a) for all z ∈X } ,

and
W (a,ε) = {x ∈X : ξ (z,a)+ ε ≥ ξ (x,a) for all z ∈X } .

Remark 4.1. For all a ∈X and 0 < ε1 < ε2, one has E(a,ε1)⊂W (a,ε1)⊂ E(a,ε2).

Lemma 4.1. Let ε > 0 be given. If X is connected and f is naturally quasiconnected C -convex
on X , then W (a,ε) and E(a,ε) are connected for all a ∈X .

Proof. We only prove the first statement, and the other case can be discussed similarly. Taking
arbitrarily x1,x2 ∈W (a,ε), one has

max{ξ (x1,a),ξ (x2,a)} ≤ ξ (z,a)+ ε, ∀z ∈X . (4.1)

Since f is naturally quasiconnected C -convex on X , by Lemma 3.4 (d), there exists a con-
nected set Kx1,x2 ⊂ X containing two points x1,x2 such that, for each x̄ ∈ Kx1,x2, there is
s ∈ [0,1] satisfying

ξ (x̄,a)≤ (1− s)ξ (x1,a)+ sξ (x2,a).

This together with (4.1) implies that

ξ (x̄,a)≤ ξ (z,a)+ ε, ∀z ∈X , x̄ ∈Kx1,x2 .

Therefore, Kx1,x2 ⊂W (a,ε), and so W (a,ε) is connected. �

In the upcoming, we yield sufficient conditions for the connectedness property of weakly
efficient solution sets to the problem (VOP).

Theorem 4.1. Let ε > 0 be given. Assume that

(i) X is connected and compact;
(ii) f is naturally quasiconnected C -convex as well as C -continuous on X .

Then, WEff( f ,X ,ε) is connected.
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Proof. The proof is divided into four steps.
Step 1. W (a,ε) is nonempty for any a ∈X .
Since f is C -lower semicontinuous on X , Lemma 3.8 (a) yields that ξ (·,a) is lower semi-

continuous on X , so the function ξ (·,a) attains the minimal values over the compact subset
X of X, that is, the subset {x ∈X : ξ (z,a)≥ ξ (x,a) for all z ∈X } of W (a,ε) is nonempty.
Hence W (a,ε) is also a nonempty subset of X.

Step 2. The mapping W (·,ε) : X ⇒ X is upper semicontinuous on X .
Suppose on the contrary that we can find a vector â such that W is not usc at â. Then, there

is an open neighborhood U of W (â,ε) and a sequence {an} converging to â such that, for each
n, there exists x̂n ∈W (ân,ε)\U . Since X is compact, we can assume that {x̂n} converges to
some vector x̂ ∈X . If x̂ /∈W (â,ε), then there is ẑ ∈X such that

ξ (ẑ, â)+ ε < ξ (x̂, â). (4.2)

Since x̂n ∈W (ân,ε), we have ξ (ẑ, ân)+ ε ≥ ξ (x̂n, ân). Combining this with the C -continuity
of f and Lemma 3.8 (c), we obtain ξ (ẑ, â)+ ε ≥ ξ (x̂, â). This contradicts (4.2), and hence x̂
belongs to W (â,ε), which is absurd as x̂n /∈U for all n. Therefore, W is upper semicontinuous
in the first variable on X .

Step 3. We demonstrate that WEff( f ,X ,ε) =
⋃

a∈X W (a,ε).
(⊂) Let x̄ ∈WEff( f ,X ,ε) be arbitrary. Then, for any x ∈X , one has f (x)− f (x̄)+ εe /∈
− intC . Combining this with Lemma 3.1 (c), we conclude that

ξ (x, x̄)+ ε ≥ 0 = ξ (x̄, x̄), ∀x ∈X ,

and consequently x̄ ∈W (x̄,ε).
(⊃) Taking arbitrarily x̄ ∈ ∪a∈X W (a,ε), there exists a0 ∈X such that x̄ ∈W (a0,ε). Then,

ξ (z,a0)+ ε ≥ ξ (x̄,a0), ∀z ∈X . (4.3)

If x̄ /∈WEff( f ,X ,ε), then we can find some vector ẑ∈X such that f (ẑ)− f (x̄)+εe∈− intC ,
which leads to

f (ẑ)− f (a0)+ εe ∈ f (x̄)− f (a0)− intC .

Combining this with Lemmas 3.1 (e) and 3.2 (b), we obtain ξ (ẑ,a0)+ ε < ξ (x̄,a0). This con-
tradicts (4.3), and hence x̄ ∈WEff( f ,X ,ε).

Step 4. The set
⋃

a∈X W (a,ε) is a connected subset of X .
It follows from Steps 1, 2, Condition (i) and Lemma 4.1 that all conditions of Lemma 2.1

hold true. Therefore,
⋃

a∈X W (a,ε) is connected.
Combining Steps 3 and 4, we conclude that WEff( f ,X ,ε) is connected. �

Example 4.1. Let X = Y = R2,X = {(x1,x2) ∈ R2 : x2
1 ≤ x2 ≤ 0.5x2

1 + 2},C = R2
+ and f :

R2→ R2 be a mapping defined by

f (x) = (|x|,2x).

Then, X is compact but not convex, f is C -continuous and naturally quasiconnected C -convex
on X . Applying Theorem 4.1, we imply that WEff( f ,X ,ε) is connected.

To investigate the connectedness of the efficient solution set, we consider the following im-
portant relation.
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Lemma 4.2. Let ε > 0 and X be arcwise connected. Assume that f is naturally quasiarcwise
connected C -convex on X . Then, W (a,ε)⊂ clE(a,ε).

Proof. Let x̄ ∈W (a,ε) and x̂ ∈ E(a,ε) be arbitrary. Then, we obtain

ξ (x̄,a)≤ ξ (z,a)+ ε and ξ (x̂,a)< ξ (z,a)+ ε, ∀z ∈X . (4.4)

Since x̄, x̂ ∈X and f is the naturally quasiarcwise connected C -convex on X , Lemma 3.4 (b)
gives us to choose an arc Ax̄,x̂(t)⊂X such that, for each t ∈ [0,1], there exists s ∈ [0,1],

ξ (Ax̄,x̂(t),a)≤ (1− s)ξ (x̄,a)+ sξ (x̂,a).

This together with (4.4) would imply that

ξ (Ax̄,x̂(t),a)< (1− s)(ξ (z,a)+ ε)+ s(ξ (z,a)+ ε)

< ξ (z,a)+ ε,

for all z ∈X . Consequently, Ax̄,x̂(t) ∈ E(a,ε) for all t ∈ [0,1]. Since Ax̄,x̂(t)→ x̄ when t→ 0,
x̄ belongs to clE(a,ε). Therefore, W (a,ε) is a subset of clE(a,ε). �

In the next theorem, we present connectedness conditions for the approximate efficient solu-
tion set of the problem (VOP).

Theorem 4.2. Let ε > 0 be given. Assume that
(i) X is arcwise connected and compact;

(ii) f is naturally quasiarcwise connected C -convex as well as C -continuous on X .

Then, Eff( f ,X ,ε) is connected.

Proof. By employing the same arguments in the proof of Theorem 4.1, we conclude that E(x,ε)
is nonempty for all ε > 0 and x ∈X . The rest of this proof is divided into three steps.

Step 1. The mapping E(·,ε) : X ⇒ X is lower semincontinuous on X .
If there is some x0 ∈X that makes E(·,ε) not lsc at x0, then there are a vector x̄∈E(x0,ε) and

a sequence {xn}⊂X converging to x0 such that, for all x̄n ∈ E(xn,ε), the sequence {x̄n} cannot
converge to x̄. So, there is a subsequence {xnk} of {xn} satisfying x̄ 6∈ E(xnk ,ε). Therefore, we
can find some vector ẑnk ∈X such that

ξ (x̄,xnk)≥ ξ (ẑnk ,xnk)+ ε. (4.5)

By the compactness of X , we can assume that {ẑnk} converges to ẑ∈X . Applying Lemma 3.8
(c) and the C -continuity of f , we obtain the continuity of ξ , which together with (4.5) implies
that

ξ (x̄,x0)≥ ξ (ẑ,x0)+ ε.

It is impossible as x̄ belongs to E(x0,ε). Therefore, E(·,ε) is lower semicontinuous on X .
Combining this with Lemmas 2.1 and 4.1, we conclude that the set

⋃
a∈X E(a,ε) is connected.

Step 2. We show that⋃
a∈X

E(a,ε)⊂ Eff( f ,X ,ε)⊂ cl

( ⋃
a∈X

E(a,ε)

)
. (4.6)

It follows from Definition 4.2 and Step 3 in the proof of Theorem 4.1 that

Eff( f ,X ,ε)⊂
⋃

a∈X
W (a,ε).
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Combining this with the naturally quasiarcwise connected C -convexity of f and Lemma 4.2,
we have

Eff( f ,X ,ε)⊂
⋃

a∈X
W (a,ε)⊂

⋃
a∈X

cl(E(a,ε))⊂ cl

( ⋃
a∈X

E(a,ε)

)
.

Now we prove that ⋃
a∈X

E(a,ε)⊂ Eff( f ,X ,ε).

Taking arbitrarily x̄ ∈ ∪a∈X E(a,ε), there exists a0 ∈X such that x̄ ∈ E(a0,ε). Then,

ξ (z,a0)+ ε > ξ (x̄,a0), ∀z ∈X . (4.7)

If x̄ /∈ Eff( f ,X ,ε), then we can pick up a vector ẑ ∈X such that

f (ẑ)− f (x̄)+ εe ∈ −C \{0} ⊂ −C ,

and consequently
f (ẑ)− f (a0)+ εe ∈ f (x̄)− f (a0)−C . (4.8)

From (4.8), Lemmas 3.2 (a) and 3.1 (e), we obtain

ξ (ẑ,a0)+ ε ≤ ξ (x̄,a0),

which contradicts (4.7). Therefore, x̄∈Eff( f ,X ,ε), this leads to
⋃

a∈X E(a,ε)⊂Eff( f ,X ,ε).
Step 3. It follows from Steps 1, 2, and Lemma 2.3 that the ε-efficient solution set Eff( f ,X ,ε)

is connected. �

Remark 4.2. In the studies of connectedness conditions of solution sets, the convex condition
for constraint sets is considered as a key assumption [8, 17, 18, 26, 27]. However, the convexity
property of solution sets to vector optimization models is not easy to achieve, and so the ob-
tained results via this approach are difficult to apply to bilevel optimization models. Therefore,
we have replaced this essential condition by connectedness conditions and have obtained results
on connectedness properties of (weakly) approximate efficient solution sets to vector optimiza-
tion problems as in the Theorems 4.1 and 4.2. Therefore, although the problem considered
in this paper is a special case of the problem in [27], our results cannot be inferred from the
mentioned study.

Example 4.2. Let X= Y= R2,X = {(x1,x2) ∈ R2 : x2
1 + x2

2 ≤ 10},C = R2
+ and f : R2→ R2

be defined by
f (x1,x2) = ((x1x2)

2,x2
1 + x2

2).

We now demonstrate that f is naturally quasiarcwise connected R2
+-convex, but it is not natu-

rally quasisegmented R2
+-convex on X .

? f is not naturally quasisegmented R2
+-convex: For x̂ = (−1,−3), x̄ = (−3,−1), and t = 0.5,

we have

f (0.5x̂+0.5x̄) = f (−2,−2) = (16,8) /∈ (9,10)−R2
+ = (1− s)g(x̂)+ sg(x̄)−R2

+, ∀s ∈ [0,1].

Therefore, f is not naturally quasisegmented R2
+-convex on R2.
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? f is naturally quasiarcwise connected R2
+-convex: For each x̂ = (x̂1, x̂2) and x̄ = (x̄1, x̄2) in

R2, we consider an arc Ax̂,x̄ : [0,1]→ R2 defined by

Ax̂,x̄(t) =

{
(1−2t)x̂, if 0≤ t ≤ 0.5,
(2t−1)x̄, if 0.5 < t ≤ 1.

Now, we prove that for each t ∈ [0,1], we can choose some s ∈ [0,1] such that

f (Ax̂,x̄(t)) ∈ (1− s) f (x̂)+ s f (x̄)−R2
+. (4.9)

We consider two cases.
Case 1. If t ∈ [0,0.5], then

f (Ax̂,x̄(t)) ∈ ((1−2t)4(x̂1x̂2)
2,(1−2t)2(x̂2

1 + x̂2
2))−R2

+

∈ ((x̂1x̂2)
2, x̂2

1 + x̂2
2)−R2

+

∈ f (x̂)−R2
+.

Hence, (4.9) holds with s = 0.
Case 2. If t ∈]0.5,1], then

f (Ax̂,x̄(t)) ∈ ((2t−1)4(x̄1x̄2)
2,(2t−1)2(x̄2

1 + x̄2
2))−R2

+

∈ ((x̄1x̄2)
2, x̄2

1 + x̄2
2)−R2

+

∈ f (x̄)−R2
+,

and consequently (4.9) satisfies with s = 1.
Moreover, X is compact and f is continuous on X , by Theorem 4.2, the set Eff( f ,X ,ε) is

connected.

In the following result we provide connectedness conditions of minimal sets via the corre-
sponding properties of efficient sets. More precisely, we have used Theorems 4.1 and 4.2 to ob-
tain connectedness properties of WEff( f ,X ,ε),Eff( f ,X ,ε), and then combining Lemma 2.2
and the fact that WMin( f ,X ,ε) = f (WEff( f ,X ,ε)) and Min( f ,X ,ε) = f (Eff( f ,X ,ε)),
the connectedness properties of WMin( f ,X ,ε) and Min( f ,X ,ε) follow.

Corollary 4.1. Let ε > 0 be given. Assume that
(i) X is compact and connected;

(ii) f is naturally quasiconnected C -convex as well as continuous on X .

Then, WMin( f ,X ,ε) is connected.

Corollary 4.2. Let ε > 0 be given. Assume that
(i) X is compact and arcwise connected;

(ii) f is naturally quasiarcwise connected C -convex as well as continuous on X .

Then, Min( f ,X ,ε) is connected.

Remark 4.3. Minimal sets play an important role in vector optimization, and so they have
received much attention from several mathematicians in various topics such as for existence
conditions [3, 22, 28, 29, 30, 31], for optimal conditions [32, 33, 34, 35, 36] and for topology
properties [3, 7, 17]. It is worthy noting that when we consider models of practical situa-
tions, the data is usually obtained from measuring or statistics, and so data errors are inevitable.
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Therefore, recently there are many works devoted to approximate minimal sets of optimization
models, see e.g [6, 27] and the references therein. To the best of our knowledge, there have no
works on studying the connectedness property of (weakly) approximate minimal sets to vector
optimization problems, and hence Corollaries 4.1 and 4.2 are completely new.
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