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Abstract. We present an algorithm for computing the minimum-rank positive semidefinite completion
of a sparse matrix with a chordal sparsity pattern. This problem is tractable, in contrast to the minimum-
rank positive semidefinite completion problem for general sparsity patterns. We also present a similar
algorithm for the Euclidean distance matrix completion with minimum embedding dimension. The two
algorithms use efficient recursions over a clique tree associated with the chordal sparsity pattern. As an
application, we use the minimum-rank completion method as a rounding technique to convert the solution
of a sparse semidefinite optimization problem with non-unique solutions to an optimal solution of lower
rank. In experiments with semidefinite relaxations of optimal power flow problems, the minimum-rank
completion often results in solutions of lower rank than the solutions computed by interior-point solvers.
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1. Introduction

The theory of symmetric positive semidefinite and Euclidean distance matrix completions of
matrices with partial patterns characterized by chordal graphs was developed in the 1980s and
1990s, with the celebrated 1984 paper by Grone, Johnson, Sá, and Wolkowicz [1] as one of the
key contributions. Let G = (V, E) be an undirected graph, where V = {1, 2, . . . , n} is the set of
vertices and E the set of edges. In this paper, G represents the sparsity pattern of matrices in Sn

(the symmetric n × n matrices). The set of symmetric n × n matrices with sparsity pattern E is
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defined as
Sn

E = {X ∈ S
n | Xi j = X ji = 0 if i , j and {i, j} < E}. (1.1)

Absence of an edge {i, j} in the graph indicates a zero in positions (i, j) and ( j, i). The projection
of a matrix X ∈ Sn on Sn

E is denoted by ΠE (X). This is the matrix in Sn
E with entries

(ΠE (X))i j =


Xi j {i, j} ∈ E
Xii i = 1, . . . , n
0 otherwise.

With this notation, the positive semidefinite (PSD) matrix completion problem is to find a matrix
X ∈ Sn that satisfies

X ∈ Sn
+, ΠE (X) = A, (1.2)

where A ∈ Sn
E is given and Sn

+ denotes the set of positive semidefinite matrices in Sn. Clearly, a
necessary condition for existence of a solution is that

Aγγ ∈ S
|γ |
+ for all maximal cliques γ. (1.3)

The cliques are the subsets of V that induce complete subgraphs and correspond to dense
principal submatrices of matrices in Sn

E . Therefore, if ΠE (X) = A then Xγγ = Aγγ for every
clique γ, and these matrices must be positive semidefinite if X is positive semidefinite. If the
graph G is chordal, i.e., every cycle of length greater than three has a chord, then the necessary
condition (1.3) is also sufficient for existence of a positive semidefinite completion [1, Theorem
7]. If the graph is not chordal, there exist matrices A ∈ Sn

E that satisfy (1.3), but do not have a
positive semidefinite completion [1, Theorem 7].

A similar result holds for the Euclidean distance matrix completion problem. A matrix
X ∈ Sn is a Euclidean distance matrix (EDM) if its entries can be expressed as squared pairwise
Euclidean distances of a set of points, i.e., there exist vectors y1, . . . , yn such that

Xi j = ‖yi − y j ‖
2, i, j = 1, . . . , n, (1.4)

where ‖ · ‖ is the Euclidean norm. The dimension of the vectors yi is arbitrary. We denote the
set of n × n EDMs by Dn. The Euclidean distance matrix completion problem is to find X ∈ Sn

that satisfies
X ∈ Dn, ΠE (X) = A, (1.5)

where A ∈ Sn
E is given. A necessary condition for existence of a solution is that

Aγγ ∈ D|γ | for all maximal cliques γ. (1.6)

For chordal graphs, this necessary condition is again sufficient [2, Theorem 3.3]. If the graph
is not chordal, matrices A ∈ Sn

E exist that satisfy (1.6) but do not have an EDM completion [2,
p.651]. We refer the interested reader to [8, 3, 6, 7, 5, 4] for surveys on the positive semidefinite
and EDM completion problems, the connections between them, and their many applications.

In this paper, we consider the problem of finding a solution of (1.2) of minimum rank, and
the problem of finding a solution of (1.5) of minimum embedding dimension, where embedding
dimension refers to the dimension of the vectors yi in (1.4) (the embedding dimension is the
rank of the projection of X on the complement of the all-ones vector; see Section 4 and [9,
§11.3]). These criteria add non-convex objectives to the convex constraints (1.2) and (1.5),
and lead to optimization problems that are difficult to solve in general. For chordal patterns,
however, they are very tractable. The minimum rank of any PSD completion of a matrix A
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that satisfies (1.3) is given by maxγ rank(Aγγ), where the maximum is over all maximal cliques
[10, Theorem 1.3]. Similarly, the minimum dimension of any EDM completion of a matrix
A that satisfies (1.6) is the maximum of the dimensions of Aγγ over all maximal cliques [2,
Theorem 3.3]. The proofs of these theorems in [10, 2] are constructive and explain how to find
the desired completions one matrix entry at a time. In Sections 3 and 4, we present different and
more efficient algorithms that use iterations over a clique tree associated with the chordal graph.
The iterations and data structures are similar to the algorithms discussed in [11, 9] for several
closely related problems, including maximum-determinant positive semidefinite completion,
and computing gradients and directional second derivatives of logarithmic barriers for cones
of sparse positive semidefinite matrices and their dual cones. The algorithms are variants of
supernodal versions of the multifrontal algorithm for sparse Cholesky factorization.

This work is motivated by applications in semidefinite and Euclidean distance matrix op-
timization, i.e., matrix optimization problems that include constraints of the form X ∈ Sn

+ or
X ∈ Dn. The most important example is the semidefinite programming problem (SDP)

minimize tr(CX)
subject to tr(Ak X) = b, k = 1, . . . ,m

X ∈ Sn
+.

(1.7)

The variable X in this problem and the coefficients C, A1, . . . , Am are symmetric matrices of
order n. In semidefinite and EDM optimization problems it is very common that, except for
the constraints X ∈ Sn

+ or X ∈ Dn, the constraints and the objective function depend on a small
subset of the entries of the matrix variable. In the SDP (1.7), for example, this happens when
C, A1, . . . , Am are sparse. Suppose C, A1, . . . , Am ∈ S

n
E . The sparsity pattern E can be the

common (or aggregate) sparsity pattern, i.e., the union of the sparsity patterns of C, A1, . . . , Am,
or an extension of the common sparsity pattern. Since C, A1, . . . , Am ∈ S

n
E , the inner products

in the objective function and the linear constraints of (1.7) do not depend on the variables Xi j

with i , j, {i, j} < E . If X̃ is feasible in (1.7), then any other positive semidefinite matrix X that
satisfies ΠE (X) = ΠE (X̃) is also feasible, with the same value tr(CX) = tr(CX̃) of the objective
function. This property has useful implications for optimization algorithms.

First, suppose the optimal solution of thematrix optimization problem is not unique. Let X? be
an optimal solution returned by an algorithm, for example, one of the general-purpose interior-
point solvers for solving (1.7). In many applications, for example, semidefinite relaxations
of combinatorial or nonconvex polynomial optimization problems, one is most interested in a
low-rank solution (if possible, the minimum-rank solution) of (1.7). However, interior-point
algorithms that follow the central path will return a solution close to the limit of the central path,
and this is unlikely to be the minimum-rank optimal solution. The minimum-rank completions
presented in Section 3 can be used to replace X? with an optimal solution of lower rank. We
first find a chordal extension E of the common sparsity pattern of the coefficient matrices, and
then calculate the minimum-rank completion of ΠE (X?). Note that this is not necessarily the
minimum-rank solution of the SDP, since the entries of ΠE (X?) for X? in the set of optimal
solutions may not be unique. In Section 5 we evaluate this rank-reduction technique on a set
of SDP relaxations of the AC optimal power flow problem, and observe that it often results
in a substantial reduction of the rank. Similarly, in matrix optimization problems involving
EDM constraints X ∈ Dn, one can replace the solution X? computed by any algorithm by
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the minimum-dimension completion of ΠE (X?), where E includes the positions of the matrix
entries Xi j that appear in the other constraints and the objective.

A second application is the class of SDP algorithms based on positive semidefinite completion
techniques. These algorithms exploit the sparsity in (1.7) by computing only ΠE (X) where E is
a chordal extension of the common sparsity pattern of the coefficient matrices. In other words,
they return the solution of the conic linear programming problem

minimize tr(CX)
subject to tr(Ak X) = b, k = 1, . . . ,m

X ∈ K,
(1.8)

where K = ΠE (S
n
+) is the convex cone of matrices in Sn

E that have a positive semidefinite
completion. The variable X in (1.8) is a matrix in Sn

E , and this can be a much lower-dimensional
space than Sn. Algorithms for (1.8) use classical results from the theory of positive semidefinite
completion to handle the constraint X ∈ K . The idea was first proposed in [12], and has
been applied in interior-point algorithms, decomposition methods, and first-order methods
[13, 14, 15, 9, 18, 16, 17]. Methods that solve (1.7) via (1.8) must be followed by a completion
step to find an optimal solution of (1.7). The most appropriate choice is the completion of
minimum rank, because in most applications one is interested in low-rank solutions. Moreover,
since the optimal solution of (1.8) is on the boundary of the cone K , the simpler and more
widely known maximum-determinant positive definite completion is not defined at the optimum
of (1.8). Similar ideas apply to EDM optimization.

Contributions. We first present an algorithm for constructing the minimum-rank PSD comple-
tion of a matrix A ∈ Sn with a chordal sparsity pattern E . The expression for the minimum rank
is given in [10, Theorem 1.3], and the presented algorithm serves as a constructive proof for
this result. The algorithm exploits the structure of the clique tree associated with the chordal
sparsity pattern.

As a second contribution, we use the algorithm as a posterior rounding step for SDP solutions,
and test this technique on semidefinite relaxations of a set of optimal power flow problems. On
most problems, the rounding step is observed to reduce the rank of the computed solutions. In
some cases a solution of rank one is obtained, which corresponds to a global solution of the
underlying nonconvex quadratic optimization problem.

The third contribution is a new algorithm for the minimum-dimension EDM completion
algorithm with chordal sparsity. The algorithm is obtained by adapting the key ideas in the
minimum-rank PSD completion method and uses a similar recursion over the clique tree.

Outline. The rest of the paper is organized as follows. In Section 2 we review basic concepts in
chordal sparsity and graph theory. The minimum-rank PSD completion algorithm is described
in Section 3. Section 4 presents the minimum-dimension EDM completion algorithm. In
Section 5, the proposed algorithm is applied as a posterior rounding process to sparse semidefinite
relaxations of the optimal power flow problem and numerical results are included.

2. Chordal Sparsity Patterns

In this section we review some basic properties of symmetric chordal sparsity patterns, and
define the notation and assumptions that will be used throughout the paper. A more detailed
discussion and proofs can be found in the surveys [19, 9, 17].
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We assume the graph G = (V, E) represents a symmetric n × n sparsity pattern, as defined
in (1.1). The vertex set V = {1, 2, . . . , n} contains the row and column indices. The edge set E
indicates the positions of the off-diagonal nonzeros. We assume that the graph G = (V, E) is
chordal, i.e., every cycle of length at least four has a chord. It is a fundamental result that a graph
is chordal if and only if it has a perfect elimination ordering [20]. Without loss of generality,
we assume that the numerical order 1, . . . , n is a perfect elimination ordering, i.e.,

i > j > k, {i, k} ∈ E, { j, k} ∈ E =⇒ {i, j} ∈ E .

For simplicity we also assume that the graph is connected.
A maximal complete subgraph of a graph is called a (maximal) clique. The vertex of a clique

with the smallest index is called its representative vertex. The clique with representative vertex
i is denoted by γi, and the set of representative vertices by Vc ⊂ V .

We associate with the graph a clique tree. The nodes in the clique tree are the cliques,
indexed by their representative vertices Vc. If the clique γi is not the root of the clique tree, the
representative vertex of its parent in the clique tree is denoted by p(i). A fundamental property
of chordal graphs is that there exists a clique tree with the induced subtree property: for each
k ∈ V , the cliques that contain the vertex k form a subtree of the clique tree [22, 21]. Given a
clique tree with the induced subtree property, one can partition each clique γi in two sets νi and
αi defined as follows. If γi is the root of the clique tree, αi = ∅ and νi = γi. Otherwise,

αi = γi ∩ γp(i), νi = γi \ αi .

The sets νi are called the (maximal) supernodes or clique residuals, and the sets αi are called
the clique separators. It follows from the induced subtree property that the supernodes νi, for
i ∈ Vc, partition V . If k ∈ ν j , then the clique γ j is the root of the induced subtree for vertex k.
The other cliques γi in the induced subtree contain k in the clique separators αi.

We assume the elements in γi, αi, νi are ordered in ascending order. By a suitable ordering
of the vertices and choice of clique tree we can further assume the following properties.

• The representative vertices of the cliques in the clique tree are ordered topologically:
i < p(i) if i , max Vc, and i = max Vc is the representative vertex of the root of the
clique tree.
• The vertices in νi are ordered consecutively: νi = {i, i + 1, . . . , i + |νi | − 1}.

Figure 1 shows an example.

3. Minimum-rank Chordal PSD Completion

3.1. PSD completion. We assume E is a chordal sparsity pattern and use the notation in
Section 2. A classical result in matrix algebra says that a matrix A ∈ Sn

E has a positive
semidefinite completion if and only if

Aγiγi ∈ S
|γi |
+ , i ∈ Vc; (3.1)

see [1]. Dancis [10, Theorem 1.5] has shown that every matrix A ∈ ΠE (S
n
+) has a positive

semidefinite completion with rank equal to

r = max
i∈Vc

rank (Aγiγi ). (3.2)
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Figure 1. Left. The (symmetric) adjacency matrix of a connected, undirected,
chordal graph G, with perfect elimination ordering 1, . . . , n. (For simplicity we
only show the lower triangular part of the adjacency matrix.) A bullet in the
(i, j) entry means the nodes i and j are adjacent. The dashed lines separate the
supernodes. Right. A corresponding clique tree. Every double-row box in the
clique tree is a clique γi. The red index is the clique representative. The bottom
row in each rectangle is the supernode (clique residual) νi and the top row is the
separator αi.

In particular, A has a positive semidefinite completion with rank less than or equal to

rmax = max
i∈Vc
|γi |, (3.3)

the size of the largest clique in the sparsity pattern.
In Sections 3.2 and 3.3, we describe an algorithm to compute a full-rank matrix Y of size

n × r with the property ΠE (YYT ) = A. We will use the following well-known result from linear
algebra (see, for example, [23, Lemma 3], [24, Lemma 2.1], [25, Proposition 3.2]).

Lemma 3.1. If A and B are matrices of the same size that satisfy AAT = BBT , then A = BQ for
some orthogonal matrix Q.

Proof. Suppose A, B ∈ Rn×m and AAT = BBT . The relation AAT = BBT implies that A and
B have the same rank, singular values, and left singular vectors. Therefore they have singular
value decompositions of the form

A = PΣVT, B = PΣUT,

where P ∈ Rn×n, Σ ∈ Rn×m, and V,U ∈ Rm×m, with P,U,V orthogonal. Hence A = BQ for
Q = UVT . �

The matrix Q = UVT constructed in the proof is the orthogonal factor in the polar decom-
position BT A = QH, where Q is orthogonal and H = VSVT with S = ΣTΣ symmetric positive
semidefinite. For general n × m matrices A, B, this matrix is known to be the solution of the
orthogonal Procrustes problem, i.e., it minimizes ‖A − BQ‖F over the orthogonal matrices; see
[26], [27, §7.4.8]. The matrices U,V can be computed from a singular value decomposition
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BT A = USVT , preferably via specialized algorithms that compute this SVD without forming the
product BT A [28, 29].

3.2. Two overlapping diagonal blocks. The key part of the algorithm is first explained via an
illustrative example with a sparsity pattern consisting of two overlapping diagonal blocks. The
next section (Section 3.3) covers the extension to general chordal sparsity patterns, using the
clique tree data structure.

Consider the completion of a symmetric matrix with two overlapping diagonal blocks, parti-
tioned as

A =

A11 AT

21 0
A21 A22 AT

32
0 A32 A33

 ,
with A11, A22, A33 of size n1 × n1, n2 × n2, and n3 × n3, respectively. Here Vc = {1, n1 + 1}, the
two cliques are

γ1 = {1, . . . , n1 + n2}, γn1+1 = {n1 + 1, . . . , n1 + n2 + n3},

and the corresponding supernodes and separators are

ν1 = {1, . . . , n1}, α1 = {n1 + 1, . . . , n1 + n2}, νn1+1 = γn1+1, αn1+1 = {}.

Assume A ∈ ΠE (S
n
+), and define

H1 =

[
A11 AT

21
A21 A22

]
, H2 =

[
A22 AT

32
A32 A33

]
.

From (3.1) and (3.2), the matrices H1,H2 are positive semidefinite and the minimum rank of a
positive semidefinite completion of A is given by

r = max {rank(H1), rank(H2)}.

A matrix Y of size n × r that satisfies ΠE (YYT ) = A can be constructed as follows.
By definition of r , the matrices H1 and H2 can be decomposed as

H1 =

[
A11 AT

21
A21 A22

]
=

[
U1
V1

] [
U1
V1

]T

, H2 =

[
A22 AT

32
A32 A33

]
=

[
U2
V2

] [
U2
V2

]T

,

where U1,U2,V1,V2 have r columns. The submatrix A22 satisfies A22 = V1VT
1 = U2UT

2 . From
Lemma 3.1, the matrices V1 and U2 are related as U2 = V1Q for an r × r orthogonal matrix Q.
Define

Y =

U1Q
U2
V2

 =

U1Q
V1Q
V2

 .
By construction, Y has rank r . The identity ΠE (YYT ) = A can be verified as

X = YYT =


U1UT

1 U1VT
1 U1QVT

2
V1UT

1 V1VT
1 U2VT

2
V2QTUT

1 V2UT
2 V2VT

2

 =


A11 AT
21 U1QVT

2
A21 A22 AT

32
V2QTUT

1 A32 A33

 .
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3.3. Minimum-rank PSD completion algorithm. The technique in Section 3.2 can be ex-
tended to handle general chordal sparsity patterns, by traversing the clique tree in an inverse
topological order (starting at the root and visiting each clique before its children in the clique
tree). The algorithm is summarized in Algorithm 1. For a matrix Y ∈ Rn×m and an index set
β ⊂ {1, . . . , n}, we use Yβ to denote the submatrix of Y with rows indexed by β.

Algorithm 1. Minimum-rank chordal PSD completion.
Input. A matrix A ∈ ΠE (S

n
+), where G = (V, E) is a chordal sparsity pattern, and a

clique tree for G.
Output. A matrix Y ∈ Rn×r with r equal to (3.2) and ΠE (YYT ) = A.
Algorithm.
• Compute r = maxi∈Vc rank(Aγiγi ) and, for each j ∈ Vc, a factorization

Aγjγj =
[

Aνjνj Aνjαj

Aαjνj Aαjαj

]
=

[
U j
Vj

] [
U j
Vj

]T

,

with U j of size |ν j | × r and Vj of size |α j | × r .
• Enumerate the clique representatives j ∈ Vc in an inverse topological order.
If j is the root of the clique tree, set Yνj := U j . Otherwise, compute an r × r
orthogonal matrix Q such that Yαj = VjQ and set Yνj := U jQ.

The two parts of the algorithm can be combined. We can start with r = 0 and increase it to
max {rank(Aγjγj ), r} in step j of the recursion. When r is increased, we add zero columns
to the blocks of Y that have already been computed. Alternatively, we can set r to the upper
bound (3.3), and determine the rank of the matrix Y after finishing the algorithm.
To show correctness of the algorithm, we verify that YYT is a completion of A, i.e.,

YγjY
T
γj = Aγjγj (3.4)

for all j ∈ Vc. Recall that the supernodes ν j partition the index set V = {1, 2, . . . , n}, and that
each set α j is a subset of the union of the sets νi for the ancestors γi of clique γ j in the clique
tree. At each step in the recursion over the tree, we add a new block Yνj . The blocks Yνi for the
cliques γi that precede γ j in the inverse topological ordering are left unchanged. It is therefore
sufficient to verify that after j ∈ Vc has been processed, the identity (3.4) holds, i.e.,[

Yνj
Yαj

] [
Yνj
Yαj

]T

=

[
Aνjνj Aνjαj

Aαjνj Aαjαj

]
.

If j is the root representative, then

YνjY
T
νj = U jUT

j = Aνjνj = Aγjγj .

Otherwise, suppose YγiY
T
γi = Aγiγi for all cliques γi that are ancestors of clique γ j in the clique

tree. Then
Aαjαj = YαjY

T
αj
= VjVT

j

because α j is a subset of the parent clique γp( j). By Lemma 3.1 there exists an orthogonal
matrix Q such that Yαj = VjQ. By choosing Yνj = U jQ we obtain[

Yνj
Yαj

] [
Yνj
Yαj

]T

=

[
U jQ
Yαj

] [
U jQ
Yαj

]T
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=

[
U jUT

j U jQYT
αj

YαjQ
TUT

j YαjY
T
αj

]
=

[
U jUT

j U jVT
j

VjUT
j VjVT

j

]
=

[
Aνjνj Aνjαj

Aαjνj Aαjαj

]
.

4. Minimum-dimension Chordal EDM Completion

4.1. EDM completion. We now turn to the EDM completion problem. As mentioned in
Section 1, a symmetric n× n matrix X is an EDM if there exist vectors y1, . . . , yn such that (1.4)
holds. The condition (1.4) can be written in matrix form as

X = diag(YYT )1T + 1 diag(YYT )T − 2YYT, (4.1)

where 1 is the n-vector of ones,Y is the matrix with rows yT
i , and the linear operator diag : Sn →

Rn maps a matrix to the vector of its diagonal elements. We refer to the matrixY as a realization
of X . From (4.1), X ∈ Dn if and only if there exists a matrix W ∈ Sn

+ that satisfies

X = diag(W)1T + 1 diag(W)T − 2W .

An equivalent characterization of EDMs is due to Schoenberg [30, 31]: X is an EDM if
its diagonal is zero and its projection on the complement of the all-ones vector is negative
semidefinite, i.e.,

diag(X) = 0, PT XP � 0,
where P is a matrix whose columns span the orthogonal complement of 1. We define the
dimension of the EDM X as the rank of its projection on the orthogonal complement of the
all-ones vector:

dim(X) = rank(PT XP).

The following lemma implies that dim(X) is the minimum dimension of any realization Y of X .
The lemma will be exploited in the algorithm in Section 4.2.

Lemma 4.1. Let µ be an n-vector that satisfies 1T µ = 1, and suppose X ∈ Dn. A matrix
Y ∈ Rn×m is a realization of X that satisfies µTY = 0 if and only if

YYT = −
1
2
(I − 1µT )X(I − µ1T ). (4.2)

Proof. Suppose Y is a realization of X and satisfies µTY = 0. From (4.1) we obtain

(I − 1µT )X(I − µ1T ) = −2YYT .

For the other direction, assume Y satisfies (4.2). Clearly, µTYYT µ = 0, so µTY = 0. Also,

diag(YYT ) = −
1
2

diag(X − 1µT X − Xµ1T + (µT Xµ)11T )

= Xµ −
1
2
(µT Xµ)1,
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because diag(X) = 0. Hence

diag(YYT )1T + 1 diag(YYT )T − 2YYT

= Xµ1T + 1µT X − (µT Xµ)11T + (I − 1µT )X(I − µ1T )

= X .

Therefore, Y is a realization of X . �

Lemma4.1 shows that ifwe impose the condition µTY = 0, the productYYT of the realizationY
is uniquely defined. Hence, from Lemma 3.1, the realization Y that satisfies µTY = 0 is unique,
up to right multiplication with an orthogonal matrix. The condition µTY = 0 places the origin
at a specified affine combination of the rows of Y .

4.2. Minimum-dimension EDM completion algorithm. We consider the EDM completion
problem with chordal sparsity pattern E . Using the same notation as in the previous sections,
the main result on this problem is as follows [2, Theorem 3.3], [4, Theorem 5.8.5]: a matrix
A ∈ Sn

E has an EDM completion if and only if

Aγiγi ∈ D
|γi |, i ∈ Vc.

Moreover, there exists a completion with dimension

dim(X) = max
i∈Vc

dim(Aγiγi ). (4.3)

The following algorithm computes a completion with this dimension. In the algorithm, the
vector e1 = (1, 0, . . . , 0) is the first unit vector of compatible size.

Algorithm 2. Minimum-dimension chordal EDM completion.
Input. A matrix A ∈ ΠE (D

n), where G = (V, E) is a chordal sparsity pattern, and a
clique tree for G.

Output. A realization Y ∈ Rn×r of an EDM completion of A with r equal to (4.3).
Algorithm.
• Compute r = maxi∈Vc dim(Aγiγi ) and, for each clique representative j ∈ Vc, a

realization
[
UT

j VT
j

]T
of the EDM[

Aνjνj Aνjαj

Aαjνj Aαjαj

]
(4.4)

with U j of size |ν j | × r and Vj of size |α j | × r . If j is not the root of the tree, we
choose a realization that satisfies eT

1Vj = 0.
• Enumerate the clique representatives j ∈ Vc in an inverse topological order.
If j is the root, defineYνj = U j . Otherwise, compute an r × r orthogonal matrix
Q such that (I − 1eT

1 )Yαj = VjQ, and define

Yνj = U jQ + 1eT
1Yαj . (4.5)
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The realization of (4.4) is computed by factorizing

−
1
2
(I − 1µT )

[
Aνjνj Aνjαj

Aαjνj Aαjαj

]
(I − µ1T ) =

[
U j
Vj

] [
U j
Vj

]T

,

with µ = e|νj |+1 if j is not the root, and otherwise an arbitrary µ that satisfies 1T µ = 1.
To show the correctness of the algorithm, we verify that YYT is an EDM completion of A. At

step j we modify block Yνj . Since the cliques are enumerated in an inverse topological order,
the block Yαj has already been computed in earlier steps. It is sufficient to show that after j ∈ Vc

is visited, the matrix [
Yνj
Yαj

]
is a realization of Aγjγj . The matrices Vj and Yαj are two realizations of Aαjαj , and the first
row of Vj is zero by construction (eT

1Vj = 0). If we translate the rows of Yαj to make the first
row zero, then, from Lemmas 3.1 and 4.1, the two realizations must be identical up to a right
multiplication with an orthogonal matrix. Hence, there exists an orthogonal Q with

VjQ = (I − 1eT
1 )Yαj,

as needed in (4.5). The constructed matrix[
Yνj
Yαj

]
=

[
U jQ + 1eT

1Yαj

Yαj

]
=

[
U j
Vj

]
Q + 1eT

1Yαj

is a realization of Aγjγj because, by construction, [U
T
j VT

j ]
T is a realization of Aγjγj .

5. Posterior Rounding for the Semidefinite Relaxation of OPF

The AC optimal power flow (OPF) problem [32, 33] is to find a cost-optimal operating point of
a power distribution network that consists of a set of power buses and a network of transmission
lines. The general OPF problem is a difficult nonconvex optimization problem. Since its
introduction in 1962 [32], several different formulations have been proposed [34, 36, 37, 38, 35],
and recently, semidefinite relaxation (SDR) techniques for OPF have become an active research
area [39, 40, 41, 42]. Semidefinite relaxations provide lower bounds for the optimal value of
the OPF problem, and in some cases, the global optimum [43, 40, 44]. The computational cost
of SDR, however, grows rapidly with the size of the power system. Thus, solving the SDR of a
large-scale OPF problem is often impractical, mainly due to the large, dense matrix variable in
the SDR formulation. To this end, the sparse structure of the power network has been extensively
exploited to reduce the computational cost of solving the SDR [13, 45, 46, 47, 48, 49]. These
methods solve the SDR as a sparse SDP (1.7) and yield a sparse, PSD completable solution.

We describe in this section a posterior rounding technique to obtain a low-rank solution for
the SDR of the OPF problem. We first solve the semidefinite relaxation of the OPF problem and
obtain a positive semidefinite solution X?. Then a minimum-rank PSD completion of ΠE (X?)

can be constructed via Algorithm 1, where E is the chordal sparsity pattern for the OPF problem.
The completed matrix is by construction optimal for the semidefinite relaxation of OPF, and
may have a smaller rank than the SDP solution computed by a general-purpose solver.

The rest of this section is organized as follows. In Section 5.1 we briefly describe the power
flow model and the OPF problem. Section 5.2 reformulates the OPF problem and describes
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the semidefinite relaxation. In Section 5.3 we discuss the posterior rounding technique, and
Section 5.4 contains results of numerical experiments.

5.1. Power flowmodel. The power systemmodel consists of a network of power buses (nodes).
We denote the set of power buses by N (with |N | = n), and the set of transmission line (edges)
by L ⊂ N ×N , i.e., (i, j) ∈ L if there is a transmission line from node i to node j. Transmission
lines may not be symmetric, and thus we model the network graph as a directed graph. We
denote i ∼ j if (i, j) ∈ L or ( j, i) ∈ L.

The optimal power flow problem can be formulated as a nonconvex quadratically constrained
quadratic program (QCQP)

minimize
∑
(i, j)∈L

f (vi, v j) (5.1a)

subject to p2
i j + q2

i j ≤ S2
i j, (i, j) ∈ L (5.1b)

Pmin
i ≤

∑
(i, j)∈L

pi j ≤ Pmax
i , i ∈ N (5.1c)

Qmin
i ≤

∑
(i, j)∈L

qi j ≤ Qmax
i , i ∈ N (5.1d)

Vmin
i ≤ |vi | ≤ Vmax

i , i ∈ N, (5.1e)
pi j + ̂qi j = vi(v

∗
i − v

∗
j )y
∗
i j, (i, j) ∈ L (5.1f)

where the optimization variables are the real and reactive power flows pi j , qi j over the trans-
mission line (i, j) ∈ L, and the complex voltage vi at node i. The positive scalars Pmin

i , Pmax
i ,

Qmin
i , Qmax

i , Vmin
i , Vmax

i , and Si j are given, yi j is the conductivity of (i, j) ∈ L, and ̂ =
√
−1 is

the imaginary unit. The objective function consists of fuel cost functions fg of generator g ∈ G,
and can be any so-called semidefinite representable convex function. Here we model the power
loss f as a convex quadratic function of the form

f (vi, v j) = gi j |vi − v j |
2 (5.2)

where gi j is the conductance of the transmission line (i, j) ∈ L. Other choices of semidefinite
representable convex functions are also available; see, for example, [50]. The constraints (5.1b)
are on the capacity of transmission lines, (5.1c)–(5.1d) are constraints on real and reactive power
flows, (5.1e) are voltage magnitude constraints, and (5.1f) describe the relation between power
flows and voltages and are derived from the admittance–impedance relation.

5.2. Reformulation and semidefinite relaxation. The nonconvexity of (5.1) is due to the
equality constraints (5.1f) as well as the inequality constraints |vi | ≥ Vmin

i . To formulate a
tractable convex relaxation for (5.1), we first introduce the variable X = vvH and replace the
constraints (5.1e) and (5.1f) by

(Vmin
i )2 ≤ Xii ≤ (Vmax

i )2, i ∈ N, pi j + ̂qi j = (Xii − Xi j)y
∗
i j, (i, j) ∈ L, rank X = 1.

The first two sets of constraints are now linear inequality and equality constraints, and the only
nonconvex rank constraint can be relaxed to a positive semidefinite cone constraint X � 0. Thus
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we obtain a convex semidefinite relaxation (SDR) for the OPF problem
minimize f̃ (X) =

∑
(i, j)∈L

gi j(Xii + X j j − 2Xi j)

subject to p2
i j + q2

i j ≤ S2
i j, (i, j) ∈ L

Pmin
i ≤

∑
(i, j)∈L

pi j ≤ Pmax
i , i ∈ N

Qmin
i ≤

∑
(i, j)∈L

qi j ≤ Qmax
i , i ∈ N

(Vmin
i )2 ≤ Xii ≤ (Vmax

i )2, i ∈ N
pi j + ̂qi j = (Xii − Xi j)y

∗
i j, (i, j) ∈ L

X � 0.

(5.3)

The objective function f̃ (X) is transformed from (5.2). The optimal value of (5.3) provides
a lower bound on that of (5.1), and if the optimal solution X? satisfies rank(X?) = 1, the
SDR (5.3) is exact. In this case, we can obtain a global optimal solution for (5.1) by computing
a rank-one factorization X? = uuH . Conditions for exactness have been extensively studied; see,
for example, [52, 41, 51]. If rank(X?) > 1, the optimal solution X? is not feasible for (5.1) and
only provides a lower bound for the optimal value of the original nonconvex problem (5.1). But
it can still provide an approximation of optimal powers and voltage magnitudes. A rank-one
approximation of X? can be computed as

X̂ = λ1u1uH
1 ,

where λ1 is the largest eigenvalue of X?, and u1 is the principal eigenvector. If the numerical
rank of X? is not much larger than one and the largest eigenvalue is substantially larger than
the others, then the above heuristic gives a solution close to the ideal outcome and the principal
eigenvector can serve as a good approximation of the optimal complex voltages.

5.3. Posterior rounding. In the SDR (5.3), the objective and all the constraints are linear in
the matrix variable X except for the positive semidefinite cone constraint. Moreover, all the
linear constraints in X , as well as the objective, involve only the elements Xi j with (i, j) ∈ L or
( j, i) ∈ L. These elements form a (symmetric) sparsity pattern E , and without loss of generality,
we can assume E is a chordal sparsity pattern. The resulting SDP can be solved efficiently
via a variety of algorithms [13, 45, 53, 14, 54, 48, 49]. If X? is an optimal solution, any PSD
completion of ΠE (X?) is also optimal. For semidefinite relaxations of OPF, the minimum-rank
completion is of special interest. We denote the minimum-rank PSD completion of ΠE (X?) by
X•. If X• has rank one, i.e., X• = wwH , we can construct from it an optimal solution w of the
OPF problem. Even when rank(X•) > 1, the principal eigenvector u1 of X• can still be used as
an approximation of the globally optimal voltages. Replacing the solution X? computed by any
SDP solver with the minimum-rank PSD completion of ΠE (X?) can therefore be interpreted as
a posterior rounding step to find an optimal solution of lower rank than X?.

5.4. Numerical experiments. In this section we evaluate the performance of the posterior
rounding technique applied to the semidefinite relaxation (5.3) of OPF. The experiments are
based on the benchmark problems from the MATPOWER package [55], and the Python library
CHOMPACK [56] for chordal matrix computations and, in particular, its implementation of
Algorithm 1.

Table 1 lists the test cases along with relevant problem dimensions. The value n = |N | is
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Case n = |N | |L| |G|

IEEE-118 118 186 0
IEEE-300 300 409 0
2383wp 2383 2896 92
2736sp 2736 3269 118
2737sp 2737 269 165
2746wop 2746 3307 346
2746wp 2746 3279 352
3012wp 3012 3572 7
3120sp 3120 3693 9
3375wp 3375 3693 25
89pegase 89 210 12
1354pegase 1354 1991 260
2869pegase 2869 4582 510
1888rte 1888 2531 297
1951rte 1951 2596 391
2848rte 2848 3776 547
2868rte 2868 3808 599
6468rte 6468 9000 1295

Table 1. Test cases and problem dimensions.

the number of power buses in the network while the value |L| is the number of transmission
lines. The number of generators |G| is listed in the last column of the table. In the cases
where the underlying network is non-chordal, we construct a chordal extension with the AMD
reordering [57]. In addition, following the convention in [55, 58, 45], we eliminate transmission
line flow constraints in (5.1b) that are not active at the local optimal solution provided by [55].

For each test case, we solve the SDR (5.3) using SeDuMi 1.3 with tolerance 10−7 and denote
the optimal solution by X?. Although we explicitly build the complex-valued SDR, we cast
the problem as a real-valued problem before passing it to SeDuMi. The minimum-rank PSD
completion X• ofΠE (X?) is then constructed via Algorithm 1. Note that the problems solved by
SeDuMi are real-valued and the computed solution is then transformed back into the complex
form. Rank-one solutions of the complex SDP correspond to rank-two solutions of the equivalent
real SDP.

The ratio between the largest and the other eigenvalues is used to compute the numerical rank
of the solution. When we compute the numerical rank of a matrix, the eigenvalues that are
below a certain ratio of the largest one λmax are considered to be zero. In particular, a matrix
has numerical rank one if the ratio between the largest and the second largest eigenvalue is
sufficiently large. In the experiments, we compute the numerical rank of the solutions X? and
X• with the tolerance ε equal to 10−4√n, 10−5√n, and 10−6√n. Eigenvalues smaller than ελmax
are considered to be zero.

Numerical results. Table 2 shows the numerical ranks of X? and X• for different tolerances.
Overall, the posterior rounding process via Algorithm 1 provides a solution of SDR with rank
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ε = 10−4√n ε = 10−5√n ε = 10−6√n

Case n max. clique rank(X?) rank(X•) rank(X?) rank(X•) rank(X?) rank(X•)

IEEE-118 118 20 1 1 1 1 1 1
IEEE-300 300 17 5 1 5 1 36 1
2383wp 2383 31 13 1 17 1 19 3
2736sp 2736 30 1 1 1 1 14 8
2737sop 2737 29 1 1 43 1 87 9
2746wop 2746 30 1 1 32 1 76 11
2746wp 2746 31 1 1 1 1 268 17
3012wp 3012 32 281 5 346 13 578 17
3120sp 3120 32 445 32 572 32 761 32
3375wp 3375 33 442 19 451 19 518 33
89pegase 89 12 7 1 17 5 19 6
1354pegase 1354 19 97 3 111 7 124 19
2869pegase 2869 29 101 13 181 15 199 19
1888rte 1888 16 197 1 251 1 271 3
1951rte 1951 28 23 1 71 1 135 5
2848rte 2848 35 87 1 133 1 210 3
2868rte 2868 31 133 7 255 16 301 21
6468rte 6468 33 214 7 356 11 456 33

Table 2. Numerical rank of computed SDP solution X? andminimum-rank PSD
completion X• of ΠE (X?) for different tolerances.
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Figure 2. Eigenvalue ratio for case IEEE300.

lower than that achieved by general-purpose interior-point solver SeDuMi. In some cases, the
improvement is significant and the completed matrix X• has rank one. On the other hand, the
numerical rank depends on the tolerance we use. For example, in the case 2736sp, the numerical
rank is one when ε = 10−5√n and becomes eight when the threshold is tightened.
The difference in numerical rank between the two solutions is illustrated in Figure 2. The

figure plots the eigenvalue ratio λi/λmax of the two PSD matrices X? and X•, in the test case
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MOSEK 8 SeDuMi v1.3 SDPT3 v4.0

Case n max. clique rank(X?) rank(X•) rank(X?) rank(X•) rank(X?) rank(X•)

IEEE-118 118 20 1 1 1 1 1 1
IEEE-300 300 17 5 1 5 1 5 1
2383wp 2383 31 17 1 17 1 17 1
2736sp 2736 30 1 1 1 1 1 1
2737sop 2737 29 44 1 43 1 43 1
2746wop 2746 30 32 1 32 1 32 1
2746wp 2746 31 1 1 1 1 1 1
3012wp 3012 32 346 13 346 13 337 17
3120sp 3120 32 514 27 572 32 519 27
3375wp 3375 33 451 19 451 19 454 21
89pegase 89 12 19 5 17 5 17 5
1354pegase 1354 19 123 7 111 7 93 8
2869pegase 2869 29 183 14 181 15 167 13
1888rte 1888 16 175 15 251 1 175 15
1951rte 1951 28 71 1 71 1 70 1
2848rte 2848 35 142 1 133 1 133 1
2868rte 2868 31 255 16 255 16 223 13
6468rte 6468 33 356 11 356 11 751 13

Table 3. Numerical rank results with different solvers (ε = 10−5√n).

IEEE300. For the completed matrix X•, eigenvalues λi for i ≥ 2 are small compared to λmax(X•)
while for the SDR solution X? the eigenvalues decay more slowly.
Table 3 shows the numerical ranks of the matrices X? and X•, computed by three different

solvers, SeDuMi, SDPT3 andMOSEK. Here, we found it helpful to omit inactive line constraints
in SeDuMi and SDPT3, but this process was not necessary with MOSEK. The numerical rank is
calculated in the method mentioned above with ratio tolerance ε = 10−5√n. Results are slightly
different for the three solvers, but within a small variation. We can also see that the posterior
rounding process generates favorable low-rank results in all the three solvers, and the ranks of
the completed matrix do not vary too much in different solvers.

6. Conclusions

We described algorithms for two matrix completion problems with chordal sparsity patterns:
the minimum-rank positive semidefinite (PSD) completion, and the minimum-dimension Eu-
clidean distance matrix (EDM) completion. The algorithms use efficient recursions over the
clique tree associated with the chordal sparsity pattern. As an application, we investigated the
use of theminimum-rank PSD completion algorithm as a posterior rounding step for semidefinite
programs (SDPs). If the optimal solution of the SDP is not unique, the rounding step allows us
to replace the computed solution by an optimal solution of lower rank. Numerical experiments
with SDP relaxations of the optimal power flow (OPF) problem show that the rounding step
often substantially reduces the rank of the solution of the semidefinite relaxation, and thus yields
better sub-optimal solutions and sometimes optimal solutions for the nonconvex OPF problem.
It will be of interest to apply the same techniques in other applications of semidefinite and EDM
optimization, where low rank and low embedding dimension are important. Another topic for
further research is the development of efficient algorithms to find the nearest matrix with a
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low-rank PSD completion or low-dimension EDM completion. Some results in this direction
can be found in [59].
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