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Abstract. Quasi-Newton method is one of the most popular methods for solving unconstrained single
and multiobjective optimization problems. In a quasi-Newton method, the search direction is computed
based on a quadratic model of the objective function, where some approximations replace the true Hes-
sian at each iteration. Several Hessian approximation schemes with an adequate line search technique
provided higher-order accuracies in approximating the curvature and made the methods more effective
in terms of convergence to solution. Considering the aforementioned reasons, we write a survey on
quasi-Newton methods for multiobjective optimization problems. We discuss the development of all the
variants of the quasi-Newton method for multiobjective optimization problems, along with some of the
advantages and disadvantages of the existing methods. We give a brief discussion about the line search
for these variants too. Two cases have been considered for BFGS, Huang BFGS, and self-scaling BFGS
multiobjective versions of quasi-Newton methods: one is in the presence of the Armijo line search, and
the other is in the absence of any line search. Subsequently, a nonmonotone line search version is also
explained for multiobjective optimization problems. Commentary is given on the convergence properties
of these methods. The rate of convergence of all these methods is highlighted. To prove the convergence
of every method, it is reported that every sequence of points generated from the method converges to a
critical point of the multiobjective optimization problem under some mild assumptions. Based on the
available numerical data, we provide an unbiased opinion on the effectiveness of quasi-Newton methods
for multiobjective optimization problems.
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1. INTRODUCTION

Many problems from engineering [1–3], management [4, 5], environmental analysis [6], op-
timal control [7, 8], game theory [9–11], etc., involve multiple conflicting criteria. These prob-
lems can be modeled as multiobjective optimization problems (MOPs). For instance, let us
consider simple examples of single and multiobjective optimization problems.

• To find the topper(s) (in terms of the highest total of marks obtained in all subjects)
from a class of students is a single objective optimization problem, where the objective
function provides the total of marks of a student obtained in all subjects.

• To find the topper(s) from a class of students based on several criteria, namely, in terms
of number of attendance, the total of marks obtained in all subjects, number of winning
debate competitions, marks in a particular subject, etc., is an MOP, where the objective
function is taken a multivalued function whose component functions consist number of
attendance, a total of marks obtained in all subjects, number of winning debate compe-
titions, marks in a particular subject, etc.

It can be noticed that comparing a solution to a single objective optimization problem is easy,
while it is not so easy for MOPs. Therefore, the conventional concept of optimality has to
be replaced by the concept of Pareto optimality or efficiency [12]. In this concept, we say a
point is Pareto optimal or efficient if there does not exist another point with the same or smaller
objective function values.

To find the Pareto optimal point of an MOP, a few approaches have been introduced. One
of them is the scalarization technique, or decomposition [12–15]. In this technique, an MOP
is converted into a single objective optimization subproblem, which can be solved by using
conventional optimization techniques. The first scalarization technique is the weighted sum
method [16]. In this technique, a single objective function is constructed by taking the weighted
sum of component functions of the objective function of MOP. After that, the problem is solved
repeatedly by using different weights to approximate the non-dominated solution set. However,
if the Pareto surface is nonconvex, then not all solutions on the trade-off surface can be found,
which is a drawback of the weighted sum method [17]. This drawback has been removed
in the adaptive weighted sum method [17]. This method behaves the same as the weighted
sum method does. The only difference is the additional constraint is added in the adaptive
weighted sum method. One of the drawbacks of this method is its reliance on the solutions
obtained from the initial weighted sum step. If the weighted sum method cannot find any
effective Pareto solutions in the first iteration, this method may not determine the entire non-
dominated set. Further, an ε-constraint method, one of the most popular scalarization methods,
is developed [18]. In this method, an MOP is converted into a single objective optimization
problem by choosing only one component function of the objective function of MOP while the
rest of the component functions are considered as constraints. The predefined ε binds these
constraints in this method. This method works well. However, the selection of ε sometimes
creates problems. Next, a normal boundary intersection method has been proposed [19]. The
idea behind this method is that the non-dominated set is related to the boundary of a feasible
objective region towards the minimization of objective functions. One of the known drawbacks
of the normal boundary intersection method is that the dominated solutions may also occur in
the optimal solution set because the algorithm finds a solution regardless of whether the point
is dominated or not [20]. In [20], a method named normal constraint has been proposed. This
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method is a refinement of normal boundary intersection. Furthermore, a direct search domain
method is introduced in [13]. This method works on a search domain based on the local linear
transformation of objective functions and searches for the solution within each domain. To
guarantee a well-distributed Pareto set, it evenly spreads local search domains. In the case of a
nonconvex boundary, it is possible not to obtain any feasible solution in the search domain. An
ideal cone method is given in [21]. This method is based upon a cone direction and shifting it
until a Pareto optimal point is obtained. Besides these, many scalarization techniques have also
been given; for instance, see [3, 15, 22–25] and their references.

Apart from the scalarization techniques, many researchers have extended the classical deriv-
ative methods to solve MOPs. The most popular method, steepest descent method, has been
proposed [26] for multicriteria optimization and then for vector-valued functions [27]. Sub-
sequently, a projected gradient method has been given for constrained MOPs [28]. In [26]
and [27], the methods converge to a critical point of the objective function, while in [28], it has
been proved that the projected gradient method converges to critical and weak efficient points
for nonconvex and convex MOPs, respectively. These two are not the only methods given in
the literature. Some more first-order gradient-based methods have been given for continuously
differentiable multiobjective functions; for instance, see [29–31] and their references. A New-
ton method has also been proposed for MOPs [32]. This method [32] has been extended in [33]
with majorizing function techniques for MOPs. Like the conventional Newton method, in the
method proposed in [32], the Hessian matrix is used as well. However, it is not an easy task
to compute the Hessian matrix at every step of the method [34]. Therefore, a quasi-Newton
method has been presented for MOPs by using the approximation of the Hessian matrix at ev-
ery step [35]. The approximation of the Hessian matrix does not make the calculation easier
only, but it makes the algorithm faster as well [34]. After that, many variants of the quasi-
Newton method have been proposed by several researchers [34, 36–42]. These quasi-Newton
methods have been adopted comprehensively in multiobjective optimization. Therefore, we are
giving a brief survey on quasi-Newton methods in this paper.

We start with Section 2, in which preliminaries and terminologies are presented. In Section 3
and Section 4, a brief survey is proposed on quasi-Newton methods for smooth and nonsmooth
unconstrained MOPs, respectively. Further, a significant discussion, based on the considered
quasi-Newton methods, is given in Section 5.

2. PRELIMINARIES AND TERMINOLOGIES

The following notations are used throughout the paper:
• R, R+ and R++ denote the set of real numbers, the set of nonnegative real numbers,

and the set of positive real numbers, respectively
• Rm =R×R×·· ·×R (m-times), Rm

+ =R+×R+×·· ·×R+ and Rm
++ =R++×R++×

·· ·×R++
• int(A) denotes the interior of a set A
• JF(x) and R(JF(x)) denote the Jacobian of the function F at x and range or image

space of JF(x), respectively
• conv(A) represents the convex hull of a set A.
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Throughout this paper, we take F from Rn to Rm defined by

F(x) = ( f1(x), f2(x), . . . , fm(x))> for all x ∈ Rn.

We consider a general unconstrained MOP:

min
x∈Rn

F(x), (2.1)

where F is a continuously differentiable function.
The solution of MOP (2.1) is defined using partial ordering in Rm. For any u,v ∈ Rm, u ≤ v

if and only if v−u ∈Rm
+, and u < v if and only if v−u ∈ int(Rm

+). Now we provide the concept
of optimality, i.e., Pareto optimality or efficiency.

Definition 2.1. (Pareto optimality [12]). A point x̄ is said to be a Pareto optimal or efficient
point of MOP (2.1) if there does not exist x ∈ Rn such that F(x)≤ F(x̄) and F(x) 6= F(x̄) hold.
Moreover, the point x̄ is a weak Pareto optimum if there is no x ∈ Rn such that F(x)< F(x̄).

Definition 2.2. (Pareto front [12]). Let X∗ be the set of all efficient points of MOP (2.1). Then,
F(X∗) is said to be the Pareto front of MOP (2.1).

Definition 2.3. (Critical point [26]). A point x̄ ∈ Rn is said to be a critical point for F if

R(JF(x̄))∩ (−Rm
++) = /0. (2.2)

Remark 2.1. The condition given in (2.2) is necessary for x̄ ∈ Rn to be a local efficient point
of MOP (2.1).

Definition 2.4. (Descent direction [26]). A vector d ∈ Rn is said to be a descent direction of F
at x̄ if

∇ f j(x̄)>d < 0 for all j ∈ I = {1,2, . . . ,m},
where ∇ f j(x̄) is the gradient of f j at x̄.

We shall use set I as given in Definition 2.4 throughout the paper. Next, we start the survey
of quasi-Newton methods for MOPs.

3. QUASI-NEWTON METHODS FOR UNCONSTRAINED SMOOTH MOPS

The first quasi-Newton method for MOPs was proposed by Qu et al. [35] in 2011. In [35],
authors have given an algorithm that is an extension of the classical quasi-Newton method for
scalar-valued optimization problems. Like the classical quasi-Newton method, this new quasi-
Newton method for MOPs has the following two characteristics.

(i) It does not require computing the Hessian.
(ii) It does not require the convex assumption.

Before presenting the main algorithm of a quasi-Newton method for MOPs, authors in [35]
have proved a few results. These results, with a brief discussion, are given below.

Proposition 3.1. ([35]). A point x̄ ∈ Rn is critical if and only if either one of the following two
conditions is satisfied:

(i) There does not exist a d ∈ Rn such that f ′j(x̄;d) < 0 for all j ∈ I, where f ′j(x̄;d) is the
directional derivative of f j at x̄ in the direction of d.

(ii) In a special case, there also exists at least one jo ∈ I such that f ′jo(x̄) = 0, where f ′jo(x̄)
is the derivative of f jo at x̄.
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Note that Proposition 3.1 explains if x̄ is a critical point of F , then there is no descent direction
for every f j. In [35], authors proposed the solution approach based upon (i) of Proposition 3.1,
which means that the search stops only when no descent direction is found. In the sequel of the
discussion on descent direction and critical point, the following corollary is an important result.

Corollary 3.1. ([35]). Let x ∈ Rn be a noncritical point. Then, there exists a descent direction
d ∈ Rn for f j at x, i.e., f ′j(x;d)< 0.

In Newton method, a Newton direction dN(x) for MOP (2.1) at x is obtained by solving the
following subproblem (see [32])

minimize t

subject to ∇ f j(x)>d + 1
2d>∇

2 f j(x)d− t ≤ 0, j ∈ I

t ∈ R,d ∈ Rn,

which involves the quadratic approximation of all component functions of the objective func-
tion. Similarly, authors in [35] have presented the following subproblem to find a quasi-Newton
direction dq(x) for quasi-Newton method for MOP (2.1),

minimize t

subject to ∇ f j(x)>d + 1
2d>B j(x)d− t ≤ 0, j ∈ I (3.1)

‖d‖ ≤ 1, t ≤−ε,d ∈ Rn,

where B j(x) is the Hessian matrix of f j at x or its approximation obtained by quasi-Newton
method.

The method given in [35] is based on the following observation.

Lemma 3.1. ([35]). Let B j(x), j ∈ I, and ε be a positive semidefinite matrix and a sufficiently
small positive scalar, respectively. Let the feasible set of subproblem (3.1) be nonempty. Then,
x is noncritical, and any feasible point dε(x) is a descent direction for F; otherwise, x is a good
estimate of the critical point for F.

After discussing the elementary information, authors in [35] have summarized the details of
the quasi-Newton method in Algorithm 1.

Following is an example that is solved by Algorithm 1. The solution set and Pareto front are
shown in Fig. 1.

Problem 1 (FON [43]). This problem is stated to minimize:

f1(x) = 1− exp
(
−

n

∑
i=1

(
xi−

1√
n

)2
)
,

f2(x) = 1− exp
(
−

n

∑
i=1

(
xi +

1√
n

)2
)
.

In this problem, we take the number of decision variables xi are 2 and n = 2. Each decision
variable xi is in [−1,1].
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Algorithm 1 Quasi-Newton Algorithm for Multiobjective Optimization Proposed in [35]
Step 0 (Initial step)

Initially choose x0, small positive scalar ε , constant α0 ∈ (0,1), β ∈ (0, 1
2) and a

positive definite initial matrix B j(x0) for all j ∈ I.
Set iteration counter k = 0.

Step 1 (Generation of search direction dq(xk) and τq(xk))
Solve subproblem (3.1) at xk. The solution dq(xk) of subproblem (3.1) at xk is search

direction. The optimal objective function value of subproblem (3.1) at xk is τq(xk). If
subproblem (3.1) is infeasible, then terminate.

Step 2 (Line search)
Compute the step length αk using the Armijo condition

f j(xk +α
kdq(xk))≤ f j(xk)+βα

k
τq(xk), j ∈ I.

Step 3 (Update of iteration point and Hessian approximations)
Set xk+1 = xk +αkdq(xk) and update the Hessian approximation matrices B j(xk) by

B j(xk+1) =

B j(xk)− B j(xk)sksk>B j(xk)

sk>B j(xk)sk
+

yk
jy

k>
j

sk>yk
j
, if k ∈ K̃ j

B j(xk), otherwise,

where K̃ j = {k : yk>
j sk ≥ ε min{−τq(xk),1}}, sk = xk+1 − xk and yk

j = ∇ f j(xk+1)−
∇ f j(xk), for each j ∈ I.

Step 4 (Update of iteration counter k)
Set k = k+1, and go to Step 1.
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FIGURE 1. (A) Pareto solution obtained by Algorithm 1, (B) Feasible region
(green dots) and the Pareto critical points (purple dots) obtained by the Algo-
rithm 1 using 200 randomly generated starting points for FON problem

Algorithm 1 converges to a critical point of F under the basic assumptions, which are as
follows (see [35]).

A1.1 The level set So = {x ∈ Rn : F(x)≤ F(xo)} is bounded.
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A1.2 For sufficient large k, the step length αk = 1 is accepted.

Remark 3.1. The idea of assumption A1.1 has come from the Newton-type methods. It is
commonly used for proving the convergence of scalar and multiobjective optimization prob-
lems. Subsequently, assumption A1.2 is taken from the trust region methods in which ‖d‖ ≤ ∆

is replaced by ‖d‖ ≤ 1, where ∆ is trust region radius.

Next, a convergence theorem for Algorithm 1 is given below.

Theorem 3.1. ( [35]). Suppose that there exists a constant c such that ‖B j(x)‖ ≤ c, for any
x ∈ So and j ∈ I. Then, every accumulation point of the sequence {xk} generated by Algorithm
1 is critical for F under the assumptions A1.1 and A1.2.

The new quasi-Newton method was proposed by Povalej [34] in 2014. Povalej has given a
method for strongly convex unconstrained MOPs. In this method also Hessian matrix is ap-
proximated by well known BFGS method [44]. We present an MOP below, which is considered
in [34]

min
x∈Rn

G(x), (3.2)

where G = (g1,g2, . . . ,gm)
> : Rn→ Rm is a strongly convex continuously differentiable multi-

objective function.
Throughout this paper, we take G and g j, j ∈ I as in MOP (3.2).
Before analyzing the new algorithm, a theorem is presented below, which plays a crucial role

in the analysis of the quasi-Newton method proposed in [34].

Theorem 3.2. ([34]). Let x̄ ∈Rn be a stationary point of G. Then, x̄ is a weak Pareto optimum.
Moreover, if G is twice continuously differentiable and 0 ≺ ∇2g j(x) for all x ∈ Rn and j ∈ I,
then if x̄ is a stationary point of G, then x̄ is a Pareto optimum.

In [35], the quasi-Newton direction has been calculated by solving the subproblem (3.12).
This problem is based on the trust region method. However, in [34], authors have given a new
type subproblem to find the quasi-Newton direction. This is easier to solve and comprehensively
used by researchers. We present a brief description of it below.

Analogous to Newton’s direction in the Newton method for MOPs, the direction d(x) is a
quasi-Newton direction for x ∈ Rn if d(x) is the optimal solution of the problem

min
d∈Rn

max
j∈I

∇g j(x)>d + 1
2d>B′j(x)d, (3.3)

where B′j(x) is some approximation of ∇2g j(x), j ∈ I. In [34], this approximation matrix is
calculated by the BFGS update formula (3.8). Let τ(x) and d(x) be such that

τ(x) = min
d∈Rn

max
j∈I

∇g j(x)>d + 1
2d>B′j(x)d, (3.4)

d(x) = argmin
d∈Rn

max
j∈I

∇g j(x)>d + 1
2d>B′j(x)d.
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Sometimes, it is difficult to solve the minimax problem (subproblem (3.3)). Therefore, a very
nice convex quadratic optimization problem, which is equivalent to a subproblem (3.3), is for-
mulated in [34]. This problem is as follows:

minimize t

subject to ∇g j(x)>d + 1
2d>B′j(x)d− t ≤ 0, j ∈ I (3.5)

t ∈ R,d ∈ Rn.

The benefit of (3.5) is that one can solve it by using KKT conditions. The solution is given
in [34], which is

d(x) =−

(
m

∑
j=1

λ j(x)B′j(x)

)−1( m

∑
j=1

λ j(x)∇g j(x)

)
,

where λ j(x), j ∈ I are the KKT multipliers. Note that the algorithm in [35] terminates if sub-
problem (3.1) is infeasible. However, this is not the case in [34]. To find the terminating
condition, a lemma is given in [34] that connects the stationarity of a point x with d(x) and
τ(x).

Lemma 3.2. (Stationarity [34]). Let B′j(x) be a positive definite matrix for all x ∈ Rn and
consider τ as defined in (3.4). Then,

(i) for all x ∈ Rn,τ(x)≤ 0.
(ii) the following conditions are equivalent.

(a) The point x is not stationary.
(b) τ(x)< 0.
(c) d(x) 6= 0.

(iii) the function τ is continuous.

After defining the descent direction d(x), the next step is to choose step length α . In [34],
the author has used the classical Armijo condition for the scalar-valued function g j, j ∈ I. The
Armijo condition for the quasi-Newton search direction d(x) is given by

g j(x+αd(x))≤ g j(x)+ρα∇g j(x)>d(x), (3.6)

where ρ ∈ (0,1). The condition (3.6) is redefined in [34] to accept a full quasi-Newton step,
i.e., α = 1 close to a local minimum. The redefined Armijo condition is

g j(x+αd(x))≤ g j(x)+ 1
2cα∇g j(x)>d(x), j ∈ I, (3.7)

where c = 2b ∈ (0,1) with b ∈ (0, 1
2). To relate Armijo condition (3.7) with the stationarity of a

point x ∈ Rn for G, a theorem is given in [34].

Theorem 3.3. ([34]). Let x ∈ Rn be a nonstationary point of G. Then, for any 0 < c < 1 there
exists α0 ∈ (0,1] such that (3.7) holds for all α ∈ [0,α0] and j ∈ I.

Since the direction and step length have been discussed for the quasi-Newton method pro-
posed in [34], we present the algorithm (Algorithm 2) for this method below. One thing we
want to mention here is that as we have given a complete step-by-step algorithm (Algorithm
1), from now onward, we shall mention only those steps which are different from the standard
algorithm, Algorithm 1.
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Algorithm 2 Quasi-Newton Algorithm for Multiobjective Optimization Proposed in [34]

Step 1 (Generation of search direction d(xk) and τ(xk))
Solve subproblem (3.3) at xk. The solution d(xk) of subproblem (3.3) at xk is a search

direction. The optimal objective function value of subproblem (3.3) at xk is τ(xk). If
τ(xk) = 0, then stop.

Step 2 (Line search)
Compute the step length αk using the Armijo condition

g j(xk +α
kd(xk))≤ g j(xk)+βα

k
τ(xk), j ∈ I.

Step 3 (Update of iteration point and Hessian approximations)
Set xk+1 = xk +αkd(xk) and update the Hessian approximation matrices B′j(x

k) by

B′j(x
k+1) = B′j(x

k)−
B′j(x

k)sks>k B′j(x
k)

s>k B′j(xk)sk
+

yk
jy

k>
j

s>k yk
j
, (3.8)

where sk = xk+1− xk and yk
j = ∇g j(xk+1)−∇g j(xk) for each j ∈ I.

Following is an example solved by Algorithm 2. The solution set and Pareto front are shown
in Fig. 2.

Problem 2 (PNR [45]).This problem is as follows:

minimize (x4
1 + x4

2− x2
1 + x2

2 +20,x2
1 + x2

2)
>,

subject to −1≤ xi ≤ 1 for i = 1,2.

The number of decision variables xi in this problem is 2. Each decision variable is in between
−1 to 1.
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FIGURE 2. (A) Pareto solution obtained by Algorithm 2, (B) Feasible region
(green dots) and the Pareto critical points (purple dots) obtained by the Algo-
rithm 2 using 200 randomly generated starting points for PNR problem
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The convergence of Algorithm 2 is proved with the help of some lemmas. Below, we first
mention these lemmas, and after that, a theorem claims that the convergence of the Algorithm
2 is superlinear.

Lemma 3.3. ([34]). For δ ,ε ∈ R+ and x,y ∈ Rn with ‖y− x‖< δ ,

‖∇2g j(y)−∇
2g j(x)‖< ε

2 , j ∈ I (3.9)

holds. Under the assumption (3.9), we have

‖∇g j(y)− (∇g j(x)+∇
2g j(x)(y− x))‖< ε

2‖y− x‖,

and |g j(y)− (g j(x)+∇g j(x)>(y− x)+ 1
2(y− x)>∇

2g j(y− x))|< ε

4‖y− x‖2.

Lemma 3.4. ( [34]). Let {xk} be a sequence generated by Algorithm 2 and {B′j(xk)}, j ∈ I,
sequence of BFGS updates. For ε > 0, let us assume there exists ko ∈N such that for all ko ≤ k

‖(∇2g j(xk)−B′j(x
k))(y− xk)‖

‖y− xk‖
< ε

2 , j ∈ I. (3.10)

Under this assumption, for any xk,ko ≤ k and y ∈ Rn such that ‖y− xk‖< δ , we have

‖∇g j(y)− (∇g j(xk)+B j(xk)(y− xk)‖< ε‖y− xk‖,

and |g j(y)− (g j(xk)+∇
kg>j (y− xk)+ 1

2(y− xk)>B j(xk)(y− xk))|< ε

2‖y− xk‖2, j ∈ I.

Lemma 3.5. ([34]). Let x ∈ Rn and a′,b′ ∈ R+ such that a′ ≤ b′. If

aIid ≤ B′j(x)≤ bIid, j ∈ I,

where Iid is an identity matrix of order n, then
(a) a′

2 ‖d(x)‖
2 ≤ |τ(x)| ≤ b′

2 ‖d(x)‖
2,

(b) |τ(x)| ≤ 1
2a′

∥∥∥∥∥ m
∑
j=1

λ j(x)∇g j(x)

∥∥∥∥∥
2

for all 0≤ λ j(x), j ∈ I with
m
∑
j=1

λ j(x) = 1.

Now we give a theorem to show the convergence of Algorithm 2 is superlinear.

Theorem 3.4. (Superlinear convergence [34]). Let {xk} be a sequence generated in Algorithm
2. Let us assume c∈ (0,1),ko ∈N,a′,b′,r,δ ,ε ∈R+,x,y∈V , where V is an open convex subset
of Rn and

(i) a′Iid ≤ B′j(x)≤ b′Iid, a′Iid ≤ ∇2g j(x)≤ b′Iid, j ∈ I,
(ii) ‖∇2g j(y)−∇2g j(x)‖< ε

2 with ‖y− x‖< δ , j ∈ I,

(iii)
‖(∇2g j(xk)−B′j(x

k))(y−xk)‖
‖y−xk‖ < ε

2 , j ∈ I,
(iv) ε

a′ ≤ 1− c,
(v) ‖d(xko)‖< min{δ ,r

(
1− ε

a′
)
}.

Then, for ko ≤ k,
(a) ‖xk− xko‖ ≤ (1− ( ε

a′ )
k−ko)‖d(xko)‖,

(b) ‖d(xk)‖ ≤ ( ε

a)
k−ko‖d(xko)‖,

(c) αk = 1,
(d) ‖d(xk+1)‖ ≤ ε

a′‖d(x
k)‖,
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and the sequence {xk} converges to some local Pareto optimum x̄ ∈ Rn. Also, the convergence
is superlinear.

After a significant theory and analysis of the quasi-Newton method for MOPs given in [34],
Ansary and Panda [36] have modified this quasi-Newton method. The highlighted points of the
method given in [36] are as follows.

• Assumption of convexity of each objective function is not necessary for this method.
• This method computes a common positive definite matrix instead of computing it for

every component function of the objective function.
• The algorithm converges not only to critical but also local weak efficient points under

some mild assumptions.
• It is also proved that the method does not depend upon the initial point.

The work given in [36] is a modified version of [35] and [34]. Therefore, the fundamental theory
is common in these works. Considering this, we directly start from the main modifications and
changes provided in [36].

To define the quasi-Newton direction, the authors in [36] have used a common positive defi-
nite matrix for each objective function. They have reformulated subproblems (3.3), and (3.5) in
terms of a given symmetric positive definite matrix B(x) at x, which are as follows:

min
d∈Rn

max
j∈I

∇ f j(x)>d + 1
2d>B(x)d, (3.11)

and

minimize t

subject to ∇ f j(x)>d + 1
2d>B(x)d− t ≤ 0, j ∈ I (3.12)

t ∈ R,d ∈ Rn,

respectively. Subproblem (3.12) is a convex programming problem. Using KKT optimality
conditions, its solution can be found. The KKT optimality conditions for subproblem (3.12) are

∑
j∈I

λ j(∇ f j(x)+B(x)d) = 0, (3.13)

∑
j∈I

λ j = 1, (3.14)

λ j ≥ 0,∇ f j(x)>d + 1
2B(x)d ≤ t for all j ∈ I, (3.15)

λ j(∇ f j(x)>d + 1
2d>B(x)d− t) = 0 for all j ∈ I, (3.16)

where λ j = λ j(x). Let dmod(x) satisfy (3.13)-(3.16). Then,

dmod(x) =−B(x)−1
∑
j∈I

λ j∇ f j(x). (3.17)

To show that this dmod(x) is a descent direction at x, where x is a noncritical point, a theorem
has been proved in [36]. We present this theorem below.

Theorem 3.5. ([36]). Let x be a noncritical point for F. Then, dmod(x) as given in (3.17) is a
descent direction at x.

We still did not mention here how a common positive matrix B(x) is generated instead of
having m positive definite matrices for m component functions of the objective function. The
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next step is how to generate a positive definite matrix at every step. For this, authors in [36]
have modified the conventional secant conditions and generated a positive definite matrix at
every step. We provide the description of this calculation below.

To make calculation easy, we denote dk
mod = dmod(xk),Bk = B(xk),∇ f k

j = ∇ f j(xk), f k
j =

f j(xk),λ k
j = λ j(xk), where λ j(xk) are Lagrange multipliers obtained by solving (3.13)-(3.16)

at xk.
Let xk+1 = xk +αkdk

mod for some αk > 0. Consider the following quadratic forms in x,

f k
j +(x− xk)>∇ f k

j +
1
2(x− xk)>Bk(x− xk) for all j ∈ I (3.18)

and
f k+1

j +(x− xk+1)>∇ f k+1
j + 1

2(x− xk+1)>Bk+1(x− xk+1) for all j ∈ I. (3.19)

From (3.14), we have ∑
j∈I

λ k
j = 1. Consider the summation over j in (3.18) and (3.19) and let

mk(x) = ∑
j∈I

λ
k
j ( f k

j +(x− xk)>∇ f k
j )+

1
2(x− xk)>Bk(x− xk)

and
mk+1(x) = ∑

j∈I
λ

k
j ( f k+1

j +(x− xk+1)>∇ f k+1
j )+ 1

2(x− xk+1)>Bk+1(x− xk+1).

The updated matrix Bk+1 will be a good approximation of ∑
j∈I

λ k
j ∇2 f j(xk+1) if the following

condition holds:
∇mk(xk) = ∇mk+1(xk). (3.20)

After simplifying (3.20), we have

∑
j∈I

λ
k
j ∇ f k

j = ∑
j∈I

λ
k
j ∇ f k+1

j +Bk+1(xk− xk+1).

Thus,
Bk+1(xk+1− xk) = ∑

j∈I
λ

k
j (∇ f k+1

j −∇ f k
j ). (3.21)

Assuming δ k = xk+1 − xk,γk
j = ∇ f k+1

j −∇ f k
j for j ∈ I, ∑

j∈I
λ k

j γk
j = uk, then (3.21) becomes

Bk+1δ k = uk, which is a modified secant condition.

Lemma 3.6. ([36]). If ∇ f k+1>
j dk

mod ≥ c∇ f k>
j dk

mod , for some c < 1, for all j ∈ I, then uk>δ k > 0.

In Lemma 3.6, the condition uk>δ k > 0 has been proved. Therefore, by using the same steps
of rank one DFP formula for the conventional quasi-Newton method for the scalar-valued ob-
jective problem, the corresponding rank one DFP formula of generating Bk for MOP is defined
in [36] by

Bk+1 = (Iid− γ
kuk

δ
k)Bk(Iid− γ

k
δ

kuk)+ γ
kukuk>,

where γk = 1
uk>δ k

= 1
∑
j∈I

λ k
j (γ

k>
j δ k)

,uk>δ k > 0. Similarly, the modified rank two DFP update for-

mula for MOP is given by

Bk+1 = Bk +
ukuk>

uk>δ k
− Bkδ kδ k>Bk

δ k>Bkδ k
. (3.22)
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Remark 3.2. We know that the usual curvature condition in the quasi-Newton method is δ k>γk >
0. However, in [36], γk is replaced by uk in usual curvature condition. Therefore, the sequence
{Bk} is of positive definite matrices, provided initial matrix B0 is a positive definite matrix.

Remark 3.3. Note that for convex component function g j, j ∈ I, the condition proved in Lemma
3.6 is satisfied easily because

uk>
δ

k = ∑
j∈I

λ
k
j (∇gk+1

j −∇gk
j)
>

δ
k = ∑

j∈I
λ

k
j δ

k>
∇

2G j

(
xk +θδ

k
)

δ
k > 0,

where 0 < θ < 1. Therefore, the sequence {Bk} can be generated straightforwardly if compo-
nent functions are convex. However, Lemma 3.6 claims that {Bk} can be generated without
using the convexity of component functions.

Now we present the algorithm proposed in [36].

Algorithm 3 First quasi-Newton Algorithm for Multiobjective Optimization Proposed in [36]

Step 1 (Generation of search direction dmod(xk) and τmod(xk))
Solve subproblem (3.11) at xk. The solution dmod(xk) of subproblem (3.11) at xk is

a search direction. The optimal objective function value of subproblem (3.11) at xk is
τmod(xk). If τmod(xk) = 0, then stop.

Step 2 (Line search)
Compute the step length αk using the Armijo condition

f j(xk +α
kdmod(xk))≤ f j(xk)+ cα

k
∑
j∈I

λ j(xk)∇ f j(xk)>dmod(xk), j ∈ I. (3.23)

Step 3 (Update iteration point and Hessian approximation)
Set xk+1 = xk + αkdmod(xk) and update Hessian approximation matrix B(xk) by

(3.22).

Following is an example solved by Algorithm 3. The solution set and Pareto front are shown
in Fig. 3.
Problem 3 (COMET [46]). This problem is stated to minimize:

f1(x) = (1+g(x3))(x3
1x2

2−10x1−4x2),

f2(x) = (1+g(x3))(x3
1x2

2−10x1 +4x2),

f3(x) = 3(1+g(x3))x2
1,

g(x3)≥ 0.

This problem is a nonconvex tri-objective optimization problem in which the decision variable
x1 takes the value from 1 to 3.5 and x2 from−2 to 2. We have chosen g(x3) = x3 and 0≤ x3≤ 1.
The Pareto optimal surface we obtained from the proposed method corresponds to x̄3 = 0 and
for −2≤ x̄1x̄2 ≤ 2 with 1≤ x̄1 ≤ 3.5.

One of the many properties of the quasi-Newton method given in [36] is that this method
converges to the critical and local weak efficient solutions according to some mild assumptions.
Considering this, two theorems have been given below.
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FIGURE 3. Feasible region (green dots) and the Pareto critical points (purple
dots) obtained by the Algorithm 3 using 200 randomly generated starting points
for Comet problem

Theorem 3.6. ([36]). Let xk+1 = xk +αkdk
mod be a sequence generated by Algorithm 3, where

α > 0 is taken from Armijo line rule and dk
mod is a quasi-Newton direction at iteration k. More-

over, let assumption A1.1 be satisfied and f j(x) is bounded below for at least one j ∈ I. Then,
every accumulation point of the sequence {xk} is a critical point for F.

Algorithm 3 converges to a critical point for F . However, there is another version of Algo-
rithm 3 given in [36] as well with minor changes in Step 2. Therefore, we are just giving Step
2 of this algorithm below.

Algorithm 4 Second quasi-Newton Algorithm for Multiobjective Optimization Proposed in
[36]
Step 2 (Line search)

If cos2(θ j(xk)) > δ for all j ∈ I and for some δ > 0, where θ j(xk) is the angle be-
tween ∇ f k

j and dk
mod , then choose appropriate step length αk satisfies (3.23) and (3.24).

Otherwise, choose αk satisfies (3.23) only.

Theorem 3.7. ([36]). Let the assumptions of Theorem 3.6 hold and
(i)

∑
j∈I

λ
k
j ∇ f k+1>

j dk
mod ≥ c2 ∑

j∈I
λ

k
j ∇ f k>

j dk
mod, c1 < c2 < 1, (3.24)

(ii) ∇ f j are Lipschitz continuous for all j ∈ I,

(iii) cos2 θ j(xk)≥ δ for some δ > 0 and for all j ∈ I, where θ j(xk) is the angle between ∇ f k
j

and dk
mod .

Then, every accumulation point of {xk} is a locally weak efficient solution for MOP (3.2).

Remark 3.4. The authors in [36] have given two convergence theorems, but they did not make
any conclusion on the rate of convergence. However, it is mentioned without any proof in
[36] that the modified quasi-Newton method has at least superlinear convergence under some
reasonable assumptions. Proving or disproving this statement might be a future problem for
interested researchers.
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It is easy to notice that in quasi-Newton methods for MOPs, the BFGS method is commonly
used to approximate the Hessian matrix of the objective multiobjective function. In [39], new
variants of the quasi-Newton method have been proposed using the self-scaling BFGS (SS-
BFGS) and the Huang BFGS (H-BFGS) formulae instead of using the conventional BFGS
formula. The methods given in [39] are similar to the [34] without the restriction of convexity
on the objective function of MOP. The difference is in using the update formula for approximate
matrix Bk

j at every iteration. Authors have considered MOP (2.1) in [39] to solve. As mentioned
above, in [39], authors have used the following formulae for SS-BFGS and H-BFGS

Bk+1
j =

γk>
j δ k

δ>Bk
jδ

k

(
Bk

j−
Bk

jδ
kδ k>Bk

j

δ>Bk
jδ

k

)
+

γk
j γ

k>
j

γk>
j δ k

, (3.25)

and

Bk+1
j = Bk

j−
Bk

jδ
kδ k>Bk

j

δ>Bk
jδ

k
+

γ̂k
j γ̂

k>
j

γ̂k>
j δ k

, respectively, (3.26)

where notations γk
j ,δ

k are the same as in (3.8) and γ̂k
j = γk

j +
θk

δ k>γk
j
γk

j with θk = 6( f k− f k+1)+

3(∇ f k +∇ f k+1)>δ k.
In order to find search directions, similar to the previous quasi-Newton methods, the same

subproblems along with SS-BFGS and H-BFGS updates of an approximate matrix B j(x) have
been solved in [39]. The next task is to find the step length. Generally, step length is found with
the Armijo line search. The authors of [39] have given two algorithms. One is in the presence
of Armijo linear search, and the other is in the absence of any line search. We start with the
quasi-Newton method with the Armijo line search presented in [39]. This algorithm is very
much similar to the algorithm proposed in [34] except for the update of Hessian approximation.
The algorithm is as follows:

Algorithm 5 Quasi-Newton Algorithm with Armijo Line Search for Multiobjective Optimiza-
tion Proposed in [39]
Step 3 (Update of iteration point and Hessian approximations)

Set xk+1 = xk +αkd(xk) and update the Hessian approximation matrices B j(xk) by
(3.8), (3.25), and (3.26).

Now we describe the algorithm without any line search. In this algorithm, there is no update
in step length in the line search step. The authors have assumed that αk = 1 at every iteration.
So, the updated point at kth iteration is xk+1 = xk +d(xk).

Algorithm 6 Quasi-Newton Algorithm without any Line Search for Multiobjective Optimiza-
tion Proposed in [39]
Step 2 (Line search)

Take αk = 1.
Step 3 (Update of iteration point and Hessian approximations)

Set xk+1 = xk+d(xk) and update the Hessian approximation matrices B j(xk) by (3.8),
(3.25), and (3.26).
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Remark 3.5. In [39], one of the key points is that the authors have observed that when em-
ploying the Armijo-like line search rule in MOPs, more than one inequality should be satisfied
simultaneously (see Line search steps in algorithms). Therefore, this rule imposes large com-
putational efforts and yields a small step length. Subsequently, the use of the Armijo-like line
search rule for finding a step length reduces the speed of the convergence. Hence, two different
methods using Armijo line search and without any line search have been proposed in [39].

From here, a few questions may arise in readers’ minds. Does the algorithm without line
search work properly? Does it converge to a critical point? If yes, then what about the speed of
the convergence or the number of iterations taken by the algorithm? To answer these kinds of
questions, sufficient numerical data and theory are provided in [39]. First, we give the theory
and then a brief description of the numerical results later.

The convergence analysis for Algorithm 5 has been proved in [34]. However, the convergence
of Algorithm 6 is given in [39] using Lemma 3.4 and Lemma 3.5. First, a theorem similar
to Theorem 3.4 has been given in [39]. After that, using this theorem, the convergence of
Algorithm 6 has been proved.

Theorem 3.8. ([39]). Let {xk} be a sequence generated by Algorithm 6 and x0 be an initial
point of this sequence. Let B[x0,r] be a closed ball with radius r > 0 and centre x0. If we have
a,δ ,ε > 0 with ε < a such that

(i) aIid ≤ B j(x) and aIid ≤ ∇2 f j(x) for all j ∈ I and x ∈ B[x0,r],
(ii) ‖∇2 f j(y)−∇2 f j(x)‖< ε for all j ∈ I and x,y ∈ B[x0,r] with ‖y− x‖< δ ,

(iii)
‖(∇2 f j(xk)−B j(xk))(y−xk)‖

‖y−x‖ < ε

2 for all j ∈ I, y ∈ B[x0,r] and k ≥ k0,

(iv) ‖d(x0)‖< min{δ ,r(1− ε

a)}, then for any k ∈ N,
(a) xk ∈ B[x0,r],
(b) ‖d(xk)‖< ( ε

a)
k‖d(x0)‖.

Corollary 3.2. ([39]). The sequence generated by Algorithm 6 converges to a critical point for
F under the assumptions of Theorem 3.8.

In [39], quasi-Newton methods (with BFGS, SS-BFGS and H-BFGS updates) have been
compared as well. The performance of the algorithms has been compared using three per-
formance assessment criteria: the purity metric, the spread metric and the epsilon indicator.
Moreover, authors in [39] have depicted numerical results using performance profile to have
a good visual comparison. We provide a brief description of these performance profiles and
assessments below.

Performance profiles

The performance profiles are introduced by Dolan and Moré in [47] as a means to evaluate
and compare the performance of a set of algorithms A on a set of test problems P . In this
procedure, first performance ratio rp,al for the algorithm al ∈A in solving the problem p ∈P
is calculated by the formula

rp,al =
tp,al

min{tp,al : al ∈A }
,
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where tp,al denotes the performance of the algorithm al ∈A in solving the problem p∈P such
that better performances correspond to lower values of tp,al . Using the performance ratio, the
performance of the algorithm for a particular problem can be compared. However, to obtain an
overall assessment of the performance of the algorithm, a formula is given

ρal(ω) = 1
|P| |p ∈P : rp,al ≤ ω|.

ρal(ω) is the probability for the algorithm al ∈A whose performance ratio is within the interval
[1,ω]. The value of ρal(1) is the probability that the algorithm al will win over the rest of the
algorithms. Thus, if we are interested only in the number of wins, we need only to compare the
values of ρal(1) for all of the algorithms. For example, ρalo

(1) = 0.6 means that the algorithm
alo has the best performance in solving 60 percent of the test problems in contrast to the rest
of the algorithms. Moreover, algorithms with the largest probabilities ρal(ω) for large values
of ω have a better performance than the other algorithms. In [39], authors have compared per-
formance profiles for many values of ω (see Fig.1-Fig.4 of [39]). Next, assessment criteria are
given.

Purity metric

The purity metric [48] is a criterion that is used to compare the non-dominated frontiers ob-
tained by the algorithms. Let Fp,al be the non-dominated frontier obtained by the algorithm
al ∈A for problem p ∈P . After removing the dominated elements from the set ∪al∈A Fp,al , a
set, namely the non-dominated reference frontier, denoted by Fp, is obtained. The purity metric
for algorithm al ∈A and problem p ∈P is defined as

t̄p,al =
c′p,al

cp,al

,

where c′p,al
= |Fp,al ∩Fp| and cp,al = |Fp,al |. It is obvious that the greater value of t̄p,al indicates

the higher percentage of non-dominated points for problem p ∈P . Therefore, in order to use
performance profile, tp,al =

1
t̄p,al

has been considered in [39] instead of t̄p,al .

Spread metric

This metric is used to measure the largest gap in the obtained non-dominated frontiers [48].
To find the metric, in [39], first Fp is calculated. Then, assumed that the algorithm al ∈A has
obtained a set N having points indexed by 1,2, . . . ,N as the approximated non-dominated set.
Also, N + 1,N + 2, . . . ,N + k extreme points are added to these points. Let f p,al

i, j denotes the
jth component of the ith point of this collection. The spread metric of the algorithm al ∈A in
solving the problem p is denoted by Γp,al and is defined by

Γp,al = max
j∈I

(
max

i∈{1,2,...,N+k}
{δ p,al

i, j }
)
,

where δ
p,al
i, j = ( f p,al

i+1, j− f p,al
i, j ).
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Epsilon indicator

The epsilon indicator is a criterion that represents the quality of the obtained non-dominated
frontiers. The epsilon indicator given in [39], denoted by Iε+(N ), is defined by with respect to
set Fp

Iε+(N ) = inf{ε : for all y ∈ Fp there exists z ∈N such that z�ε+ y},
where N is the obtained non-dominated set for the specified algorithm and �ε+ is the additive
ε-dominance inequality defined as

z1 �ε+ z2 ⇐⇒ for all j ∈ I,z1
j ≤ε εz2

j .

There are many figures given in [39] to check the performance profiles and assessment. Fig.6
in [39] compares the methods (BFGS, SS-BFGS, and H-BFGS) using the purity metric, spread
metric, and epsilon indicator. Moreover, Fig.7-Fig.10 in [39] show the comparison of methods
based upon the obtained non-dominated frontiers related to some of the test problems.

After so much work on step length and approximation of the Hessian matrix in the quasi-
Newton methods, authors in [38] extended their thoughts and proposed a non-monotone quasi-
Newton method for unconstrained strongly convex MOP. In this new method, a non-monotone
line search has been used instead of the conventional monotone Armijo line search. This method
is similar to the method given in [34] except for the line search procedure. The quasi-Newton
direction and approximate matrix are calculated in the same way as in [34]. The algorithm for
this quasi-Newton method, proposed in [38], is given below.

Algorithm 7 Quasi-Newton Algorithm for Multiobjective Optimization Proposed in [38]
Step 0 (Initial step)

Initially choose x0, constants c,ρ,α0 ∈ (0,1), C0
j = f j(x0), Q0 = 1 and a positive

definite initial matrix B j(x0) for all j ∈ I.
Set iteration counter k = 0.

Step 2 (Line search)
Compute the step length αk satisfies the non-monotone Armijo condition: αk = ρhk

and hk is the least nonnegative integer such that the following condition holds

g j(xk +α
kd(xk))≤Ck

j + cα
k
τ(xk), j ∈ I. (3.27)

Choose ηk ∈ [0,1], and set

Qk+1 = ηkQk +1, Ck+1
j =

ηkQkCk
j +g j(xk+1)

Qk+1
.

Remark 3.6. It can be easily seen that if ηk = 0, then Ck = G(xk) for all k. In this case, the
line search is a conventional monotone Armijo line search. Similarly, if ηk = 1, then Ck = Ak,
where Ak = G(x0)+G(x1)+···+G(xk)

k+1 .

To check the well-definedness of Algorithm 7, a lemma has been given in [38], which is as
follows.
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Lemma 3.7. ([38]). Under the consideration of Algorithm 7, Ck lies between the G(xk) and

Ak for each iteration k in Algorithm 7, where Ak = G(x0)+G(x1)+···+G(xk)
k+1 . Moreover, if xk is a

noncritical point for G, then there exists αk satisfying the nonmonotone Armijo condition (3.27).

Like in [36], global and local convergences for the Algorithm 7 are given in [38] under the
different assumptions. The global convergence has been proved with the help of the following
lemma, which is as follows.

Lemma 3.8. ([38]). Let {xk} be a sequence generated by Algorithm 7. Suppose ∇g j are such
that ‖∇g j(x)−∇g j(xk)‖ ≤ K‖x− xk‖ for all x on the segment connecting xk and xk + αk

ρ
dk,

where αk ≤ σ . If the non-monotone Armijo conditions are satisfied, then

α
k ≥min

{
ρ, 2ρ(1−µ)

K
|τ(xk)|
‖d(xk)‖2

}
,

where all the parameters are the same as in Algorithm 7.

Theorem 3.9. ([38]). Suppose g j, j ∈ I are bounded from below, η < 1 and there exists c1 > 0
such that |τ(xk)| ≥ c1‖d(xk)‖2 for all k = 1,2, . . . . Then, every limit point of the sequence {xk}
generated by the Algorithm 7 is critical for G under the assumptions of Lemma 3.8.

A proposition is also given in [38], which is an alternative to the Lemma 3.2.

Proposition 3.2. ([38]). Let {xk} be a bounded sequence generated by Algorithm 7. Suppose
a > 0 is a scalar such that for all k and j ∈ I, we have

z>B j(xk)z≥ a‖z‖2 for all z ∈ Rn.

Then, lim
k→∞

τ(xk) = 0 and lim
k→∞
‖d(xk)‖= 0.

The local convergence in [38] has been proved under some assumptions. We have written
these assumptions before. Therefore, we are just mentioning these assumptions below.

A2.1 Under Algorithm 7, (3.9) and (3.10) hold.

Theorem 3.10. (Superlinear convergence [38]). Let the assumptions in Proposition 3.2 and
assumption A2.1 hold. Then, αk = 1, for sufficiently large k, and the sequence {xk} converges
to a critical point x̄ ∈ Rn superlinearly.

The q-quasi-Newton method is also given for MOP (2.1) in [37] using q-gradient of the
objective function of MOP. However, for the second-order approximation of Hessian, the BFGS
update formula (3.8) is used in [37]. Therefore, most of the analysis of the q-quasi-Newton
method is the same as in previously mentioned methods. We start with the definition of q-
gradient.

Definition 3.1. (q-gradient [49]). The q-gradient for a scalar-valued function f j, j ∈ I at x̄∈Rn,
denoted by ∇q f j(x̄), is defined by

∇q f j(x̄) = (Dq,x1 f j(x̄),Dq,x2 f j(x̄), . . . ,Dq,xn f j(x̄))>,

where Dq,xi f j(x̄) is the q-partial derivative of f j at x̄ defined by

Dq,xi =

{ fx−(εq,i f j)(x)
(1−q)xi

, xi 6= 0,q 6= 1
∂ f j
∂xi

, xi = 0
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with (εq,i) f j(x̄) = f j(x̄1, x̄2, . . . ,qx̄i, x̄i+1, . . . , x̄n).

The procedure to find the q-quasi-Newton direction in [37] is the same as in [34]. Analogous
to subproblem (3.1), a subproblem is also mentioned in [37] using the q-gradient instead of the
conventional gradient. The rest of the analysis remains the same because there is no change in
the approximation of the Hessian matrix and in the calculation of step length in [37]. Therefore,
we present the algorithm proposed in [37] without extra explanation below.

Algorithm 8 Quasi-Newton Algorithm for Multiobjective Optimization Proposed in [37]

Step 1 (Generation of search direction d̃(xk) and τ̃(xk))

d̃(xk) = arg min
d∈Rn

max
j∈I

∇q f j(xk)>d + 1
2d>B̃ j(xk)d,

τ̃(xk) = min
d∈Rn

max
j∈I

∇q f j(xk)>d + 1
2d>B̃ j(xk)d.

Step 3 (Update of iteration point and Hessian approximations)
Set xk+1 = xk +αkd̃(xk) and update the Hessian approximation matrices B̃ j(xk) by

B̃ j(xk+1) = B̃ j(xk)−
B̃ j(xk)sks>k B̃ j(xk)

s>k B̃ j(xk)sk
+

ỹk
jỹ

k>
j

s>k ỹk
j
,

where sk = xk+1− xk and ỹk
j = ∇q f j(xk+1)−∇q f j(xk) for each j ∈ I.

The convergence of the Algorithm 8 has been shown in [37] by a similar result to Theorem
3.4 with the change that conventional gradient is replaced by q-gradient.

All the work in the previous methods has been done using Armijo line search or without
using any line search. However, authors in [41] have proposed a quasi-Newton method using
the Wolfe line search technique for MOP (2.1) recently. There is no change in the approximated
matrix and descent direction for the method in [41]. Therefore, the basic analysis for this
method is the same as in the previous for this method. We present the algorithm given in [41]
in Algorithm 9.
Although there is not much change in the basic analysis for Algorithm 9, the convergence of

Algorithm 9 is not straightforward. First, the well-definedness of the algorithm is given in [41]
for nonconvex MOPs. After that, the global and R-linear convergence have been proved for
strongly convex multiobjective functions.

Theorem 3.11. (Well-definedness [41]). Algorithm 9 is well defined under the assumption that
F is bounded below in So.

Before starting the global convergence for strongly convex multiobjective function, the fol-
lowing assumption is taken in [41] as well.

A3.1 The level set is convex and there exist constants a,b > 0 such that

a‖z‖2 ≤ z>∇
2g j(x)z≤ b‖z‖2, j ∈ I,

for all z ∈ Rn and x ∈ So.

Theorem 3.12. ([41]). Let {xk} be a sequence generated by Algorithm 9. Then, sequence {xk}
converges to a Pareto optimal point x̄ of G under the assumption A3.1.
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Algorithm 9 Quasi-Newton Algorithm for Multiobjective Optimization Proposed in [41]
Step 0 (Initial step)

Initially choose x0, constants α0 ∈ (0,1), c1 ∈ (0, 1
2), c2 ∈ (c1,1) and a positive defi-

nite initial matrix B j(x0) for all j ∈ I.
Set iteration counter k = 0.

Step 2 (Line search)
Compute the step length αk satisfies

f j(xk +α
kd(xk))≤ f j(xk)+ c1α

k max
j∈I

∇ f j(xk)>d(xk), j ∈ I,

∇ f j(xk +α
kd(xk))>d(xk)≥c2∇ f j(xk)>d(xk).

Step 3 (Update of iteration point and Hessian approximations)
Set xk+1 = xk +αkd(xk) and update the Hessian approximation matrices B j(xk) by

B j(xk+1) =B j(xk)−
(ρk

j )
−1B j(xk)sks>k B j(xk)(

(ρk
j )
−1− s>k yk

j

)2
+(ρk

j )
−1s>k Bk

jsk

+
(s>k B j(xk)sk)yk

j(y
k
j)
>(

(ρk
j )
−1− s>k yk

j

)2
+(ρk

j )
−1s>k Bk

jsk

(3.28)

+
(
(ρk

j )
−1− s>k yk

j

) yk
js
>
k Bk

j +Bk
jsk(yk

j)
>(

(ρk
j )
−1− s>k yk

j

)2
+(ρk

j )
−1s>k Bk

jsk

,

where yk
j = ∇ f j(xk+1)−∇ f j(xk), sk = xk+1− xk and

ρ
k
j =


1

s>k yk
j
, if s>k yk

j > 0
1(

max
j∈I

(∇ f j(xk+αkd(xk))>sk)−∇ f j(xk)>sk

) , otherwise.

A different approach to convergence is also given in [41]. The authors in [41] have shown that
sequence {xk} converges to x̄ rapidly enough that

∑
k
‖xk− x̄‖< ∞, (3.29)

which plays an important role in the superlinear convergence of Algorithm 9.

Theorem 3.13. (R-linear convergence [41]). Let {xk} be a sequence generated by the Algorithm
9. Let x̄ be as in Theorem 3.12. Then, {xk} converges R-linearly to x̄ and (3.29) holds.

The local convergence of Algorithm 9 has been established for nonconvex multiobjective
functions under suitable assumptions in [41]. First, we present the assumption and then the
local convergence theorem.

A4.1 The sequence {xk} generated by Algorithm 9 converges to a Pareto optimal point x̄.
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A4.2 For Hessian matrices ∇2 f j(x̄), for all j ∈ I, there exist a neighborhood U of x̄ and
positive constants c1, c2 and K such that

c1‖z‖ ≤ z>∇
2 f j(x)z≤ b‖z‖2 for all j ∈ I

and
‖∇2 f j(x)−∇

2 f j(x̄)‖ ≤ K‖x− x̄‖ for all j ∈ I,
for all z ∈ Rn and x ∈U . Now we give the theorem regarding the Q-superlinear conver-
gence of Algorithm 9.

Theorem 3.14. (Q-superlinear convergence [41]). Suppose {xk} is the sequence generated by
the Algorithm 9. Then, {xk} converges to x̄, Q-superlinearly, under the assumptions A4.1 and
A4.2.

An obvious comparison between standard BFGS-Armijo and standard BFGS-Wolfe algorithms
is given in [41]. This comparison is based on various factors such as the number of iterations,
the number of derivative evaluations, CPU time, etc. The numerical performance of the algo-
rithm has been assessed in [41] as well. In [41], the Purity metric and Spread metrics have been
used to compare the numerical results. The performance profiles have been considered in [41]
for each problem as the performance measurements using (i) number of iterations; (ii) CPU
time; (iii) number of functions evaluations; and (iv) number of derivative evaluations.

The newest addition in the series of quasi-Newton methods is the proximal quasi-Newton
method for MOPs [40]. In [40], authors have proposed proximal methods with Armijo and
without any line search for a special type of MOP (3.30). Also, the conventional BFGS, SS-
BFGS, and H-BFGS update formulae are used to approximate the Hessian matrix of component
functions of the objective function of MOP (3.30). We present an MOP, which is considered
in [40], below

min
x∈Rn

F (x), (3.30)

where F = (F1,F2, . . . ,Fm)
> : Rn → (R∪{∞})m is a vector-valued function. The compo-

nents F j of objective function F for all j ∈ I, are taken in [40], as

F j(x) = Φ j(x)+Ψ j(x) for all j ∈ I,

where Φ j : Rn → R is a twice continuously differentiable strongly convex function and Ψ j :
Rn→ R∪{∞} is a proper convex and lower semicontinuous but not necessarily differentiable.

Remark 3.7. If we take Ψ j a zero function for all j ∈ I, i.e., Ψ j(x) = 0 for all x ∈Rn and j ∈ I,
then MOP (3.30) reduces to the convex MOP evaluated in [34], i.e., MOP (3.2).

Since the objective function taken in [40] is different, therefore the previous theories and
results cannot be applied directly to find the descent direction for this proximal quasi-Newton
method. However, similar to the previous ones in [40], a subproblem is defined using the first
and second-order information of objective function, and the solution of this subproblem is called
the descent direction. That subproblem is

min
d∈Rn

ϕw,x(d) = θx(d)+ w
2 ‖d‖

2, (3.31)

where θx(d) = max j∈I{∇Φ j(x)>d + 1
2d>B j(x)d +Ψ j(x+ d)−Ψ j(x)}. The proximal quasi-

Newton direction (basically descent direction for proximal quasi-Newton method) is defined



QUASI-NEWTON METHODS FOR MULTIOBJECTIVE OPTIMIZATION PROBLEMS 313

[40] by
dw(x) = argmin

d∈Rn
ϕw,x(d). (3.32)

After giving the idea of proximal quasi-Newton direction, an important lemma analogous to
Lemma 3.2 is given in [40] replacing τ(x) and d(x) by ϕw,x(d) and dw(x), respectively. This
lemma establishes a relation between stationarity of a point x, ϕw,x(d) and dw(x). There is
no change in BFGS update in [40]. In fact, authors in [40] have used not only conventional
BFGS but SS-BFGS and H-BFGS also as in [39]. Similar to [39], two proximal quasi-Newton
methods (with or without line searches) have been given in [40]. Now we are able to study the
algorithms proposed in [40]. Below we are presenting the proximal quasi-Newton method with
line searches first followed by the proximal quasi-Newton method in which any line search is
not used.

Algorithm 10 Quasi-Newton Algorithm with Armijo line search for Multiobjective Optimiza-
tion Proposed in [40]

Step 1 (Generation of search direction dw(xk) and τw(xk))
Solve subproblem (3.31) at xk. The solution dw(xk) of subproblem (3.31) at xk is a

search direction. The optimal objective function value of subproblem (3.31) at xk is
τw(xk). If dw(xk) = 0, then stop.

Step 3 (Update iteration point and Hessian approximation)
Set xk+1 = xk+αkdw(xk) and update Hessian approximation matrix B j(xk) by (3.22),

(3.25), and (3.26).

Now we describe the algorithm without any line search proposed in [40]. In this algorithm,
there is no update in step length in the line search step. The authors have assumed that αk = 1
at every iteration. So, the updated point at kth iteration is xk+1 = xk +dw(xk).

Algorithm 11 Quasi-Newton Algorithm without any Line Search for Multiobjective Optimiza-
tion Proposed in [40]

Step 1 (Generation of search direction dw(xk) and τw(xk))
Solve subproblem (3.31) at xk. The solution dw(xk) of subproblem (3.31) at xk is a

search direction. The optimal objective function value of subproblem (3.31) at xk is
τw(xk). If dw(xk) = 0, then stop.

Step 2 (Line search)
Take αk = 1.

Step 3 (Update of iteration point and Hessian approximations)
Set xk+1 = xk + dw(xk) and update the Hessian approximation matrices B j(xk) by

(3.8), (3.25), and (3.26).

Remark 3.8. One thing is to note that the stopping criteria given in Algorithms 10 and 11
is dw(xk) = 0, which the solution of the subproblems considered in [40]. Instead of taking
dw(xk) = 0, it should be τw(xk) = 0 as taken in previous algorithms, which is more suitable for
the algorithm.
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The authors in [40] have provided the convergence analysis for both algorithms under the
assumptions. The convergence of Algorithm 10 is presented below.

Theorem 3.15. ([40]). Let F j be bounded from below for all j ∈ I. Then, every accumulating
point of the sequence {xk} generated by Algorithms 10 and 11, if it exists, is a Pareto stationary
point. Moreover, if level set {x ∈ Rn : F (x)≤F (x0)} is bounded, then {xk} has accumulation
points and they are all Pareto stationary.

To our best knowledge, the paper [40] is the latest one to have a quasi-Newton algorithm for
MOPs. This paper may be last till now but not least. This paper has two applications, which
is a new things and totally different from the others. The first application is in constrained
multiobjective optimization, and the second is in robust multiobjective optimization.

In [40], many numerical experiments are performed to verify the effectiveness of the pro-
posed algorithms. The authors in [40] have compared their methods with proximal gradient
method given in [50]. Based upon the numerical data, it is also mentioned in [40] that the in-
troduced method is more effective than the proximal gradient method given in [50]. A handy
comparison between the algorithms using (3.22), (3.25), and (3.26) formulae with line search
is also given in [40]. The algorithm with the H-BFGS update formula is more effective than
the others. A similar comparison between the algorithms without line searches is also given
in [40]. In this comparison also, the introduced quasi-Newton method in [40] without line
search is more effective than the proximal gradient method without line search given in [50].
And the algorithm without line search with the H-BFGS update formula is more effective than
the algorithms without line search with BFGS and SS-BFGS updates formulae. However, the
convergence rate of Algorithms 10 and 11 is not discussed in [40].

4. QUASI-NEWTON METHOD FOR UNCONSTRAINED NONSMOOTH MOPS

In Section 3, the unconstrained smooth MOP is considered. All the variants of quasi-Newton
methods are to solve the smooth MOP. However, there may happen that the objective func-
tion in MOP is nondifferentiable, i.e., MOP may be nonsmooth. To solve nonsmooth MOP, a
quasi-Newton method is also proposed by Qu et al. [42]. In particular, authors of [42] have
extended the quasi-Newton methods to MOP, whose objective function is nondifferentiable, but
a directional derivative of each component of the objective function exists.

In [42], the following unconstrained nonsmooth MOP has been considered

min
x∈Rn

L(x), (4.1)

where L = (l1, l2, . . . , lm)> : Rn→ Rm is a locally Lipschitz continuous nondifferentiable non-
convex multiobjective function.

From now onwards, we consider L and l j for all j ∈ I as defined in (4.1) throughout the paper.
Before proposing any method to solve MOPs, it is necessary to define the critical point for

the objective function of MOP (see Remark 2.1). Since Definition 2.3 of critical point demands
the Jacobian of multiobjective function, therefore a similar definition of critical point for a non-
differentiable multiobjective function is introduced in terms of Clarke derivative or generalized
Jacobian.
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Definition 4.1. (Clarke derivative [51]). The Clarke derivative of L at x̄ is defined by

∂L(x̄) = conv{A : A = lim
k→∞

J(L(xk)) for some {xk} ⊂ {θL : xk→ x̄}},

where θL is the set of all points for which L is Fréchet differentiable.

Definition 4.2. (Critical point for nondifferentiable multiobjective functions [42]). A point
x̄ ∈ Rn is critical for L if

R(∂L(x̄))∩ (−Rm
++) = /0.

Definition 4.2 explains that if x̄ ∈ Rn is a critical point for L, then there does not exist a
descent direction at x̄. To give the algorithm for MOP (4.1), an assumption is taken in [42] to
guarantee the existence of the standard directional derivative.

A5.1 Assume lim
U j∈∂L j(x+αd)

α→0

(U>j d) exists for all j ∈ I.

Under this assumption, an analogous result to Proposition 3.1 has been given below.

Lemma 4.1. ([42]). Under the assumption A5.1, a point x̄ ∈ Rn is critical for L if and only if
one of the following two conditions is satisfied:

(i) there does not exist a descent direction at x̄, i.e., l′jo(x̄;d)≥ 0 for at least one jo ∈ I and
for all d ∈ Rn;

(ii) in a special case, there also exists at least one jo ∈ I such that 0 ∈ ∂ l jo(x̄).

The objective function in MOP (4.1) is locally Lipschitz continuous, not necessarily convex.
A theorem is given below that connects the efficiency and criticality of the Lipschitz multiob-
jective function.

Theorem 4.1. ([42]). Let the assumption A5.1 holds.
(i) If x̄ ∈ Rn is a locally weak Pareto optimum, then x̄ is a critical point for L.

(ii) If L is Rm-convex and x̄ ∈ Rn is critical for L, then x̄ is a weak Pareto optimum.
(iii) If L is strictly Rm-convex and x̄ ∈ Rn is critical for L, then x̄ is Pareto optimal.

Next, a nonsmooth subproblem and related results are provided to find the descent direction
for Algorithm 12. This nonsmooth subproblem is analogous to subproblem (3.1), which is
expressed as follows (see [42]):

minimize t

subject to φ j(x,d)+ 1
2d>B j(x)d− t ≤ 0, j ∈ I (4.2)

‖d‖ ≤ 1, t ≤−ε,d ∈ Rn,

where φ j(x,d) and 1
2d>B j(x)d carry certain first-order and second-order informations of l j(x),

respectively. In [42], −φ(·,d) is lower semicontinuous for any d ∈Rn and φ(x,αd)≤ αφ(x,d)
for all x ∈ Lo,0≤ α ≤ 1, where S′o = {x ∈ Rn : L(x)≤ L(xo)} is the level set.

Remark 4.1. Note that if L is twice continuously differentiable, then φ j(x,d) = ∇l j(x)>d.
Thus, subproblem (4.2) reduces to subproblem (3.1) for twice continuously differentiable mul-
tiobjective function.

Under suitable assumptions, if the feasible set of subproblem (4.2) is empty for some suf-
ficiently small ε > 0, then there does not exist a descent direction at x, and a good estimate
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to a critical point is obtained. The reason for choosing some small enough positive ε in sub-
problem (4.2) is that with t ≤ 0 replaced by t 6 −ε , the trivial solution

(
d̄, t̄
)
= (0,0) can be

excluded. If ε is nonzero, subproblem (4.2) may be infeasible. In this case, the current point
x is a good estimate of a critical point for L. The following theorem explains this under the
following assumptions in [42].

A6.1 For all x ∈ Rn,d ∈ Rn, liminf
t→0

φ(x,td)
t ≤ l′(x;d), where φ = (φ1, . . . ,φm)

>.

A6.2 For all x ∈ Rn,φ(x,0) = 0, and φ(x, ·) is lower semicontinuous.

Theorem 4.2. ([42]). Suppose Assumptions A5.1, A6.1, and A6.2 hold. For a sufficiently small
positive scalar ε , if the feasible set of subproblem (4.2) is nonempty, then x is noncritical and
any feasible solution dε(x) is a descent direction for L; otherwise, x is a good estimate of the
critical point for L.

Take S(x,ε)

=
{
(d, t) ∈ Rn+1 : φ j(x,d)+ 1

2d>B j(x)d 6 t, for all j ∈ I,‖d‖ ≤ 1, t 6−ε

}
.

Then, the optimal solution d̄ε(x)= (dε(x), tε(x)) of subproblem (4.2) and its corresponding opti-
mal value vε(x) can be expressed as vε(x) = min

(d,t)∈S(x,ε)
t and d̄ε(x) = (dε(x), tε(x)) = argmin

(d,t)∈S(x,ε)
t,

where dε(x) is the search direction. Note that vε(x) =+∞ when the feasible set S(x,ε) is empty.
If ε = 0, then define

v(x) = v0(x) = inf
‖d‖≤1

max
j∈I

φ j(x,d)+ 1
2d>B j(x)d,

d(x) = d0(x) = argmin
‖d‖≤1

max
j∈I

φ j(x,d)+ 1
2d>B j(x)d.

Using this observation, a lemma has been given below. This lemma is analogous to the very
important result Lemma 3.2 to discuss the stability analysis of function vε(x) and a connection
with d̄ε(x) and the stationarity of x. After that, we give the algorithm proposed in [42].

Lemma 4.2. ([42]). Let Assumptions A5.1, A6.1 and A6.2 hold. Then,
(i) the following conditions are equivalent:

(a) x ∈ Rn is noncritical for L;
(b) for sufficiently small ε > 0, the solution set S(x,ε) is nonempty and (0,0) /∈ S(x,ε);
(c) vε(x)< 0.

(ii) the feasible set S(x,ε) is nonempty for x ∈ Rn if and only if v(x) = vε(x).
(iii) If x̄ is critical, then the value function vε(·) defined by vε(x) = min

(d,t)∈S(x,ε)
t is noncontin-

uous at x̄.

One of the key points of the work in [42] is that the authors have proved global and local
convergence separately under separate assumptions.

To prove global convergence, the following basic assumptions have been taken.
A7.1 The level set So is bounded.
A7.2 For any convergent subsequence

{
xk}

k∈K , if d(xk) → 0, then max
j∈I

(l j(xk + d(xk))−

l j(xk))≤max
j∈I

φ j(xk,d(xk))+o(‖d(xk)‖).
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Algorithm 12 Quasi-Newton Algorithm for Nonsmooth Multiobjective Optimization Proposed
in [42]

Step 1 (Generation of search direction dε(xk) and vε(xk))
Solve subproblem (4.2) at xk. The solution dε(xk) of subproblem (4.2) at xk is a search

direction. The optimal objective function value of subproblem (4.2) at xk is vε(xk). If
subproblem (4.2) is infeasible, then terminate.

Step 3 (Update iteration point and Hessian approximation)
Set xk+1 = xk +αkdε(xk) and update Hessian approximation matrix B(xk) by

B j(xk+1) =

B j(xk)− B j(xk)sksk>B j(xk)

sk>B j(xk)sk
+

y′kjy
′k>
j

sk>y′kj
, if k ∈ K′ j

B j(xk), otherwise,

where K′ j = {k : y′k
>

j sk ≥ ε min{−vε(xk),1}}, sk = xk+1 − xk and y′kj =

φ j(xk+1,d(xk+1))−φ j(xk,d(xk)), for each j ∈ I.

A7.3 Assume that for sufficiently large k, the step length αk = 1 is accepted.

Theorem 4.3. ([42]). Let there exists a constant c such that ‖B j(x)‖ ≤ c for any x ∈ So and
j ∈ I. Then, under assumptions A5.1, A6.1, A6.2, and A7.1-A7.3, every accumulation point of
the sequence xk generated by Algorithm (4), is critical for L.

To prove local convergence, the following basic assumptions have been taken in [42].
A8.1 Given 0 < c0 ≤ c1 < ∞ and 0 < b0 ≤ b1 < ∞ for all x ∈ So, assume that c0 ≤ ‖B j(x)‖ ≤

c1 for all j ∈ I;b0 ≤ ‖U j‖ ≤ b1 for all U j ∈ ∂ l j(x) for all j ∈ I;
A8.2 Let x̄ be an accumulation point of the sequence {xk} generated from Algorithm (4);
A8.3 Suppose the following conditions hold:

Ū j−Uk
j −B j(xk)(x̄− xk) = o(‖x̄− xk‖) for all j ∈ I;

λ k
j − λ̄ j = o(‖x̄− xk‖) for all j ∈ I;(
∑
j∈I

λ k
j B j
(
xk))−1

−

(
∑
j∈I

λ̄ jB j(x̄)

)−1

= o
(∥∥x̄− xk

∥∥) , for all j ∈ I.

Remark 4.2. There are some reasons and explanations for taking assumptions A8.1-A8.3. As-

sumption A8.1 implies that
∥∥∥∥(∑ j∈I λ k

j B j
(
xk))−1

∥∥∥∥ and
∥∥∑ j∈I λ̄ jŪ j

∥∥ are bounded from above.

Assumption A8.3 implies that the matrix B j
(
xk) and parameter λ k generated in every step

converge to B j(x̄) and λ̄ , respectively when {xk} converges to x̄.

Theorem 4.4. (Superlinear convergence [42]). Suppose that the assumptions A5.1, A7.3, and
A8.1-A8.3 hold. If for any j ∈ I, l j is locally Lipschitzian at x̄, then {xk} is superlinearly
convergent to x̄.

In [42], authors have considered an example and have performed the proposed method. Also,
they have compared the method with the subgradient method given in [52].
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5. DISCUSSION

After a significant review of quasi-Newton methods, one question arises. Which method is
best? Unfortunately, there is no specific answer. However, the strengths and weaknesses of
the methods can be discussed so that readers can prefer the method based on the problem. In
this section, we discuss the pros and cons of the methods. The first method proposed in [35] is
for both nonconvex and convex MOPs. In [35], there are no numerical results and numerical
comparisons given. Therefore, the accuracy of this method can not be discussed. The method
proposed in [34] is compared with Newton’s method for MOPs given in [32]. In this compari-
son, it has also been shown that the approximation of Hessian is faster than its evaluation (which
is a big advantage of this method). This method is for strongly convex MOPs. This method does
not apply to nonconvex MOPs in general. However, the method given in [34] can solve some
nonconvex MOPs (PNR [45] is solved in [34]). Some nonconvex problems cannot be solved by
this method; for instance, consider JOS4 and ZDT1-ZDT4 from [53] and [54], respectively. The
first component function of these problems is g1(x) = x1. Since yk

1 = ∇g1(xk+1)−∇g1(xk) = 0,
BFGS update formula (3.8) cannot be applied. There are several advantages of the method
given in [36]. This version of quasi-Newton methods has one common Hessian approximation
matrix instead of having one for each of the component functions of the objective functions.
The algorithm in [36] does not depend upon the choice of the initial point. It is also mentioned
in [36] that the method converges not only to Pareto critical but also to local weak efficient
points, even for nonconvex MOPs with detailed analysis. However, the authors did not prove
the rate of convergence in [36] but mentioned that the method has at least superlinear conver-
gence under several reasonable assumptions. Sometimes the condition cos2(θ k

j )> δ mentioned
in Theorem 3.7 is difficult to handle. A comprehensive and comparative study of quasi-Newton
methods is given in [39]. The plus point of [39] is the detailed numerical analysis of the meth-
ods proposed in [39]. Not only comparison but performance assessment (performance profiles;
purity metric, spread metric, and epsilon indicator) of the methods is also given in [39]. By
considering the numerical data provided in [39], the quasi-Newton method (with and without
line search) with the H-BFGS update formula is better than the other variants. However, the
authors in [39] have also mentioned that the H-BFGS method without line search has a faster
speed of convergence. The reason is that when we employ the Armijo line search rule in MOPs,
more than one inequality (equal to the number of component functions of the objective func-
tion) should be satisfied simultaneously. Thus, this rule imposes large computational efforts and
reduces the speed of convergence. For numerical purposes, this paper is far ahead of the other
one. The non-monotone quasi-Newton method presented in [38] is for strongly convex func-
tions (although there are some nonconvex problems also solved by this method, for instance,
H1 [55], KW2 [56], PNR [45], DTLZ2 [45], etc.). This method is better than the monotone
quasi-Newton method. However, the comparison with H-BFGS update quasi-Newton is not
given in [38]. Therefore, which one is better between them is still a question. One of the salient
features of the method given in [38] is that this method is superlinear convergent, which is
proved with detailed theoretical analysis. Overall this method is good, but the choice of ηk is a
matter of concern sometimes. In [38], the value of ηk is taken 0.85, which works pretty well.
However, who knows what will be the suitable value of ηk for other test problems (which are
not considered in [38]). The q-quasi-Newton method introduced in [37] using q-derivative is
also superlinear. This method is parameters-free. This method is compared with the method
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given in [34]. Two points can be highlighted. First, the performance profile of the method is
not given in [37]. Second, the value of q may concern with finding the q-derivative. The au-
thors in [37] did not mention the value of q while solving the test problems neither. The Wolfe
quasi-Newton [41] converges to a Pareto optimal point globally and R-linearly for strongly con-
vex problems. In [41], the given method has been compared with BFGS Armijo and standard
BFGS Wolfe methods. The numerical experiments in [41] show that the formula (3.28) provides
a nonnegligible acceleration of the BFGS method which is a big plus point of this method. The
method given in [40] has three variants (BFGS, SS-BFGS, H-BFGS) as in [39] with and without
line search. In [40] also, H-BFGS performs better than the others. The proximal quasi-Newton
method is compared with the proximal gradient method [50]. However, the authors in [40]
did not compare the BFGS, SS-BFGS, and H-BFGS proximal quasi-Newton methods with the
BFGS, SS-BFGS and H-BFGS methods proposed in [39]. Therefore, one can not choose one
of them. This can be a future direction for the researchers.

To our best knowledge, we have tried to present key points of the variants of the quasi-
Newton method briefly. Based on the discussion, the reader can choose the suitable version of
the quasi-Newton method.
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[48] A.L. Custódio, J.F.A. Madeira, A.I.F. Vaz, L.N. Vicente, Direct multisearch for multiobjective optimization,
SIAM J. Optim. 21 (2011), 1109–1140.
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