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1. INTRODUCTION

In this note, we are interested in four theorems on spherical point configurations. The first
of these theorems is concerned with orthonormal representation of graphs. The notion of or-
thonormal representation of a graph was introduced by Lovász in his study of Shannon capacity
of graphs [1]. For a detailed discussion of orthonormal representations see the recent book [2].
Parsons and Pisanski [3] introduced the following notion of orthonormal representation, which
is slightly different from that of Lovász1 Let G be a simple graph with nodes 1, . . . ,n. An or-
thonormal representation of G is a mapping of the nodes of G to unit vectors p1, . . . , pn in
Euclidean r-space Rr such that (pi)T p j is negative or zero depending on whether nodes i and
j are adjacent or not. The smallest dimension r necessary for such a representation is denoted
by d(G). It is easy to see that d(G) ≥ α(G), where α(G) is the independence number of G.
Šiňajová proved the following.

Theorem 1.1 (Šiňajová [4]). Let G be a simple graph on n nodes and let k be the number of its
nontrivial connected components, i.e., those connected components with at least 2 nodes. Then
d(G) = n− k.

The remaining theorems are concerned with the dispersion problem. The dispersion problem
is the problem of maximizing, over all n-point configurations on the unit (r− 1)-sphere in Rr,
the minimum distance between any two points. The dispersion problem has applications in
sphere packing and spherical designs [5]. Davenport and Hajós [6] and Rankin [7] provided
solutions of this problem for the case n = r+ 2. Rankin [7], also, provided a solution for the
case n = 2r. Before presenting Rankin’s two theorems, we need the following definition. The
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1In Lovász’s definition, the inner product (pi)T p j is unrestricted if nodes i and j are adjacent.
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regular r-crosspolytope is the convex hull of the union of r mutually orthogonal line segments
of length 2 and intersecting at their common midpoint. That is, the regular r-crosspolytope is
the convex hull of (±e1,±e2, . . . ,±er), where ei is the ith standard unit vector in Rr.

Theorem 1.2 (Rankin [7]). Let p be an n-point configuration on the unit (r−1)-sphere in Rr.
If n = r+2, then two points of p are at a distance of at most

√
2 from each other.

Theorem 1.3 (Rankin [7]). Let p be an n-point configuration on the unit (r−1)-sphere in Rr.
If n = 2r and the distance between any two points of p is ≥

√
2, then p is unique, up to a rigid

motion, and the points of p are the vertices of the regular r-crosspolytope.

Kuperberg [8] generalized Rankin’s result to all n: r+2≤ n≤ 2r.

Theorem 1.4 (Kuperberg [8]). Let p be an n-point configuration on the unit sphere in Rr such
that 2≤ n− r ≤ r. If the minimum distance between any two points of p is at least

√
2, then Rr

can be split into the orthogonal product ∏
n−r
i=1 Li of n− r subspaces of Rr such that Li contains

exactly ri +1 points of p, where ri is the dimension of Li.

In this note, we present simple linear algebraic proofs of Šiňajová, Rankin and Kuperberg’s
theorems based on spherical Euclidean distance matrices (EDMs) and the Perron-Frobenius
theorem. These proofs are given in Sections 3, 4, and 5 respectively, while the necessary back-
ground material is given in Section 2.

Notations. We collect here the notation used in this note. en and En denote, respectively, the
vector of all 1’s in Rn and the matrix of all 1’s of order n. In denotes the identity matrix of
order n. ei

n denotes the ith column of In. The subscript n, in en, En, In and ei
n will be omitted

if the dimension is clear from the context. For a matrix A, we denote the vector consisting
of the diagonal entries of A by diag(A). Also, for a real symmetric matrix A, we denote by
λmax(A) and m(λmax(A)), respectively, the largest eigenvalue of A and its multiplicity. The zero
vector or the zero matrix of the appropriate dimension is denoted by 0. PSD stands for positive
semidefinite. Finally, E(G) denotes the edge set of a simple graph G.

2. PRELIMINARIES

In this section, we present the necessary background concerning EDMs and more specifically
spherical EDMs. For a comprehensive treatment of EDMs, see the monograph [9].

An n× n matrix D = (di j) is said to be an EDM if there exist points p1, . . . , pn in some
Euclidean space such that

di j = ||pi− p j||2 for all i, j = 1, . . . ,n,

where ||x|| denotes the Euclidean norm of x, i.e., ||x||=
√

xT x. p1, . . . , pn are called the gener-
ating points of D and the dimension of their affine span is called the embedding dimension of
D. If the embedding dimension of an n× n EDM D is n− 1, then we refer to D as the EDM
of a simplex. For example, let E and I denote respectively the matrix of all 1’s and the identity
matrix. Then the EDM D = γ(E− I), where γ is a positive scalar, is the EDM of a regular sim-
plex. An EDM D is said to be spherical if its generating points lie on a sphere. A unit spherical
EDM is a spherical EDM whose generating points lie on a sphere of radius ρ = 1.

Let e denote the vector of all 1’s in Rn and let s be a vector in Rn such that eT s = 1. The
following theorem is a well-known characterization of EDMs [10, 11, 12, 13].
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Theorem 2.1. Let D be an n×n real symmetric matrix whose diagonal entries are all 0’s. Then
D is an EDM if and only if

B =−1
2
(I− esT )D(I− seT ) (2.1)

is positive semidefinite (PSD), in which case, the embedding dimension of D is given by rank(B).

That is, D is an EDM iff it is negative semidefinite on e⊥, the orthogonal complement of e in
Rn. It can be easily shown that B as defined in Equation (2.1) is a Gram matrix of the generating
points of D, or a Gram matrix of D for short.

Let B be a Gram matrix of an EDM D with rank r. Then B is PSD and hence B = PPT for
some n×r matrix P. Consequently, p1, . . . , pn, the generating points of D, are given by the rows
of P. As a result, P is called a configuration matrix of D. It should be noted that Equation (2.1)
implies that Bs = 0 and hence PT s = 0; that is

n

∑
i=1

si pi = 0. (2.2)

It is well known [12] that if D is a nonzero EDM, then e lies in the column space of D, i.e.,
there exists vector w such that Dw = e. It is also well known that if D is an n× n EDM of a
simplex, i.e., if the embedding dimension of D is n− 1, then D is spherical and nonsingular.
Among the many different characterizations of spherical EDMs, the one given in the following
theorem is the most relevant for our purpose.

Theorem 2.2 ([12, 14]). Let D be an EDM and let Dw = e. Then D is spherical if and only if
eT w > 0, in which case, ρ , the radius of the sphere containing the generating points of D, is

given by ρ =
(

1
2eT w

)1/2
.

As an example, consider D = γ(En− In), the EDM of a regular simplex. Then w = e/(γ(n−
1)) and thus its generating points lie on a sphere of radius ρ =

√
γ(n−1)/(2n). Consequently,

the n×n unit spherical EDM of a regular simplex is given by

D =
2n

n−1
(En− In).

A vector x is positive, denoted by x > 0, if each of its entries is positive. Similarly, a matrix A
is positive (nonnegative), denoted by A > 0 (A≥ 0), if each of its entries is > 0 (≥ 0). An n×n
nonnegative matrix A is said to be reducible if A is the 1× 1 zero matrix or if n ≥ 2 and there
exists a permutation matrix Q such that

QAQT =

[
A11 A12
0 A22

]
,

where A11 and A22 are square matrices. It easily follows from the definition that if A is a
nonnegative symmetric reducible matrix of order n ≥ 2, then there exists a permutation matrix
Q such that QAQT is a block diagonal matrix, of at least two blocks, such that each block
is either irreducible or the 1× 1 zero matrix. A nonnegative matrix that is not reducible is
irreducible.

It is well known that an n×n nonnegative matrix A is irreducible if and only if (I+A)n−1 > 0.
Moreover, if A is the adjacency matrix of a simple graph G, then A is irreducible if and only if
G is connected. We will need the following fact from the celebrated Perron-Frobenius theorem:
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If A is a nonnegative irreducible matrix, then the largest eigenvalue of A, λmax(A), is positive
with multiplicity m(λmax(A)) = 1 and the eigenvector associated with λmax(A) is positive.

3. PROOF OF ŠIŇAJOVÁ THEOREM

A connected component of a graph G is said to be nontrivial if it consists of at least 2 nodes.
In other words, isolated nodes are trivial connected components of G. Now let pi and p j be
two unit vectors. Then, clearly, (pi)T p j = 0 if and only if ||pi− p j||2 = 2 and (pi)T p j < 0 if
and only if ||pi− p j||2 > 2. As a result, Theorem 1.1 can be stated in the language of EDMs as
follows.

Theorem 3.1 (Šiňajová [4]). Let G be a simple graph on n nodes and let k be the number
of its nontrivial connected components. Then there exists a unit spherical EDM D = (di j) of
embedding dimension r = n− k such that

di j

{
> 2 iff {i, j} ∈ E(G),
= 2 iff {i, j} 6∈ E(G),

(3.1)

where E(G) denotes the edge set of G. Furthermore, there does not exist a unit spherical EDM
of embedding dimension r ≤ n− k−1 that satisfies (3.1).

Before proving Theorem 3.1, we first prove the following lemma.

Lemma 3.1. Let D be an n×n unit spherical EDM of embedding dimension r and let Dw = e.
Let D = 2(E − I)+ 2∆. Then λmax(∆) = 1 and w is an eigenvector associated with λmax(∆).
Moreover, r = n−m(λmax(∆)), where m(λmax(∆)) denotes the multiplicity of λmax(∆).

Proof. By Theorem 2.2, 2eT w = 1. Thus by setting s = 2w in Equation (2.1), it follows that the
corresponding Gram matrix of D is B = E− 1

2D = I−∆. Hence λmax(∆)≤ 1 since B is PSD. On
the other hand, Bw = 0 implies that ∆w = w. Hence λmax(∆)≥ 1 and consequently λmax(∆) = 1.
As a result, r = rank(B) = n−m(λmax(∆)). �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let A denote the adjacency matrix of G. Then there exists a permutation
matrix Q such that

QAQT =


A1

. . .
Ak

0

 ,
where A1, . . . ,Ak denote the adjacency matrices of the nontrivial connected components of G.
Hence, A1, . . . ,Ak are irreducible nonnegative matrices of orders ≥ 2. Therefore, by the Perron-
Frobenius theorem, m(λmax(A1)) = · · · = m(λmax(Ak)) = 1. For i = 1, . . . ,k, let ξ i denote the
eigenvector of Ai associated with λmax(Ai) and let ∆i = Ai/λmax(Ai). Further, let

∆ =


∆1

. . .
∆k

0

 , ξ =


ξ 1

...
ξ k

0

 and w =
ξ

2eT ξ
.
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Then, obviously, ∆i j > 0 if and only if {i, j} ∈ E(G) and ∆i j = 0 if and only if i = j or {i, j} 6∈
E(G). Also, it is equally obvious that λmax(∆) = 1, m(λmax(∆)) = k and ∆w = w.

Let D = 2(E − I)+ 2∆. Then Dw = e since 2eT w = 1. Now if we let s = 2w in Equation
(2.1), then

B =−1
2
(I− esT )D(I− seT ) = E− 1

2
D = I−∆

is PSD and of rank n− k. As a result, by Theorems 2.1 and 2.2, D is a unit spherical EDM of
embedding dimension r = n− k that satisfies (3.1).

To complete the proof, let r be the embedding dimension of any unit spherical EDM D that
satisfies (3.1). Let ∆ = D/2+ I−E and wlog assume that ∆ is block diagonal. Thus ∆ has k
irreducible nonnegative diagonal blocks, each associated with a nontrivial connected component
of G. Now it follows from Lemma 3.1 that λmax(∆) = 1 and r = n−m(λmax(∆)). Consequently,
r ≤ n− k since the contribution from each irreducible diagonal block of ∆ to m(λmax(∆)) is at
most 1. �

4. PROOF OF RANKIN’S THEOREMS

Theorems 1.2 and 1.3 can be stated in the language of EDMs as follows.

Theorem 4.1 (Rankin [7]). Let D be an n× n unit spherical EDM of embedding dimension r.
If n = r+2, then at least one off-diagonal entry of D is ≤ 2.

Theorem 4.2 (Rankin [7]). Let D be an n×n unit spherical EDM of embedding dimension r. If
n = 2r and if each off-diagonal entry of D is ≥ 2, then there exists a permutation matrix Q such
that

QDQT =


4(E2− I2) 2E2 · · · 2E2

2E2 4(E2− I2) · · · 2E2
...

... . . . ...
2E2 · · · 2E2 4(E2− I2)

 , (4.1)

where E2, I2 are, respectively, the matrix of all 1’s and the identity matrix of orders 2.

It should be noted that the RHS of Equation (4.1) is the EDM of the regular r-crosspolytope.
As was mentioned earlier, Theorems 1.2 and 1.3 are special cases of Theorem 1.4 which we
prove in the next section. However, in this section, we present an independent proof of Theorem
1.2 after we have proved the following lemma which will be needed in the sequel.

Lemma 4.1. Let D be an n×n unit spherical EDM of embedding dimension r and assume that
each off-diagonal entry of D is ≥ 2. Let D = 2(E− I)+2∆ and let Dw = e. If ∆ is irreducible,
then r = n−1, i.e., D is the EDM of a simplex, and w > 0.

Proof. Clearly, ∆≥ 0. Thus, it follows from Lemma 3.1 and the Perron-Frobenius theorem that
λmax(∆) = 1, m(λmax(∆)) = 1 and w > 0. Consequently, r = rank(B) = n−1. �

Now Theorem 1.2 is an immediate corollary of Lemma 4.1.

Proof of Theorem 4.1. Let ∆ = D/2+ I−E and assume, by way of contradiction, that each off-
diagonal entry of D is > 2. Then each off-diagonal entry of ∆ is > 0. Hence, I +∆ > 0 and
thus ∆ is irreducible. Consequently, by Lemma 4.1, the embedding dimension of D is r = n−1,
which contradicts the assumption that r = n−2. �
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5. PROOF OF KUPERBERG’S THEOREM

Theorem 1.4 can be stated in the language of EDMs as follows.

Theorem 5.1 (Kuperberg [8]). Let D be an n×n unit spherical EDM of embedding dimension
r, where 2 ≤ n− r ≤ r. If each off-diagonal entry of D is ≥ 2, then there exists a permutation
matrix Q such that

QDQT =


D1 2E · · · 2E
2E D2 · · · 2E
...

... . . . ...
2E · · · 2E Dn−r

 ,
where D1, . . . ,Dn−r are unit spherical EDMs of simplices; and E is the matrix of all 1’s of the
appropriate dimension.

Two remarks are in order here. First, as shown in [8], if n = r+2, then Theorem 5.1 reduces
to Rankin’s Theorem 4.1. This follows since if D has an off-diagonal entry < 2, then there is
nothing to prove. On the other hand, if every off-diagonal entry of D is ≥ 2, then Theorem 5.1

implies that there is a permutation matrix Q such that QDQT =

[
D1 2E
2E D2

]
. Hence, at least

one of the off-diagonal diagonal entries of D is 2 since 2E is a submatrix of QDQT .
Second, also, as shown in [8], if n = 2r, i.e., if n− r = r, then Theorem 5.1 reduces to

Rankin’s Theorem 4.2. This follows since in this case, each of the submatrices D1, . . . ,Dr in
Theorem 5.1 is of order 2, and thus D1 = · · ·= Dr = 4(E2− I2). Therefore, the configuration, in
this case, is that of the regular r-crosspolytope since the matrix QDQT in Theorem 5.1 reduces
to that in Theorem 4.2.

Before presenting the proof of Theorem 5.1, we need the following lemma which extends
Lemma 4.1 to the case where ∆ is padded with zero rows and columns.

Lemma 5.1. Let D be an n×n unit spherical EDM of embedding dimension r and assume that

each off-diagonal entry of D is ≥ 2. Let D = 2(E− I)+2∆̃ and let Dw̃ = e. If ∆̃ =

[
∆ 0
0 0

]
,

where ∆ is irreducible, then r = n− 1, i.e., D is the EDM of a simplex, and w̃ = 1
2eT ξ

[
ξ

0

]
,

where ∆ξ = ξ and ξ > 0.

Proof. The proof is similar to that of Lemma 4.1. �

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let D = 2(E− I)+2∆ and thus ∆ ≥ 0 and diag(∆) = 0. Since the em-
bedding dimension of D is r, it follows from Lemma 3.1 that λmax(∆) = 1 with multiplicity
m(λmax(∆)) = n− r ≥ 2. Therefore, by the Perron-Frobenius theorem, ∆ is reducible and thus
there exists a permutation matrix Q such that

Q∆QT =

 ∆1

. . .
∆n−r

 or


∆1

. . .
∆n−r

0

 , (5.1)
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where ∆1, . . . ,∆n−r are irreducible and thus λmax(∆
1) = · · ·= λmax(∆

n−r) = 1. For i = 1, . . . ,n−
r, let ξ i denote the eigenvector of ∆i associated with λmax(∆

i). Therefore, by the Perron-
Frobenius theorem ξ i > 0 since ∆i is irreducible. Next, we consider the two cases of Q∆QT

in Equation (5.1) separately.
In the first case, all diagonal blocks of ∆ are irreducible. Assume that, for i = 1, . . . ,n− r, ∆i

is of order ni where ∑
n−r
i=1 ni = n. Then ni ≥ 2 since diag(∆i) = 0. Let Di = 2(Eni − Ini)+ 2∆i

for i = 1, . . . ,n− r. Then D1, . . . ,Dn−r are EDMs since they are principal submatrices of D.
Moreover, let wi = ξ i/(2eT

ni
ξ i). Then Diwi = eni and wi > 0. Consequently, D1, . . . ,Dn−r

are unit spherical EDMs. Therefore, it follows from Lemma 4.1 that each of D1, . . . ,Dn−r

is the EDM of a simplex. It is worth pointing out that Equation (2.2) implies that, for each
i = 1, . . . ,n− r, the origin 0 lies in the relative interior [15] of the convex hull of the generating
points of Di since wi > 0.

In the second case, let ∆̃n−r =

[
∆n−r

0

]
. Then, similar to the first case, D1, . . . ,Dn−r−1

are unit spherical EDMs of simplices and the origin 0 lies in the relative interior of the convex
hull of the generating points of each of the EDMs D1, . . . ,Dn−r−1. On the other hand, let
Dn−r = 2(E− I)+2∆̃n−r and let

w̃n−r =
1

2eT ξ n−r

[
ξ n−r

0

]
.

Then ∆̃n−rw̃n−r = w̃n−r and Dn−rw̃n−r = e. Hence, Dn−r is a unit spherical EDM and hence, by
Lemma 5.1, Dn−r is the EDM of a simplex. However, unlike D1, . . . ,Dn−r−1, the origin lies on
the relative boundary of the convex hull of the generating points of Dn−r. �

Finally, we should point out that in the second case of Equation (5.1), i.e., if Q∆QT has, say
s, zero rows (and columns), then we chose above to define ∆̃n−r by appending these s zero rows
and columns to ∆n−r. In fact, we could have appended any number of these zero rows and
columns to any of ∆1, . . . ,∆n−r.

As an illustration of the theorems of Šiňajová and Kuperberg, consider the following exam-
ple.

Example 5.1. Let G be the simple graph on the nodes 1, . . . ,5 and with edge set E(G) =
{ {1,2},{3,4} }. Hence, G has two nontrivial connected components and one isolated node.
To illustrate Šiňajová’s Theorem, let

∆ = A =


0 1
1 0

0 1
1 0

0

=

 ∆1

∆2

0

 ,
where A is the adjacency matrix of G. Then D = 2(E − I)+ 2∆ is a unit spherical EDM of
embedding dimension 3 that satisfies (3.1). Moreover, an orthonormal representation of G is
given by p1 = e1, p2 = −e1, p3 = e2, p4 = −e2 and p5 = e3, where ei is the ith standard unit
vector in R3.



162 A. Y. ALFAKIH

To illustrate Kuperberg’s Theorem, first, if we define ∆̃2 =

[
∆2

0

]
. Then R3 can be split

into 2 orthogonal subspaces L1 and L2 where L1 consists of the x-axis and contains points p1

and p2; while L2 consists of the y–z plane and contains points p3, p4 and p5. Notice that the
origin is in the relative interior of the convex hull of p1 and p2, while the origin lies on the
relative boundary of the convex hull of p3, p4 and p5.

On the other hand, if we define ∆̃1 =

[
∆1

0

]
. Then, in this case, the subspace L1 consists

of the x–z plane and contains points p1, p2 and p5, while L2 consists of the y-axis and contains
points p3 and p4.
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vectoriels distanciés applicables vectoriellement sur l’espace de Hilbert, Ann. Math. 36 (1935), 724-732.

[11] G. Young, A. S. Householder, Discussion of a set of points in terms of their mutual distances, Psychometrika,
3 (1938), 19-22.

[12] J. C. Gower, Properties of Euclidean and non-Euclidean distance matrices, Linear Algebra Appl. 67 (1985),
81-97.

[13] F. Critchley, On certain linear mappings between inner-product and squared distance matrices, Linear Algebra
Appl. 105 (1988), 91-107.

[14] J. C. Gower, Euclidean distance geometry, Math. Sci. 7 (1982), 1-14.
[15] O. R. Musin, Graphs and spherical two-distance sets, Euro. J. Comb. 80 (2019), 311-325.
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