PROJECTING ONTO RECTANGULAR HYPERBOLIC PARABOLOIDS IN HILBERT SPACE

HEINZ H. BAUSCHKE*, MANISH KRISHAN LAL, XIANFU WANG

Department of Mathematics, University of British Columbia, Kelowna, B.C. V1V 1V7, Canada

Abstract

In \mathbb{R}^{3}, a hyperbolic paraboloid is a classical saddle-shaped quadric surface. Recently, Elser has modeled problems arising in Deep Learning using rectangular hyperbolic paraboloids in \mathbb{R}^{n}. Motivated by his work, we provide a rigorous analysis of the associated projection. In some cases, finding this projection amounts to finding a certain root of a quintic or cubic polynomial. We also observe when the projection is not a singleton and point out connections to graphical and set convergence.

Keywords. Cross; Graphical convergence; Projection onto a nonconvex set; Rectangular hyperbolic paraboloid.
2020 Mathematics Subject Classification. 41A50, 90C26.

1. Introduction

Throughout this paper, we assume that

$$
X \text { is a real Hilbert space with inner product }\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{R},
$$

and induced norm $\|\cdot\|$, and that $\alpha \in \mathbb{R} \backslash\{0\}$ and $\beta>0$. Define the β-weighted norm on the product space $X \times X \times \mathbb{R}$ by

$$
(\forall(x, y, \gamma) \in X \times X \times \mathbb{R})\|(x, y, \gamma)\|:=\sqrt{\|x\|^{2}+\|y\|^{2}+\beta^{2}|\gamma|^{2}} .
$$

Now define the set

$$
\begin{equation*}
C_{\alpha}:=\{(x, y, \gamma) \in X \times X \times \mathbb{R} \mid\langle x, y\rangle=\alpha \gamma\} . \tag{1.1}
\end{equation*}
$$

The set C_{α} is a special bilinear constraint set in optimization, and it corresponds to a rectangular (a.k.a. orthogonal) hyperbolic paraboloid in geometry [1]. Motivated by Deep Learning, Elser recently presented in [2] a formula for the projection $P_{C_{\alpha}}\left(x_{0}, y_{0}, \gamma_{0}\right)$ when $x_{0} \neq \pm y_{0}$. Howevever, complete mathematical justifications were not presented and the case when $x_{0}= \pm y_{0}$ was not considered. The goal of this paper is to provide a complete analysis of $P_{C_{\alpha}}$ that is applicable to all possible cases.

[^0]The paper is organized as follows. We collect auxiliary results in Section 2. Our main result is proved in Section 3 which also contains a numerical illustration. The formula for the projection onto the set C_{α} is presented in Section 4.

As usual, the distance function and projection mapping associated to C_{α} are denoted by

$$
d_{C_{\alpha}}\left(x_{0}, y_{0}, \gamma_{0}\right):=\inf _{(x, y, \gamma) \in C_{\alpha}}\left\|(x, y, \gamma)-\left(x_{0}, y_{0}, \gamma_{0}\right)\right\|
$$

and

$$
P_{C_{\alpha}}\left(x_{0}, y_{0}, \gamma_{0}\right):=\operatorname{argmin}_{(x, y, \gamma) \in C_{\alpha}}\left\|(x, y, \gamma)-\left(x_{0}, y_{0}, \gamma_{0}\right)\right\|,
$$

respectively. We say that $x, x_{0} \in X$ are conically dependent if there exists $s \geq 0$ such that $x=s x_{0}$ or $x_{0}=s x$.

2. Auxiliary Results

We start with some elementary properties of C_{α}, and justify the existence of projections onto these sets.

Proposition 2.1. The following statements hold:
(i) The set C_{α} is closed. If X is infinite-dimensional, then C_{α} is not weakly closed; in fact, ${\overline{C_{\alpha}}}^{\text {weak }}=X \times X \times \mathbb{R}$.
(ii) C_{α} is prox-regular in $X \times X \times \mathbb{R}$. Hence, for every point in $\left(x_{0}, y_{0}, \gamma_{0}\right) \in C_{\alpha}$, there exists a neighborhood such that the projection mapping $P_{C_{\alpha}}$ is single-valued.

Proof. (i): Clearly, C_{α} is closed. Thus assume that X is infinite-dimensional. By [3, Proposition 2.1], for every $\gamma \in \mathbb{R}, \overline{\{(x, y) \in X \times X \mid\langle x, y\rangle=\alpha \gamma\}^{\text {weak }}}=X \times X$. Thus,

$$
\begin{aligned}
X \times X \times \mathbb{R} & =\bigcup_{\gamma \in \mathbb{R}}\left(\overline{\{(x, y) \in X \times X \mid\langle x, y\rangle=\alpha \gamma\}}^{\text {weak }} \times\{\gamma\}\right) \\
& \subseteq \overline{\{(x, y, \gamma) \in X \times X \times \mathbb{R} \mid\langle x, y\rangle=\alpha \gamma\}}^{\text {weak }} \subseteq X \times X \times \mathbb{R}
\end{aligned}
$$

(ii): Set $F: X \times X \times \mathbb{R} \rightarrow \mathbb{R}:(x, y, \gamma) \mapsto\langle x, y\rangle-\alpha \gamma$. Then $C_{\alpha}=F^{-1}(0)$ and $\nabla F(x, y, \gamma)=$ $(y, x,-\alpha) \neq(0,0,0)$ because $\alpha \neq 0$. The prox-regularity of C_{α} now follows from [4, Example 6.8] when $X=\mathbb{R}^{n}$ or from [5, Proposition 2.4] in the general case. Finally, the singlevaluedness of the projection locally around every point in C_{α} follows from [5, Proposition 4.4].

To study the projection onto C_{α}, it is convenient to introduce

$$
\begin{equation*}
\widetilde{C}_{\alpha}:=\left\{(u, v, \gamma) \in X \times X \times \mathbb{R} \mid\|u\|^{2}-\|v\|^{2}=2 \alpha \gamma\right\} \tag{2.1}
\end{equation*}
$$

which is the standard form of a rectangular hyperbolic paraboloid. Define a linear operator $A: X \times X \times \mathbb{R} \rightarrow X \times X \times \mathbb{R}$ by sending (u, v, γ) to (x, y, γ), where

$$
x=\frac{u-v}{\sqrt{2}} \quad \text { and } \quad y=\frac{u+v}{\sqrt{2}} .
$$

In terms of block matrix notation, we have

$$
\left[\begin{array}{l}
x \\
y \\
\gamma
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} \operatorname{Id} & -\frac{1}{\sqrt{2}} \operatorname{Id} & 0 \\
\frac{1}{\sqrt{2}} \operatorname{Id} & \frac{1}{\sqrt{2}} \operatorname{Id} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
\gamma
\end{array}\right] \Leftrightarrow\left[\begin{array}{c}
u \\
v \\
\gamma
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} \operatorname{Id} & \frac{1}{\sqrt{2}} \operatorname{Id} & 0 \\
-\frac{1}{\sqrt{2}} \operatorname{Id} & \frac{1}{\sqrt{2}} \operatorname{Id} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
\gamma
\end{array}\right] .
$$

Thus, we may and do identify A with its block matrix representation

$$
A=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} \mathrm{Id} & -\frac{1}{\sqrt{2}} \mathrm{Id} & 0 \\
\frac{1}{\sqrt{2}} \mathrm{Id} & \frac{1}{\sqrt{2}} \mathrm{Id} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and we denote the adjoint of A by A^{\top}. Note that A corresponds to a rotation by $\pi / 4$ about the γ-axis. The relationship between C_{α} and \widetilde{C}_{α} is summarized as follows.

Proposition 2.2. The following statements hold:

(i) A is a surjective isometry (i.e., a unitary operator): $A A^{\top}=A^{\top} A=\mathrm{Id}$.
(ii) $A \widetilde{C}_{\alpha}=C_{\alpha}$ and $\widetilde{C}_{\alpha}=A^{\top} C_{\alpha}$.
(iii) $P_{C_{\alpha}}=A P_{\widetilde{C}_{\alpha}} A^{\top}$.

Proof. It is straightforward to verify (i) and (ii). To show (iii), let $\left(x_{0}, y_{0}, \gamma_{0}\right) \in X \times X \times \mathbb{R}$. In view of (i) and (ii), we have $(x, y, \gamma) \in P_{C_{\alpha}}\left(x_{0}, y_{0}, \gamma_{0}\right)$ if and only if $(x, y, \gamma) \in C_{\alpha}$ and

$$
\left\|(x, y, \gamma)-\left(x_{0}, y_{0}, \gamma_{0}\right)\right\|=d_{C_{\alpha}}\left(x_{0}, y_{0}, \gamma_{0}\right)=d_{A \widetilde{C}_{\alpha}}\left(x_{0}, y_{0}, \gamma_{0}\right)=d_{\widetilde{C}_{\alpha}}\left(A^{\top}\left[x_{0}, y_{0}, \gamma_{0}\right]^{\top}\right)
$$

and this is equivalent to

$$
\left\|A^{\top}[x, y, \gamma]^{\top}-A^{\top}\left[x_{0}, y_{0}, \gamma_{0}\right]^{\top}\right\|=d_{\widetilde{C}_{\alpha}}\left(A^{\top}\left[x_{0}, y_{0}, \gamma_{0}\right]^{\top}\right)
$$

Since $A^{\top}[x, y, \gamma]^{\top} \in \widetilde{C}_{\alpha}$, this gives $A^{\top}[x, y, \gamma]^{\top} \in P_{\widetilde{C}_{\alpha}}\left(A^{\top}\left[x_{0}, y_{0}, \gamma_{0}\right]^{\top}\right)$, i.e.,

$$
[x, y, \gamma]^{\top} \in A P_{\widetilde{C}_{\alpha}}\left(A^{\top}\left[x_{0}, y_{0}, \gamma_{0}\right]^{\top}\right)
$$

The converse inclusion is proved similarly.
Exploiting the structure of \widetilde{C}_{α} is crucial for showing the existence of $P_{\widetilde{C}_{\alpha}}\left(u_{0}, v_{0}, \gamma_{0}\right)$ for every $\left(u_{0}, v_{0}, \gamma_{0}\right) \in X \times X \times \mathbb{R}$.

Proposition 2.3. (Existence of the projection) Let $\left(u_{0}, v_{0}, \gamma_{0}\right) \in X \times X \times \mathbb{R}$. Then the minimization problem

$$
\begin{align*}
\text { minimize } & f(u, v, \gamma):=\left\|u-u_{0}\right\|^{2}+\left\|v-v_{0}\right\|^{2}+\beta^{2}\left|\gamma-\gamma_{0}\right|^{2} \tag{2.2a}\\
\text { subject to } & h(u, v, \gamma):=\|u\|^{2}-\|v\|^{2}-2 \alpha \gamma=0 \tag{2.2b}
\end{align*}
$$

always has a solution, i.e., $P_{C_{\alpha}}\left(u_{0}, v_{0}, \gamma_{0}\right) \neq \varnothing$. If $(u, v, \gamma) \in P_{C_{\alpha}}\left(u_{0}, v_{0}, \gamma_{0}\right)$, then u, u_{0} are conically dependent, and v, v_{0} are also conically dependent.

Proof. We only illustrate the case when $u_{0} \neq 0, v_{0} \neq 0$, since the other cases are similar. We claim that the optimization problem is essentially 3-dimensional. To this end, we expand

$$
\begin{equation*}
f(u, v, \gamma)=\underbrace{\|u\|^{2}-2\left\langle u, u_{0}\right\rangle+\left\|u_{0}\right\|^{2}}+\underbrace{\|v\|^{2}-2\left\langle v, v_{0}\right\rangle+\left\|v_{0}\right\|^{2}}+\beta^{2}\left|\gamma-\gamma_{0}\right|^{2} . \tag{2.3}
\end{equation*}
$$

The constraint

$$
h(u, v, \gamma)=\|u\|^{2}-\|v\|^{2}-2 \alpha \gamma=0
$$

means that for the variables u, v only the norms $\|u\|$ and $\|v\|$ matter. With $\|u\|$ fixed, the CauchySchwarz inequality in Hilbert space (see, e.g., [6]), shows that $-2\left\langle u, u_{0}\right\rangle$ in the left underbraced part of (2.3) will be smallest when u, u_{0} are conically dependent. Similarly, for fixed $\|v\|$, the
second underlined part in f will be smaller when $v=t v_{0}$ for some $t \geq 0$. It follows that the optimization problem given by (2.2) is equivalent to

$$
\begin{align*}
\text { minimize } & g(s, t, \gamma):=(1-s)^{2}\left\|u_{0}\right\|^{2}+(1-t)^{2}\left\|v_{0}\right\|^{2}+\beta^{2}\left|\gamma-\gamma_{0}\right|^{2} \tag{2.4a}\\
\text { subject to } & g_{1}(s, t, \gamma):=s^{2}\left\|u_{0}\right\|^{2}-t^{2}\left\|v_{0}\right\|^{2}-2 \alpha \gamma=0, \quad s \geq 0, t \geq 0, \gamma \in \mathbb{R} . \tag{2.4b}
\end{align*}
$$

Because g is continuous and coercive, and g_{1} is continuous, we conclude that the optimization problem (2.4) has a solution.

Next we provide a result on set convergence and review graphical convergence, see, e.g., [4, 7]. We shall need the cross

$$
\begin{equation*}
C:=\{(x, y) \in X \times X \mid\langle x, y\rangle=0\} \tag{2.5}
\end{equation*}
$$

which was studied in, e.g., [8], as well as

$$
\begin{equation*}
\widetilde{C}:=\left\{(u, v) \in X \times X \mid\|u\|^{2}-\|v\|^{2}=0\right\} . \tag{2.6}
\end{equation*}
$$

Proposition 2.4. The following hold:
(i) $\lim _{\alpha \rightarrow 0} \widetilde{C}_{\alpha}=\widetilde{C} \times \mathbb{R}$.
(ii) $\lim _{\alpha \rightarrow 0} C_{\alpha}=C \times \mathbb{R}$.

Proof. (i): First we show that $\limsup _{\alpha \rightarrow 0} \widetilde{C}_{\alpha} \subseteq \widetilde{C} \times \mathbb{R}$. Let $\left(u_{\alpha}, v_{\alpha}, \gamma_{\alpha}\right) \rightarrow(u, v, \gamma)$ and $\left(u_{\alpha}, v_{\alpha}, \gamma_{\alpha}\right) \in$ \widetilde{C}_{α} with $\alpha \rightarrow 0$. Then $\left\|u_{\alpha}\right\|^{2}-\left\|v_{\alpha}\right\|^{2}=2 \alpha \gamma_{\alpha}$ gives $\|u\|^{2}-\|v\|^{2}=0$ when $\alpha \rightarrow 0$, so $(u, v, \gamma) \in$ $\widetilde{C} \times \mathbb{R}$.

Next we show $\widetilde{C} \times \mathbb{R} \subseteq \liminf _{\alpha \rightarrow 0} \widetilde{C}_{\alpha}$. Let $(u, v, \gamma) \in \widetilde{C} \times \mathbb{R}$, i.e., $\|u\|^{2}-\|v\|^{2}=0$ and $\gamma \in \mathbb{R}$. Let $\varepsilon>0$. We consider three cases:

Case 1: $\gamma=0$. Then $\left(u_{\alpha}, v_{\alpha}, 0\right)=(u, v, 0) \in \widetilde{C}_{\alpha}$ for every α.
Case 2: $\gamma \neq 0$ but $(u, v)=(0,0)$. If $\alpha \gamma>0$, take $\left(u_{\alpha}, 0, \gamma\right)$ with $\left\|u_{\alpha}\right\|^{2}-0=\alpha \gamma$ so that $\left(u_{\alpha}, 0, \gamma\right) \in C_{\alpha}$; if $\alpha \gamma<0$, take $\left(0, v_{\alpha}, \gamma\right)$ with $0-\left\|v_{\alpha}\right\|^{2}=\alpha \gamma$ so that $\left(0, v_{\alpha}, \gamma\right) \in C_{\alpha}$. Then

$$
\left\|\left(u_{\alpha}, 0, \gamma\right)-(0,0, \gamma)\right\|=\left\|u_{\alpha}\right\|=\sqrt{|\alpha \gamma|}<\varepsilon
$$

or

$$
\left\|\left(0, v_{\alpha}, \gamma\right)-(0,0, \gamma)\right\|=\left\|v_{\alpha}\right\|=\sqrt{|\alpha \gamma|}<\varepsilon
$$

if $|\alpha|<\varepsilon^{2} /|\gamma|$.
Case 3: $\gamma \neq 0$ and $(u, v) \neq(0,0)$. Take $\alpha \in \mathbb{R}$ such that

$$
|\alpha|<\min \left\{\frac{\varepsilon\|(u, v)\|}{|\gamma|}, \frac{\|(u, v)\|^{2}}{|\gamma|}\right\}
$$

and set

$$
\lambda:=\frac{\alpha \gamma}{\|(u, v)\|^{2}}
$$

Then

$$
|\lambda|=\frac{|\alpha \gamma|}{\|(u, v)\|^{2}}<1
$$

Now set

$$
u_{\alpha}:=\sqrt{1+\lambda} u, \quad v_{\alpha}:=\sqrt{1-\lambda} v
$$

Then

$$
\left\|u_{\alpha}\right\|^{2}-\left\|v_{\alpha}\right\|^{2}=(1+\lambda)\|u\|^{2}-(1-\lambda)\|v\|^{2}
$$

$$
=\lambda\left(\|u\|^{2}+\|v\|^{2}\right)=\alpha \gamma
$$

so that $\left(u_{\alpha}, v_{\alpha}, \gamma\right) \in \widetilde{C}_{\alpha}$ and

$$
\begin{aligned}
\left\|\left(u_{\alpha}, v_{\alpha}, \gamma\right)-(u, v, \gamma)\right\| & =\sqrt{(\sqrt{1+\lambda}-1)^{2}\|u\|^{2}+(\sqrt{1-\lambda}-1)^{2}\|v\|^{2}} \\
& =\sqrt{\frac{\lambda^{2}}{(1+\sqrt{1+\lambda})^{2}}\|u\|^{2}+\frac{\lambda^{2}}{(1+\sqrt{1-\lambda})^{2}}\|v\|^{2}} \\
& \leq \sqrt{\lambda^{2}\left(\|u\|^{2}+\|v\|^{2}\right)}=|\lambda|\|(u, v)\|<\varepsilon .
\end{aligned}
$$

(ii): This follows from (i) because that $C_{\alpha}=A \widetilde{C}_{\alpha}$ and $C \times \mathbb{R}=A(\widetilde{C} \times \mathbb{R})$ and that A is an isometry. See also [4, Theorem 4.26].

Definition 2.1. (Graphical limits of mappings) (See [4, Definition 5.32].) For a sequence of set-valued mappings $S^{k}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$, we say S^{k} converges graphically to S, in symbols $S^{k} \xrightarrow{g} S$, if for every $x \in \mathbb{R}^{n}$ one has

$$
\bigcup_{\left\{x^{k} \rightarrow x\right\}} \limsup S^{k}\left(x^{k}\right) \subseteq S(x) \subseteq \bigcup_{\left\{x^{k} \rightarrow x\right\}} \liminf _{k \rightarrow \infty} S^{k}\left(x^{k}\right)
$$

Fact 2.1. (Rockafellar-Wets) (See [4, Example 5.35].) For closed subsets sets S^{k}, S of \mathbb{R}^{n}, one has $P_{S^{k}} \xrightarrow{g} P_{S}$ if and only if $S^{k} \rightarrow S$.

We are now ready for our main results which we will derive in the next section.

3. Projection onto a Rectangular Hyperbolic Paraboloid

We begin with projections onto rectangular hyperbolic paraboloids. In view of Proposition 2.2(iii), to find $P_{C_{\alpha}}$ it suffices to find $P_{\widetilde{C}_{\alpha}}$. That is, for every $\left(u_{0}, v_{0}, \gamma_{0}\right) \in X \times X \times \mathbb{R}$, we need to solve:

$$
\begin{align*}
\min _{u, v, \gamma} & f(u, v, \gamma):=\left\|u-u_{0}\right\|^{2}+\left\|v-v_{0}\right\|^{2}+\beta^{2}\left|\gamma-\gamma_{0}\right|^{2} \tag{3.1a}\\
\text { subject to } & h(u, v, \gamma):=\|u\|^{2}-\|v\|^{2}-2 \alpha \gamma=0 . \tag{3.1b}
\end{align*}
$$

Theorem 3.1. Let $\left(u_{0}, v_{0}, \gamma_{0}\right) \in X \times X \times \mathbb{R}$. Then the following statements hold:
(i) If $u_{0} \neq 0, v_{0} \neq 0$, then

$$
\begin{equation*}
P_{\widetilde{C}_{\alpha}}\left(u_{0}, v_{0}, \gamma_{0}\right)=\left\{\left(\frac{u_{0}}{1+\lambda}, \frac{v_{0}}{1-\lambda}, \gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)\right\} \tag{3.2}
\end{equation*}
$$

where the unique $\lambda \in]-1,1[$ solves the following (essentially) quintic equation

$$
\begin{equation*}
g(\lambda):=\frac{\left(\lambda^{2}+1\right) p-2 \lambda q}{\left(1-\lambda^{2}\right)^{2}}-\frac{2 \lambda \alpha^{2}}{\beta^{2}}-2 \alpha \gamma_{0}=0 \tag{3.3}
\end{equation*}
$$

and where $p:=\left\|u_{0}\right\|^{2}-\left\|v_{0}\right\|^{2}$ and $q:=\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}$.
(ii) If $u_{0}=0, v_{0} \neq 0$, then
(a) If $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)<-\frac{\left\|v_{0}\right\|^{2}}{8}$, then

$$
\begin{equation*}
P_{\widetilde{C}_{\alpha}}\left(0, v_{0}, \gamma_{0}\right)=\left\{\left(0, \frac{v_{0}}{1-\lambda}, \gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)\right\} \tag{3.4}
\end{equation*}
$$

for a unique $\lambda \in]-1,1[$ that solves the (essentially) cubic equation

$$
\begin{equation*}
g_{1}(\lambda):=\frac{\left\|v_{0}\right\|^{2}}{(1-\lambda)^{2}}+\frac{2 \lambda \alpha^{2}}{\beta^{2}}+2 \alpha \gamma_{0}=0 \tag{3.5}
\end{equation*}
$$

(b) If $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right) \geq-\frac{\left\|v_{0}\right\|^{2}}{8}$, then

$$
\begin{equation*}
P_{\widetilde{C}_{\alpha}}\left(0, v_{0}, \gamma_{0}\right)=\left\{\left(u, \frac{v_{0}}{2}, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right) \left\lvert\,\|u\|=\sqrt{2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)+\frac{\left\|v_{0}\right\|^{2}}{4}}\right., u \in X\right\} \tag{3.6}
\end{equation*}
$$

which is a singleton if and only if $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=-\frac{\left\|v_{0}\right\|^{2}}{8}$.
(iii) When $u_{0} \neq 0, v_{0}=0$, we have:
(a) If $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)>\frac{\left\|u_{0}\right\|^{2}}{8}$, then

$$
\begin{equation*}
P_{\widetilde{C}_{\alpha}}\left(u_{0}, 0, \gamma_{0}\right)=\left\{\left(\frac{u_{0}}{1+\lambda}, 0, \gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)\right\} \tag{3.7}
\end{equation*}
$$

for a unique $\lambda \in]-1,1[$ that solves the (essentially) cubic equation

$$
\begin{equation*}
g_{2}(\lambda):=\frac{\left\|u_{0}\right\|^{2}}{(1+\lambda)^{2}}-\frac{2 \lambda \alpha^{2}}{\beta^{2}}-2 \alpha \gamma_{0}=0 \tag{3.8}
\end{equation*}
$$

(b) If $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right) \leq \frac{\left\|u_{0}\right\|^{2}}{8}$, then

$$
\begin{equation*}
P_{\widetilde{C}_{\alpha}}\left(u_{0}, 0, \gamma_{0}\right)=\left\{\left(\frac{u_{0}}{2}, v, \gamma_{0}+\frac{\alpha}{\beta^{2}}\right) \left\lvert\,\|v\|=\sqrt{-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)+\frac{\left\|u_{0}\right\|^{2}}{4}}\right., v \in X\right\} \tag{3.9}
\end{equation*}
$$

which is a singleton if and only if $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)=\frac{\left\|u_{0}\right\|^{2}}{8}$.
(iv) When $u_{0}=0, v_{0}=0$, we have:
(a) If $\alpha \gamma_{0}>\frac{\alpha^{2}}{\beta^{2}}$, then the projection is the non-singleton set

$$
\begin{equation*}
P_{\widetilde{C}_{\alpha}}\left(0,0, \gamma_{0}\right)=\left\{\left(u, 0, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right) \left\lvert\,\|u\|=\sqrt{2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)}\right., u \in X\right\} . \tag{3.10}
\end{equation*}
$$

(b) If $\left|\alpha \gamma_{0}\right| \leq \frac{\alpha^{2}}{\beta^{2}}$, then

$$
\begin{equation*}
P_{\widetilde{C}_{\alpha}}\left(0,0, \gamma_{0}\right)=\{(0,0,0)\} . \tag{3.11}
\end{equation*}
$$

(c) If $\alpha \gamma_{0}<-\frac{\alpha^{2}}{\beta^{2}}$, then the projection is the non-singleton set

$$
\begin{equation*}
P_{\widetilde{C}_{\alpha}}\left(0,0, \gamma_{0}\right)=\left\{\left(0, v, \gamma_{0}+\frac{\alpha}{\beta^{2}}\right) \left\lvert\,\|v\|=\sqrt{-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)}\right., v \in X\right\} . \tag{3.12}
\end{equation*}
$$

Proof. Observe that

$$
\nabla f(u, v, \gamma)=\left(2\left(u-u_{0}\right), 2\left(v-v_{0}\right), 2 \beta^{2}\left(\gamma-\gamma_{0}\right)\right)
$$

and

$$
\nabla h(u, v, \gamma)=(2 u,-2 v,-2 \alpha)
$$

Since $\alpha \neq 0$, we have $\forall(u, v, \gamma) \in X \times X \times \mathbb{R}, \nabla h(u, v, \gamma) \neq 0$. Using [9, Proposition 4.1.1], we obtain the following KKT optimality conditions of (3.1):

$$
\begin{array}{r}
(1+\lambda) u=u_{0} \\
(1-\lambda) v=v_{0} \\
\beta^{2}\left(\gamma-\gamma_{0}\right)-\lambda \alpha=0 \\
\|u\|^{2}-\|v\|^{2}-2 \alpha \gamma=0 \tag{3.13d}
\end{array}
$$

where $\lambda \in \mathbb{R}$ is the Lagrange multiplier.
The proofs of (i)-(iv) are presented in Sections 3.1-3.4 below.
3.1. Case (i): $u_{0} \neq 0, v_{0} \neq 0$. Proof. Because $u_{0} \neq 0, v_{0} \neq 0$, we obtain $\lambda \neq \pm 1$. Solving (3.13a), (3.13b) and (3.13c) gives $u=\frac{u_{0}}{(1+\lambda)}, v=\frac{v_{0}}{(1-\lambda)}$ and $\gamma=\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}$. By Proposition 2.3, $1+\lambda>0$ and $1-\lambda>0$, i.e., $\lambda \in]-1,1[$. Substituting u and v back into equation (3.13d), we get the (essentially) quintic equation (3.3). Using also $p<q$ and $q>0$, we have

$$
\begin{aligned}
(\forall \lambda \in]-1,1[) g^{\prime}(\lambda) & =\frac{2}{\left(1-\lambda^{2}\right)^{3}}\left(-q\left(1+3 \lambda^{2}\right)+p\left(\lambda^{3}+3 \lambda\right)\right)-2 \frac{\alpha^{2}}{\beta^{2}} \\
& <\frac{2}{\left(1-\lambda^{2}\right)^{3}}\left(-q\left(1+3 \lambda^{2}\right)+q\left(\lambda^{3}+3 \lambda\right)\right)-2 \frac{\alpha^{2}}{\beta^{2}} \\
& =\frac{2 q(\lambda-1)^{3}}{\left(1-\lambda^{2}\right)^{3}}-2 \frac{\alpha^{2}}{\beta^{2}}=\frac{-2 q}{(1+\lambda)^{3}}-2 \frac{\alpha^{2}}{\beta^{2}} \\
& <0 ;
\end{aligned}
$$

hence, g is strictly decreasing. Moreover, $g(-1)=+\infty, g(1)=-\infty$ and g is continuous on $]-1,1[$. Thus, $g(\lambda)=0$ has unique zero in $]-1,1[$.
3.2. Case (ii): $u_{0}=0, v_{0} \neq 0$. Proof. When $u_{0}=0$, the objective function is

$$
f(u, v, \gamma)=\|u\|^{2}+\left\|v-v_{0}\right\|^{2}+\beta^{2}\left|\gamma-\gamma_{0}\right|^{2}
$$

and the KKT optimality conditions (3.13) become

$$
\begin{align*}
(1+\lambda) u & =0 \tag{3.14a}\\
(1-\lambda) v & =v_{0} \tag{3.14b}\\
\gamma & =\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}} \tag{3.14c}\\
\|u\|^{2}-\|v\|^{2} & =2 \alpha \gamma . \tag{3.14d}
\end{align*}
$$

Then (3.14a) gives

$$
\begin{equation*}
1+\lambda=0 \text { or } u=0 . \tag{3.15}
\end{equation*}
$$

Because $v_{0} \neq 0$, we have $1-\lambda \neq 0$, so that

$$
\begin{equation*}
v=\frac{v_{0}}{1-\lambda} . \tag{3.16}
\end{equation*}
$$

By Proposition 2.3, $\lambda<1$.
Our analysis is divided into the following three situations:
Situation 1: $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)<-\frac{\left\|v_{0}\right\|^{2}}{8}$.
In view of (3.15), we analyze two cases.
Case 1: $1+\lambda=0$, i.e., $\lambda=-1$. By (3.16), $v=\frac{v_{0}}{2}$, and then (3.14d) and (3.14c) give

$$
\|u\|^{2}=2 \alpha \gamma+\frac{\left\|v_{0}\right\|^{2}}{4}=2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)+\frac{\left\|v_{0}\right\|^{2}}{4}<0
$$

which is absurd.
Case 2: $u=0$. By (3.14d),$-\|v\|^{2}=2 \alpha \gamma$, together with (3.16) and (3.14c), we have

$$
g_{1}(\lambda):=\frac{\left\|v_{0}\right\|^{2}}{(1-\lambda)^{2}}+2 \alpha\left(\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)=0 .
$$

As

$$
\left.g_{1}^{\prime}(\lambda)=\frac{2\left\|v_{0}\right\|^{2}}{(1-\lambda)^{3}}+\frac{2 \alpha^{2}}{\beta^{2}}>0 \quad \text { on }\right]-\infty, 1[,
$$

g_{1} is strictly increasing on $]-\infty, 1\left[\right.$. Moreover, $g_{1}(1)=+\infty$ and

$$
g_{1}(-1)=\frac{\left\|v_{0}\right\|^{2}}{4}+2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)<0
$$

Because g_{1} is strictly increasing and continuous, by the Intermediate Value Theorem, there exists a unique $\lambda \in]-1,1\left[\right.$ such that $g_{1}(\lambda)=0$. Hence, the possible optimal solution is given by

$$
\begin{equation*}
\left(0, \frac{v_{0}}{1-\lambda}, \gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right) \tag{3.17}
\end{equation*}
$$

where $g_{1}(\lambda)=0$ and $\left.\lambda \in\right]-1,1[$.
Combining Case 1 and Case 2, we obtain that (3.17) is the unique projection.
Situation 2: $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)>-\frac{\left\|v_{0}\right\|^{2}}{8}$.
In view of (3.15), we consider two cases:
Case 1: $1+\lambda=0$, i.e., $\lambda=-1$. By (3.16), $v=\frac{v_{0}}{2}$, and then (3.14d) and (3.14c) give

$$
\|u\|^{2}=2 \alpha \gamma+\frac{\left\|v_{0}\right\|^{2}}{4}=2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)+\frac{\left\|v_{0}\right\|^{2}}{4}>0 .
$$

The possible optimal value is attained at

$$
\begin{equation*}
\left(u, \frac{v_{0}}{2}, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right) \tag{3.18}
\end{equation*}
$$

with $\|u\|^{2}=2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)+\frac{\left\|v_{0}\right\|^{2}}{4}$ such that

$$
\begin{equation*}
f\left(u, \frac{v_{0}}{2}, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=2 \alpha \gamma_{0}-\frac{\alpha^{2}}{\beta^{2}}+\frac{\left\|v_{0}\right\|^{2}}{2} \tag{3.19}
\end{equation*}
$$

Case 2: $u=0$. By (3.14d),$-\|v\|^{2}=2 \alpha \gamma$, together with (3.14c), we have

$$
g_{1}(\lambda):=\frac{\left\|v_{0}\right\|^{2}}{(1-\lambda)^{2}}+2 \alpha\left(\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)=0 .
$$

As

$$
\left.g_{1}^{\prime}(\lambda)=\frac{2\left\|v_{0}\right\|^{2}}{(1-\lambda)^{3}}+\frac{2 \alpha^{2}}{\beta^{2}}>0 \quad \text { on }\right]-\infty, 1[
$$

g_{1} is strictly increasing. Observe that

$$
g_{1}(-1)=\frac{\left\|v_{0}\right\|^{2}}{4}+2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)>0
$$

and $g_{1}(-\infty)=-\infty$. By the Intermediate Value Theorem, there exists a unique $\left.\lambda \in\right]-\infty,-1[$ such that $g_{1}(\lambda)=0$ because g_{1} is strictly increasing and continuous. The possible optimal value is attained at (recall (3.16))

$$
\left(0, \frac{v_{0}}{1-\lambda}, \gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)
$$

with

$$
\begin{equation*}
f\left(0, \frac{v_{0}}{1-\lambda}, \gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)=\frac{\lambda^{2}\left\|v_{0}\right\|^{2}}{(1-\lambda)^{2}}+\frac{\lambda^{2} \alpha^{2}}{\beta^{2}} \tag{3.20}
\end{equation*}
$$

where λ is the unique solution of

$$
\begin{equation*}
\left.g_{1}(\lambda):=\frac{\left\|v_{0}\right\|^{2}}{(1-\lambda)^{2}}+2 \alpha\left(\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)=0 \text { in }\right]-\infty,-1[. \tag{3.21}
\end{equation*}
$$

Because both Case 1 and Case 2 may occur, we have to compare possible optimal objective function values, namely, (3.19) and (3.20). We claim that Case 1 wins, i.e.,

$$
\begin{equation*}
2 \alpha \gamma_{0}-\frac{\alpha^{2}}{\beta^{2}}+\frac{\left\|v_{0}\right\|^{2}}{2}<\frac{\lambda^{2}\left\|v_{0}\right\|^{2}}{(1-\lambda)^{2}}+\frac{\lambda^{2} \alpha^{2}}{\beta^{2}} \tag{3.22}
\end{equation*}
$$

In view of (3.21), we have

$$
\begin{equation*}
0<\frac{\left\|v_{0}\right\|^{2}}{(1-\lambda)^{2}}=-2 \alpha\left(\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right), \text { and so } \alpha\left(\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)<0 . \tag{3.23}
\end{equation*}
$$

To show (3.22), we shall reformulate it in equivalent forms:

$$
\left(\lambda^{2}-\frac{(1-\lambda)^{2}}{2}\right) \frac{\left\|v_{0}\right\|^{2}}{(1-\lambda)^{2}}+\left(1+\lambda^{2}\right) \frac{\alpha^{2}}{\beta^{2}}>2 \alpha \gamma_{0}
$$

which is

$$
\frac{\lambda^{2}+2 \lambda-1}{2}\left(-2 \alpha\left(\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)\right)+\left(1+\lambda^{2}\right) \frac{\alpha^{2}}{\beta^{2}}>2 \alpha \gamma_{0}
$$

by (3.23). After simplifications, this reduces to

$$
\frac{\alpha^{2}}{\beta^{2}}(1+\lambda)^{2}(1-\lambda)>\alpha \gamma_{0}(1+\lambda)^{2}
$$

Since $\lambda+1<0$, this is equivalent to

$$
\frac{\alpha^{2}}{\beta^{2}}(1-\lambda)>\alpha \gamma_{0}, \text { i.e., } \alpha\left(\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)<\frac{\alpha^{2}}{\beta^{2}}
$$

which obviously holds because of (3.23) and $\alpha^{2} / \beta^{2}>0$.

Hence, equation (3.18) of Case 1 gives the optimal solution.

Situation 3:

$$
\begin{equation*}
\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=-\frac{\left\|v_{0}\right\|^{2}}{8} \tag{3.24}
\end{equation*}
$$

We again consider two cases.
Case 1: $1+\lambda=0$, i.e., $\lambda=-1$. By (3.14b), $v=\frac{v_{0}}{2}$ and then (3.14d) and (3.14c) give

$$
\|u\|^{2}=2 \alpha \gamma+\frac{\left\|v_{0}\right\|^{2}}{4}=2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)+\frac{\left\|v_{0}\right\|^{2}}{4}=0
$$

so $u=0$. The possible optimal value is attained at

$$
\begin{equation*}
\left(0, \frac{\nu_{0}}{2}, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right) \tag{3.25}
\end{equation*}
$$

with

$$
f\left(0, \frac{v_{0}}{2}, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=\frac{\left\|v_{0}\right\|^{2}}{4}+\frac{\alpha^{2}}{\beta^{2}} .
$$

Case 2: $u=0$. By (3.14d),$-\|v\|^{2}=2 \alpha \gamma$, together with (3.14c), we have

$$
g_{2}(\lambda):=\frac{\left\|v_{0}\right\|^{2}}{(1-\lambda)^{2}}+2 \alpha\left(\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)=0
$$

By (3.24),

$$
g_{2}(-1)=\frac{\left\|v_{0}\right\|^{2}}{4}+2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=0
$$

As

$$
\left.g_{2}^{\prime}(\lambda)=\frac{2\left\|v_{0}\right\|^{2}}{(1-\lambda)^{3}}+\frac{2 \alpha^{2}}{\beta^{2}}>0 \quad \text { on }\right]-\infty, 1[,
$$

g_{2} is strictly increasing and continuous on $]-\infty, 1[$, so $\lambda=-1$ is the unique solution in $]-\infty, 1[$. Then the possible optimal value is attained at

$$
\left(0, \frac{v_{0}}{2}, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right)
$$

with

$$
\begin{equation*}
f\left(0, \frac{v_{0}}{2}, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=\frac{\left\|v_{0}\right\|^{2}}{4}+\frac{\alpha^{2}}{\beta^{2}} . \tag{3.26}
\end{equation*}
$$

Therefore, Case 1 and Case 2 give exactly the same solution. The optimal solution is given by (3.25), and it can be recovered by (3.18), the optimal solution of Situation 2.
3.3. Case (iii): $u_{0} \neq 0, v_{0}=0$. Proof. The minimization problem now is

$$
\begin{align*}
\operatorname{minimize} \quad f(u, v, \gamma) & =\left\|u_{0}-u\right\|^{2}+\|v\|^{2}+\beta^{2}\left|\gamma_{0}-\gamma\right|^{2} \tag{3.27a}\\
\text { subject to }\|u\|^{2}-\|v\|^{2} & =2 \alpha \gamma . \tag{3.27b}
\end{align*}
$$

Rewrite it as

$$
\begin{align*}
\text { minimize } \quad f(u, v, \gamma) & =\|v\|^{2}+\left\|u_{0}-u\right\|^{2}+\beta^{2}\left|\gamma_{0}-\gamma\right|^{2} \tag{3.28a}\\
\text { subject to }\|v\|^{2}-\|u\|^{2} & =2(-\alpha) \gamma . \tag{3.28b}
\end{align*}
$$

Luckily, we can apply Section 3.2 for the point $\left(0, u_{0}, \gamma_{0}\right)$ and parameter $-\alpha$. More precisely, when $-\alpha\left(\gamma_{0}-\frac{-\alpha}{\beta^{2}}\right)<-\frac{\left\|u_{0}\right\|^{2}}{8}$, the optimal solution to (3.28) is

$$
\left(0, \frac{u_{0}}{1-\tilde{\lambda}}, \gamma_{0}+\frac{\tilde{\lambda}(-\alpha)}{\beta^{2}}\right)
$$

where $\left.\tilde{g}_{2}(\tilde{\lambda})=0, \tilde{\lambda} \in\right]-1,1[$, and

$$
\tilde{g}_{2}(\tilde{\lambda})=\frac{\left\|u_{0}\right\|^{2}}{(1-\tilde{\lambda})^{2}}+2(-\alpha)\left(\gamma_{0}-\frac{\tilde{\lambda} \alpha}{\beta^{2}}\right)=0
$$

Put $\lambda=-\tilde{\lambda}$. Simplifications give: when $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)>\frac{\left\|u_{0}\right\|^{2}}{8}$, the optimal solution to (3.28) is

$$
\begin{equation*}
\left(0, \frac{u_{0}}{1+\lambda}, \gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right) \tag{3.29}
\end{equation*}
$$

where $\left.g_{2}(\lambda)=0, \lambda \in\right]-1,1[$, and

$$
g_{2}(\lambda):=\tilde{g}_{2}(-\lambda)=\frac{\left\|u_{0}\right\|^{2}}{(1+\lambda)^{2}}-2 \alpha\left(\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)=0 .
$$

Switching the first and second components in (3.29) gives the optimal solution to (3.27).
When $-\alpha\left(\gamma_{0}-\frac{-\alpha}{\beta^{2}}\right) \geq-\frac{\left\|u_{0}\right\|^{2}}{8}$, the optimal solution to (3.28) is

$$
\left(v, \frac{u_{0}}{2}, \gamma_{0}-\frac{-\alpha}{\beta^{2}}\right)
$$

with

$$
\|v\|^{2}=2(-\alpha)\left(\gamma_{0}-\frac{-\alpha}{\beta^{2}}\right)+\frac{\left\|u_{0}\right\|^{2}}{4}
$$

That is, when $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right) \leq \frac{\left\|u_{0}\right\|^{2}}{8}$, the optimal solution to (3.28) is

$$
\begin{equation*}
\left(v, \frac{u_{0}}{2}, \gamma_{0}+\frac{\alpha}{\beta^{2}}\right) \tag{3.30}
\end{equation*}
$$

with

$$
\|v\|^{2}=-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)+\frac{\left\|u_{0}\right\|^{2}}{4} .
$$

Switching the first and second components in (3.30) gives the optimal solution to (3.27).
3.4. Case (iv): $u_{0}=v_{0}=0$. Proof. The objective function is $f(u, v, \gamma)=\|u\|^{2}+\|v\|^{2}+\beta^{2} \mid \gamma-$ $\left.\gamma_{0}\right|^{2}$, and the KKT optimality conditions (3.13) become

$$
\begin{align*}
(1+\lambda) u & =0 \tag{3.31a}\\
(1-\lambda) v & =0 \tag{3.31b}\\
\gamma & =\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}, \tag{3.31c}\\
\|u\|^{2}-\|v\|^{2} & =2 \alpha \gamma . \tag{3.31d}
\end{align*}
$$

We shall consider three cases:
(i) $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)>0$; hence, $\gamma_{0}-\frac{\alpha}{\beta^{2}} \neq 0$.
(ii) $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=0$; hence, $\gamma_{0}-\frac{\alpha}{\beta^{2}}=0$.
(iii) $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)<0$; hence, $\gamma_{0}-\frac{\alpha}{\beta^{2}} \neq 0$.

For each item (i)-(iii), we will apply (3.31):
Case 1: $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)>0$. By (3.31a), we have $\lambda=-1$ or $u=0$. We consider two subcases.
Subcase 1: $\lambda=-1$. Using (3.31b), (3.31c) and (3.31d), we obtain $v=0, \gamma=\gamma_{0}-\frac{\alpha}{\beta^{2}}$, and

$$
\begin{equation*}
\|u\|^{2}=2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right) \tag{3.32}
\end{equation*}
$$

Therefore, the candidate for the solution is $\left(u, 0, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right)$ with u given by (3.32) and its objective function value is

$$
\begin{equation*}
f\left(u, 0, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)+0+\beta^{2}\left(\frac{-\alpha}{\beta^{2}}\right)^{2}=2 \alpha \gamma_{0}-\frac{\alpha^{2}}{\beta^{2}} \tag{3.33}
\end{equation*}
$$

Subcase 2: $u=0$. Using (3.31b)-(3.31d), we obtain $-\|v\|^{2}=2 \alpha \gamma, \gamma=\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}$ and ($1-$ $\lambda) v=0$. We have to consider two further cases: $1-\lambda=0$ or $v=0$.
(i) $v=0$. We get $-(0)^{2}=2 \alpha \gamma \Rightarrow \gamma=0$ because $\alpha \neq 0$. This gives a possible solution $(0,0,0)$ with function value

$$
\begin{equation*}
f(0,0,0)=\|u\|^{2}+\|v\|^{2}+\beta^{2}\left|\gamma-\gamma_{0}\right|^{2}=\beta^{2} \gamma_{0}^{2} . \tag{3.34}
\end{equation*}
$$

(ii) $\lambda=1$. We have $\gamma=\gamma_{0}+\frac{\alpha}{\beta^{2}}$ and $-\|v\|^{2}=2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)$. So, $0 \leq\|v\|^{2}=-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)$. However,

$$
\begin{equation*}
-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)=\underbrace{-2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)}_{<0}-\frac{4 \alpha^{2}}{\beta^{2}}<0 \tag{3.35}
\end{equation*}
$$

because $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)>0$. This contradiction shows $\lambda=1$ does not happen.
We now compare objective function values (3.33) and (3.34):

$$
2 \alpha \gamma_{0}-\frac{\alpha^{2}}{\beta^{2}}<\beta^{2} \gamma_{0}^{2} \Leftrightarrow \beta^{2} \gamma_{0}^{2}+\frac{\alpha^{2}}{\beta^{2}}-2 \alpha \gamma_{0}>0 \Leftrightarrow\left(\beta \gamma_{0}-\frac{\alpha}{\beta}\right)^{2}>0 \Leftrightarrow \beta^{2}\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)^{2}>0
$$

which holds because $\gamma_{0}-\frac{\alpha}{\beta^{2}} \neq 0$. Hence, the optimal solution is $\left(u, 0, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right)$ with $\|u\|=$ $\sqrt{2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)}$. That is,

$$
P_{\widetilde{C}_{2}}\left(0,0, \gamma_{0}\right)=\left\{\left(u, 0, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right) \left\lvert\,\|u\|=\sqrt{2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)}\right.\right\} .
$$

Case 2: $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=0$; hence, $\gamma_{0}-\frac{\alpha}{\beta^{2}}=0$. By (3.31a), we have two subcases to consider.
Subcase 1: $\lambda=-1$. We have $v=0, \gamma=\gamma_{0}-\frac{\alpha}{\beta^{2}}=0,\|u\|^{2}=2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=0$. The possible solution is $(0,0,0)$.
Subcase 2: $u=0$. We have $-\|v\|^{2}=2 \alpha \gamma$ and $\gamma=\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}$. By (3.31b), $v=0$ or $\lambda=1$. This requires us to consider two further cases. For $v=0$, we get $\gamma=0$, which gives a possible solution $(0,0,0)$. For $\lambda=1$, we get $\gamma=\gamma_{0}+\frac{\alpha}{\beta^{2}},\|v\|^{2}=-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)=\frac{-4 \alpha^{2}}{\beta^{2}}<0$, which is impossible, i.e., $\lambda=1$ does not happen.

Both Subcase 1 and Subcase 2 give the same solution ($0,0,0$). Therefore, we have the optimal solution is $(0,0,0)$, when $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=0$; equivalently, when $\gamma_{0}=\frac{\alpha}{\beta^{2}}$.
Case 3: $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)<0$. In view of (3.31a), we have $\lambda=-1$ or $u=0$. We show that $\lambda=-1$ can't happen. Indeed, when $\lambda=-1$, by (3.31b)-(3.31c), we have $v=0, \gamma=\gamma_{0}-\frac{\alpha}{\beta^{2}}$, and $0 \leq\|u\|^{2}=2 \alpha \gamma=2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)<0$, which is impossible. Therefore, we consider only the case $u=0$. Then (3.31b)-(3.31d) yield $\|v\|^{2}=-2 \alpha \gamma, \gamma=\gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}$, and $(1-\lambda) v=0$, which requires us to consider two further cases.
Subcase 1: $v=0$. Then $\gamma=0$. The possible optimal solution is $(0,0,0)$ and its objective function value is

$$
\begin{equation*}
f(0,0,0)=\|u\|^{2}+\|v\|^{2}+\beta^{2}\left|\gamma-\gamma_{0}\right|^{2}=\beta^{2} \gamma_{0}^{2} . \tag{3.36}
\end{equation*}
$$

Subcase 2: $\lambda=1$. Then $u=0, \gamma=\gamma_{0}+\frac{\alpha}{\beta^{2}}$, and $-\|v\|^{2}=2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)$. We consider three additional cases based on the sign of $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)$.
(i) $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)>0$. This case never happens because the relation $0 \geq-\|v\|^{2}=2 \alpha\left(\gamma_{0}+\right.$ $\left.\frac{\alpha}{\beta^{2}}\right)>0$ is absurd.
(ii) $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)=0$. As $\alpha \neq 0$, we have $\gamma_{0}+\frac{\alpha}{\beta^{2}}=0$. This gives $\gamma=0, u=0$ and $v=0$. So the possible optimal solution is $(0,0,0)$.
(iii) $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)<0$. We have $\gamma_{0}+\frac{\alpha}{\beta^{2}} \neq 0$. The possible optimal solution is $\left(0, v, \gamma_{0}+\frac{\alpha}{\beta^{2}}\right)$ with $\|v\|=\sqrt{-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)}$ and function value

$$
\begin{equation*}
f\left(0, v, \gamma_{0}+\frac{\alpha}{\beta^{2}}\right)=-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)+\beta^{2}\left(\frac{\alpha}{\beta^{2}}\right)^{2}=-2 \alpha \gamma_{0}-\frac{\alpha^{2}}{\beta^{2}} \tag{3.37}
\end{equation*}
$$

Both (i) and (ii) imply that ($0,0,0$) from Subcase 1 is the only optimal solution, when $\alpha^{2} / \beta^{2}>$ $\alpha \gamma_{0} \geq-\alpha^{2} / \beta^{2}$.

When $\alpha \gamma_{0}<-\frac{\alpha^{2}}{\beta^{2}}$, both Subcase 1 and Subcase 2 happen. We have to compare objectives (3.36) and (3.37). We claim $f\left(0, v, \gamma_{0}+\frac{\alpha}{\beta^{2}}\right)<f(0,0,0)$. Indeed, this is equivalent to

$$
-2 \alpha \gamma_{0}-\frac{\alpha^{2}}{\beta^{2}}<\beta^{2} \gamma_{0}^{2} \Leftrightarrow \beta^{2} \gamma_{0}^{2}+2 \alpha \gamma_{0}+\frac{\alpha^{2}}{\beta^{2}}>0 \Leftrightarrow\left(\beta \gamma_{0}+\frac{\alpha}{\beta}\right)^{2}>0 \Leftrightarrow \beta^{2}\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)^{2}>0
$$

which holds because $\gamma_{0}+\frac{\alpha}{\beta^{2}} \neq 0$. Therefore, the optimal solution is $\left(0, v, \gamma_{0}+\frac{\alpha}{\beta^{2}}\right)$ with $\|v\|=$ $\sqrt{-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)}$, i.e.,

$$
P_{\widetilde{C}_{2}}\left(0,0, \gamma_{0}\right)=\left\{\left(0, v, \gamma_{0}+\frac{\alpha}{\beta^{2}}\right) \left\lvert\,\|v\|=\sqrt{-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)}\right.\right\}
$$

when $\alpha \gamma_{0}<\frac{-\alpha^{2}}{\beta^{2}}$.
Altogether, Sections 3.1-3.4 conclude the proof of Theorem 3.1.
Let us illustrate Theorem 3.1.
Example 3.1. Suppose that $X=\mathbb{R}, \alpha=5$, and $\beta=1$. Writing z instead of γ, we note that \widetilde{C}_{α} turns into the set

$$
S:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}-y^{2}=10 z\right\}=\operatorname{gra}\left((x, y) \mapsto \frac{1}{10}\left(x^{2}-y^{2}\right)\right) .
$$

Let us now compute $P_{S}\left(x_{0}, y_{0}, z_{0}\right)$ for various points.
(i) Suppose that $\left(x_{0}, y_{0}, z_{0}\right)=(2,-3,4)$.

In view of Theorem 3.1(i), we set $p:=\left|x_{0}\right|^{2}-\left|y_{0}\right|^{2}=2^{2}-(-3)^{2}=-5$ and $q:=$ $\left|x_{0}\right|^{2}+\left|y_{0}\right|^{2}=2^{2}+(-3)^{2}=13$. Following (3.3), we consider the equation

$$
\frac{\left(\lambda^{2}+1\right) p-2 \lambda q}{\left(1-\lambda^{2}\right)^{2}}-\frac{2 \lambda \alpha^{2}}{\beta^{2}}-2 \alpha \gamma_{0}=-\frac{5 \lambda^{2}+26 \lambda+5}{\left(1-\lambda^{2}\right)^{2}}-50 \lambda-40=0
$$

which has $\lambda=-0.52416$ as its unique (approximate) root in $]-1,1[$. Using (3.2) now yields

$$
\begin{aligned}
P_{S}\left(x_{0}, y_{0}, z_{0}\right) & =\left\{\left(\frac{x_{0}}{1+\lambda}, \frac{y_{0}}{1-\lambda}, z_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)\right\} \\
& =\{(4.20311,-1.96830,1.37919)\}
\end{aligned}
$$

This is depicted in Figure 1 with the green arrow.
(ii) Suppose that $\left(x_{0}, y_{0}, z_{0}\right)=(0,-3,3)$.

In view of Theorem 3.1(ii), we evaluate $\alpha\left(z_{0}-\frac{\alpha}{\beta^{2}}\right)=5(3-5)=-10<-\frac{9}{8}=-\frac{\left|y_{0}\right|^{2}}{8}$ and we are thus in case (ii)(a). In view of (3.5), we consider the equation

$$
\frac{\left|y_{0}\right|^{2}}{(1-\lambda)^{2}}+\frac{2 \lambda \alpha^{2}}{\beta^{2}}+2 \alpha z_{0}=\frac{9}{(1-\lambda)^{2}}+50 \lambda+30=0
$$

which has $\lambda=-0.66493$ as its unique (approximate) root in $]-1,1[$. Using (3.4) now yields

$$
\begin{aligned}
P_{S}\left(x_{0}, y_{0}, z_{0}\right) & =\left\{\left(0, \frac{v_{0}}{1-\lambda}, \gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)\right\} \\
& =\{(0,-1.80187,-0.32467)\}
\end{aligned}
$$

This is depicted in Fig. 1 with a single blue arrow.
(iii) Suppose that $\left(x_{0}, y_{0}, z_{0}\right)=(0, \sqrt{32}, 6)=(0,5.65685,6)$.

In view of Theorem 3.1(ii), we evaluate $\alpha\left(z_{0}-\frac{\alpha}{\beta^{2}}\right)=5(6-5)=5>-4=-\frac{32}{8}=-\frac{\left|y_{0}\right|^{2}}{8}$ and we are thus in case (ii)(b). We compute

$$
\sqrt{2 \alpha\left(z_{0}-\frac{\alpha}{\beta^{2}}\right)+\frac{\left|y_{0}\right|^{2}}{4}}=\sqrt{10(6-5)+\frac{32}{4}}=\sqrt{18}
$$

and now (3.6) yields

$$
\begin{aligned}
P_{S}\left(x_{0}, y_{0}, z_{0}\right) & =\left\{\left(x, \frac{y_{0}}{2}, z_{0}-\frac{\alpha}{\beta^{2}}\right)| | x \left\lvert\,=\sqrt{2 \alpha\left(z_{0}-\frac{\alpha}{\beta^{2}}\right)+\frac{\left|y_{0}\right|^{2}}{4}}\right., u \in \mathbb{R}\right\} \\
& =\{(\pm \sqrt{18}, \sqrt{8}, 1)\}=\{(\pm 4.24264,2.82843,1)\}
\end{aligned}
$$

This is depicted in Figure 1 with double blue arrows.
(iv) Suppose that $\left(x_{0}, y_{0}, z_{0}\right)=(0,0,6)$.

In view of Theorem 3.1(iv), we have $\alpha z_{0}=5(6)=30>25=\frac{\alpha^{2}}{\beta^{2}}$ and we are thus in case (iv)(a). We compute

$$
\sqrt{2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)}=\sqrt{10(6-5)}=\sqrt{10}
$$

and now (3.10) yields

$$
\begin{aligned}
P_{S}\left(x_{0}, y_{0}, z_{0}\right) & =\left\{\left(x, 0, z_{0}-\frac{\alpha}{\beta^{2}}\right)| | x \left\lvert\,=\sqrt{2 \alpha\left(z_{0}-\frac{\alpha}{\beta^{2}}\right)}\right., u \in \mathbb{R}\right\} \\
& =\{(\pm \sqrt{10}, 0,1)\}=\{(\pm 3.16228,0,1)\}
\end{aligned}
$$

This is depicted in Figure 1 with double black arrows.
(v) Suppose that $\left(x_{0}, y_{0}, z_{0}\right)=(0,0,4)$.

In view of Theorem 3.1(iv), we have $\left|\alpha z_{0}\right|=|5(4)|=20<25=\frac{\alpha^{2}}{\beta^{2}}$ and we are thus in case (iv)(b). Therefore,

$$
P_{S}\left(x_{0}, y_{0}, z_{0}\right)=\{(0,0,0)\}
$$

This is depicted in Figure 1 with a single black arrow.

Figure 1. Visualization of the 5 projections from Example 3.1.

4. Further Results

Recall that

$$
C_{\alpha}=\{(x, y, \gamma) \in X \times X \times \mathbb{R} \mid\langle x, y\rangle=\alpha \gamma\}
$$

and this is the representation more natural to use in Deep Learning (see [2]). Armed with Theorem 3.1, the projection onto C_{α} now readily obtained:

Theorem 4.1. Let $\left(x_{0}, y_{0}, \gamma_{0}\right) \in X \times X \times \mathbb{R}$. Then the following hold:
(i) If $x_{0} \neq \pm y_{0}$, then

$$
P_{C_{\alpha}}\left(x_{0}, y_{0}, \gamma_{0}\right)=\left\{\left(\frac{x_{0}-\lambda y_{0}}{1-\lambda^{2}}, \frac{y_{0}-\lambda x_{0}}{1-\lambda^{2}}, \gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)\right\}
$$

for a unique $\lambda \in]-1,1[$ that solves the (essentially) quintic equation

$$
g(\lambda):=\frac{\left(\lambda^{2}+1\right) p-2 \lambda q}{\left(1-\lambda^{2}\right)^{2}}-\frac{2 \lambda \alpha^{2}}{\beta^{2}}-2 \alpha \gamma_{0}=0
$$

where $p:=2\left\langle x_{0}, y_{0}\right\rangle$ and $q:=\left\|x_{0}\right\|^{2}+\left\|y_{0}\right\|^{2}$.
(ii) If $y_{0}=-x_{0} \neq 0$, then we have the following:
a) When $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)<-\frac{\left\|x_{0}\right\|^{2}}{4}$, then

$$
P_{C_{\alpha}}\left(x_{0},-x_{0}, \gamma_{0}\right)=\left\{\left(\frac{x_{0}}{1-\lambda}, \frac{-x_{0}}{1-\lambda}, \gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)\right\}
$$

for a unique $\lambda \in]-1,1[$ that solves

$$
g_{1}(\lambda):=\frac{2\left\|x_{0}\right\|^{2}}{(1-\lambda)^{2}}+\frac{2 \lambda \alpha^{2}}{\beta^{2}}+2 \alpha \gamma_{0}=0
$$

b) When $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right) \geq-\frac{\left\|x_{0}\right\|^{2}}{4}$, then

$$
\begin{aligned}
& P_{C_{\alpha}}\left(x_{0},-x_{0}, \gamma_{0}\right)= \\
& \quad\left\{\left.\left(\frac{x_{0}}{2}+\frac{u}{\sqrt{2}},-\frac{x_{0}}{2}+\frac{u}{\sqrt{2}}, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right) \right\rvert\,\|u\|=\sqrt{2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)+\frac{\left\|x_{0}\right\|^{2}}{2}}, u \in X\right\}
\end{aligned}
$$

which is a singleton if and only if $\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)=-\frac{\left\|x_{0}\right\|^{2}}{4}$.
(iii) If $y_{0}=x_{0} \neq 0$, then we have the following:
a) When $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)>\frac{\left\|x_{0}\right\|^{2}}{4}$, then

$$
P_{C_{\alpha}}\left(x_{0}, x_{0}, \gamma_{0}\right)=\left\{\left(\frac{x_{0}}{1+\lambda}, \frac{x_{0}}{1+\lambda}, \gamma_{0}+\frac{\lambda \alpha}{\beta^{2}}\right)\right\}
$$

for a unique $\lambda \in]-1,1[$ that solves the (essentially) cubic equation

$$
g_{2}(\lambda):=\frac{2\left\|x_{0}\right\|^{2}}{(1+\lambda)^{2}}-\frac{2 \lambda \alpha^{2}}{\beta^{2}}-2 \alpha \gamma_{0}=0 .
$$

b) If $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right) \leq \frac{\left\|x_{0}\right\|^{2}}{4}$, then
$P_{C_{\alpha}}\left(x_{0}, x_{0}, \gamma_{0}\right)=$

$$
\left\{\left.\left(\frac{x_{0}}{2}-\frac{v}{\sqrt{2}}, \frac{x_{0}}{2}+\frac{v}{\sqrt{2}}, \gamma_{0}+\frac{\alpha}{\beta^{2}}\right) \right\rvert\,\|v\|=\sqrt{-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)+\frac{\left\|x_{0}\right\|^{2}}{2}}, v \in X\right\}
$$

which is a singleton if and only if $\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)=\frac{\left\|x_{0}\right\|^{2}}{4}$.
(iv) If $x_{0}=y_{0}=0$, then we have the following:
a) When $\alpha \gamma_{0}>\frac{\alpha^{2}}{\beta^{2}}$, then the projection is the non-singleton set

$$
P_{C_{\alpha}}\left(0,0, \gamma_{0}\right)=\left\{\left.\left(\frac{u}{\sqrt{2}}, \frac{u}{\sqrt{2}}, \gamma_{0}-\frac{\alpha}{\beta^{2}}\right) \right\rvert\,\|u\|=\sqrt{2 \alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)}, u \in X\right\} .
$$

b) When $\left|\alpha \gamma_{0}\right| \leq \frac{\alpha^{2}}{\beta^{2}}$, then

$$
P_{C_{\alpha}}\left(0,0, \gamma_{0}\right)=\{(0,0,0)\} .
$$

c) When $\alpha \gamma_{0}<-\frac{\alpha^{2}}{\beta^{2}}$, then the projection is the non-singleton set

$$
P_{C_{\alpha}}\left(0,0, \gamma_{0}\right)=\left\{\left.\left(-\frac{v}{\sqrt{2}}, \frac{v}{\sqrt{2}}, \gamma_{0}+\frac{\alpha}{\beta^{2}}\right) \right\rvert\,\|v\|=\sqrt{-2 \alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right)}, v \in X\right\} .
$$

Proof. With

$$
A=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} \mathrm{Id} & -\frac{1}{\sqrt{2}} \mathrm{Id} & 0 \\
\frac{1}{\sqrt{2}} \mathrm{Id} & \frac{1}{\sqrt{2}} \mathrm{Id} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

in mind, by Proposition 2.2(iii) we have

$$
\begin{aligned}
P_{C_{\alpha}}\left[x_{0}, y_{0}, \gamma_{0}\right]^{\top} & =A P_{\widetilde{C}_{\alpha}} A^{\top}\left[x_{0}, y_{0}, \gamma_{0}\right]^{\top} \\
& =A P_{\widetilde{C}_{\alpha}}\left[\frac{x_{0}+y_{0}}{\sqrt{2}}, \frac{-x_{0}+y_{0}}{\sqrt{2}}, \gamma_{0}\right]^{\top} .
\end{aligned}
$$

Hence (i)-(iv) follow by applying Theorem 3.1.
Remark 4.1. Theorem 4.1(i) was given in [2, Appendix B] without a rigorous mathematical justification.

It is interesting to ask what happens when $\alpha \rightarrow 0$.
Theorem 4.2. Suppose that $X=\mathbb{R}^{n}$. Then $P_{C_{\alpha}} \xrightarrow{g} P_{C \times \mathbb{R}}=P_{C} \times \mathrm{Id}$ and $P_{\widetilde{C}_{\alpha}} \xrightarrow{g} P_{\widetilde{C} \times \mathbb{R}}=P_{\widetilde{C}} \times \mathrm{Id}$ when $\alpha \rightarrow 0$.

Proof. Apply Proposition 2.4 and Fact 2.1.
Remark 4.2. The projection onto the cross C, P_{C}, has been given in [8].

Acknowledgments

HHB and XW were supported by NSERC Discovery Grants. MKL was partially supported by a SERB-UBC Fellowship and NSERC Discovery Grants of HHB and XW.

References

[1] B. Odehnal, H. Stachel, G. Glaeser, The Universe of Quadrics, Springer, 2020.
[2] V. Elser, Learning without loss, Fixed Point Theory Algo. Sci. Eng. 2021 (2021), 12.
[3] H.H. Bauschke, M. Krishan Lal, X. Wang, Projections onto hyperbolas and bilinear constraints in Hilbert spaces, 2021. https://arxiv.org/abs/2112.02181.
[4] R.T. Rockafellar, R.J-B Wets, Variational Analysis, Springer-Verlag, New York, 1998.
[5] F. Bernard, L. Thibault, Prox-regular functions in Hilbert spaces, J. Math. Anal. Appl. 303 (2005), 1-14.
[6] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley \& Sons, Inc., New York, 1989.
[7] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhäuser, 1990.
[8] H.H. Bauschke, M. Krishan Lal, X. Wang, The projection onto the cross, Set-Valued Var. Anal. 30 (2022), 997-1009.
[9] D.P. Bertsekas, Nonlinear Programming, third edition, Athena Scientific, Belmont, Massachusetts, USA, 2016.

[^0]: *Corresponding author.
 Email addresses: heinz.bauschke@ubc.ca (H.H. Bauschke), manish.krishanlal@ubc.ca (M. Krishan Lal), shawn.wang@ubc.ca (X. Wang).

 Received June 10, 2022; September 24, 2022.

