Appl. Set-Valued Anal. Optim. 5 (2023), No. 2, pp. 163-180 Available online at http://asvao.biemdas.com https://doi.org/10.23952/asvao.5.2023.2.04

PROJECTING ONTO RECTANGULAR HYPERBOLIC PARABOLOIDS IN HILBERT SPACE

HEINZ H. BAUSCHKE*, MANISH KRISHAN LAL, XIANFU WANG

Department of Mathematics, University of British Columbia, Kelowna, B.C. VIV 1V7, Canada

Abstract. In \mathbb{R}^3 , a hyperbolic paraboloid is a classical saddle-shaped quadric surface. Recently, Elser has modeled problems arising in Deep Learning using rectangular hyperbolic paraboloids in \mathbb{R}^n . Motivated by his work, we provide a rigorous analysis of the associated projection. In some cases, finding this projection amounts to finding a certain root of a quintic or cubic polynomial. We also observe when the projection is not a singleton and point out connections to graphical and set convergence.

Keywords. Cross; Graphical convergence; Projection onto a nonconvex set; Rectangular hyperbolic paraboloid.

2020 Mathematics Subject Classification. 41A50, 90C26.

1. INTRODUCTION

Throughout this paper, we assume that

X is a real Hilbert space with inner product $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$,

and induced norm $\|\cdot\|$, and that $\alpha \in \mathbb{R} \setminus \{0\}$ and $\beta > 0$. Define the β -weighted norm on the product space $X \times X \times \mathbb{R}$ by

$$(\forall (x,y,\gamma) \in X \times X \times \mathbb{R}) ||(x,y,\gamma)|| := \sqrt{||x||^2 + ||y||^2 + \beta^2 |\gamma|^2}.$$

Now define the set

$$C_{\alpha} := \left\{ (x, y, \gamma) \in X \times X \times \mathbb{R} \mid \langle x, y \rangle = \alpha \gamma \right\}.$$
(1.1)

The set C_{α} is a special bilinear constraint set in optimization, and it corresponds to a rectangular (a.k.a. orthogonal) hyperbolic paraboloid in geometry [1]. Motivated by Deep Learning, Elser recently presented in [2] a formula for the projection $P_{C_{\alpha}}(x_0, y_0, \gamma_0)$ when $x_0 \neq \pm y_0$. However, complete mathematical justifications were not presented and the case when $x_0 = \pm y_0$ was not considered. The goal of this paper is to provide a complete analysis of $P_{C_{\alpha}}$ that is applicable to all possible cases.

©2023 Applied Set-Valued Analysis and Optimization

^{*}Corresponding author.

Email addresses: heinz.bauschke@ubc.ca (H.H. Bauschke), manish.krishanlal@ubc.ca (M. Krishan Lal), shawn.wang@ubc.ca (X. Wang).

Received June 10, 2022; September 24, 2022.

The paper is organized as follows. We collect auxiliary results in Section 2. Our main result is proved in Section 3 which also contains a numerical illustration. The formula for the projection onto the set C_{α} is presented in Section 4.

As usual, the distance function and projection mapping associated to C_{α} are denoted by

$$d_{C_{\alpha}}(x_0, y_0, \gamma_0) := \inf_{(x, y, \gamma) \in C_{\alpha}} \|(x, y, \gamma) - (x_0, y_0, \gamma_0)\|$$

and

$$P_{C_{\alpha}}(x_0, y_0, \gamma_0) := \operatorname{argmin}_{(x, y, \gamma) \in C_{\alpha}} \| (x, y, \gamma) - (x_0, y_0, \gamma_0) \|_{\mathcal{X}}$$

respectively. We say that $x, x_0 \in X$ are *conically dependent* if there exists $s \ge 0$ such that $x = sx_0$ or $x_0 = sx$.

2. AUXILIARY RESULTS

We start with some elementary properties of C_{α} , and justify the existence of projections onto these sets.

Proposition 2.1. *The following statements hold:*

- (i) The set C_{α} is closed. If X is infinite-dimensional, then C_{α} is not weakly closed; in fact, $\overline{C_{\alpha}}^{\text{weak}} = X \times X \times \mathbb{R}.$
- (ii) C_{α} is prox-regular in $X \times X \times \mathbb{R}$. Hence, for every point in $(x_0, y_0, \gamma_0) \in C_{\alpha}$, there exists a neighborhood such that the projection mapping $P_{C_{\alpha}}$ is single-valued.

Proof. (i): Clearly, C_{α} is closed. Thus assume that X is infinite-dimensional. By [3, Proposition 2.1], for every $\gamma \in \mathbb{R}$, $\overline{\{(x,y) \in X \times X \mid \langle x,y \rangle = \alpha \gamma\}}^{\text{weak}} = X \times X$. Thus,

$$X \times X \times \mathbb{R} = \bigcup_{\gamma \in \mathbb{R}} \left(\overline{\{(x, y) \in X \times X \mid \langle x, y \rangle = \alpha \gamma\}}^{\text{weak}} \times \{\gamma\} \right)$$
$$\subseteq \overline{\{(x, y, \gamma) \in X \times X \times \mathbb{R} \mid \langle x, y \rangle = \alpha \gamma\}}^{\text{weak}} \subseteq X \times X \times \mathbb{R}$$

(ii): Set $F: X \times X \times \mathbb{R} \to \mathbb{R}: (x, y, \gamma) \mapsto \langle x, y \rangle - \alpha \gamma$. Then $C_{\alpha} = F^{-1}(0)$ and $\nabla F(x, y, \gamma) = (y, x, -\alpha) \neq (0, 0, 0)$ because $\alpha \neq 0$. The prox-regularity of C_{α} now follows from [4, Example 6.8] when $X = \mathbb{R}^n$ or from [5, Proposition 2.4] in the general case. Finally, the single-valuedness of the projection locally around every point in C_{α} follows from [5, Proposition 4.4].

To study the projection onto C_{α} , it is convenient to introduce

$$\widetilde{C}_{\alpha} := \left\{ (u, v, \gamma) \in X \times X \times \mathbb{R} \mid \|u\|^2 - \|v\|^2 = 2\alpha\gamma \right\},$$
(2.1)

which is the standard form of a rectangular hyperbolic paraboloid. Define a linear operator $A: X \times X \times \mathbb{R} \to X \times X \times \mathbb{R}$ by sending (u, v, γ) to (x, y, γ) , where

$$x = \frac{u-v}{\sqrt{2}}$$
 and $y = \frac{u+v}{\sqrt{2}}$

In terms of block matrix notation, we have

$$\begin{bmatrix} x\\ y\\ \gamma \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \operatorname{Id} & -\frac{1}{\sqrt{2}} \operatorname{Id} & 0\\ \frac{1}{\sqrt{2}} \operatorname{Id} & \frac{1}{\sqrt{2}} \operatorname{Id} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u\\ v\\ \gamma \end{bmatrix} \Leftrightarrow \begin{bmatrix} u\\ v\\ \gamma \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \operatorname{Id} & \frac{1}{\sqrt{2}} \operatorname{Id} & 0\\ -\frac{1}{\sqrt{2}} \operatorname{Id} & \frac{1}{\sqrt{2}} \operatorname{Id} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ \gamma \end{bmatrix}.$$

Thus, we may and do identify A with its block matrix representation

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} \mathrm{Id} & -\frac{1}{\sqrt{2}} \mathrm{Id} & 0\\ \frac{1}{\sqrt{2}} \mathrm{Id} & \frac{1}{\sqrt{2}} \mathrm{Id} & 0\\ 0 & 0 & 1 \end{bmatrix},$$

and we denote the adjoint of A by A^{T} . Note that A corresponds to a rotation by $\pi/4$ about the γ -axis. The relationship between C_{α} and \widetilde{C}_{α} is summarized as follows.

Proposition 2.2. The following statements hold:

- (i) A is a surjective isometry (i.e., a unitary operator): $AA^{\intercal} = A^{\intercal}A = Id$.
- (ii) $AC_{\alpha} = C_{\alpha}$ and $C_{\alpha} = A^{\mathsf{T}}C_{\alpha}$.
- (iii) $P_{C_{\alpha}} = A P_{\widetilde{C}_{\alpha}} A^{\mathsf{T}}$.

Proof. It is straightforward to verify (i) and (ii). To show (iii), let $(x_0, y_0, \gamma_0) \in X \times X \times \mathbb{R}$. In view of (i) and (ii), we have $(x, y, \gamma) \in P_{C_{\alpha}}(x_0, y_0, \gamma_0)$ if and only if $(x, y, \gamma) \in C_{\alpha}$ and

$$\|(x, y, \gamma) - (x_0, y_0, \gamma_0)\| = d_{C_{\alpha}}(x_0, y_0, \gamma_0) = d_{A\widetilde{C}_{\alpha}}(x_0, y_0, \gamma_0) = d_{\widetilde{C}_{\alpha}}(A^{\mathsf{T}}[x_0, y_0, \gamma_0]^{\mathsf{T}}),$$

and this is equivalent to

$$\|A^{\mathsf{T}}[x,y,\gamma]^{\mathsf{T}} - A^{\mathsf{T}}[x_0,y_0,\gamma_0]^{\mathsf{T}}\| = d_{\widetilde{C}_{\alpha}}(A^{\mathsf{T}}[x_0,y_0,\gamma_0]^{\mathsf{T}}).$$

Since $A^{\mathsf{T}}[x, y, \gamma]^{\mathsf{T}} \in \widetilde{C}_{\alpha}$, this gives $A^{\mathsf{T}}[x, y, \gamma]^{\mathsf{T}} \in P_{\widetilde{C}_{\alpha}}(A^{\mathsf{T}}[x_0, y_0, \gamma_0]^{\mathsf{T}})$, i.e.,

$$[x, y, \gamma]^{\mathsf{T}} \in AP_{\widetilde{C}_{\alpha}}(A^{\mathsf{T}}[x_0, y_0, \gamma_0]^{\mathsf{T}}).$$

The converse inclusion is proved similarly.

Exploiting the structure of \tilde{C}_{α} is crucial for showing the existence of $P_{\tilde{C}_{\alpha}}(u_0, v_0, \gamma_0)$ for every $(u_0, v_0, \gamma_0) \in X \times X \times \mathbb{R}$.

Proposition 2.3. (Existence of the projection) Let $(u_0, v_0, \gamma_0) \in X \times X \times \mathbb{R}$. Then the minimization problem

minimize
$$f(u, v, \gamma) := ||u - u_0||^2 + ||v - v_0||^2 + \beta^2 |\gamma - \gamma_0|^2$$
 (2.2a)

subject to
$$h(u, v, \gamma) := ||u||^2 - ||v||^2 - 2\alpha\gamma = 0$$
 (2.2b)

always has a solution, i.e., $P_{C_{\alpha}}(u_0, v_0, \gamma_0) \neq \emptyset$. If $(u, v, \gamma) \in P_{C_{\alpha}}(u_0, v_0, \gamma_0)$, then u, u_0 are conically dependent, and v, v_0 are also conically dependent.

Proof. We only illustrate the case when $u_0 \neq 0, v_0 \neq 0$, since the other cases are similar. We claim that the optimization problem is essentially 3-dimensional. To this end, we expand

$$f(u,v,\gamma) = \underbrace{\|u\|^2 - 2\langle u, u_0 \rangle + \|u_0\|^2}_{=} + \underbrace{\|v\|^2 - 2\langle v, v_0 \rangle + \|v_0\|^2}_{=} + \beta^2 |\gamma - \gamma_0|^2.$$
(2.3)

The constraint

$$h(u, v, \gamma) = ||u||^2 - ||v||^2 - 2\alpha\gamma = 0$$

means that for the variables u, v only the norms ||u|| and ||v|| matter. With ||u|| fixed, the Cauchy-Schwarz inequality in Hilbert space (see, e.g., [6]), shows that $-2\langle u, u_0 \rangle$ in the left underbraced part of (2.3) will be smallest when u, u_0 are conically dependent. Similarly, for fixed ||v||, the

second underlined part in f will be smaller when $v = tv_0$ for some $t \ge 0$. It follows that the optimization problem given by (2.2) is equivalent to

minimize
$$g(s,t,\gamma) := (1-s)^2 ||u_0||^2 + (1-t)^2 ||v_0||^2 + \beta^2 |\gamma - \gamma_0|^2$$
 (2.4a)

subject to
$$g_1(s,t,\gamma) := s^2 ||u_0||^2 - t^2 ||v_0||^2 - 2\alpha\gamma = 0, \quad s \ge 0, t \ge 0, \gamma \in \mathbb{R}.$$
 (2.4b)

Because g is continuous and coercive, and g_1 is continuous, we conclude that the optimization problem (2.4) has a solution.

Next we provide a result on set convergence and review graphical convergence, see, e.g., [4, 7]. We shall need the *cross*

$$C := \{ (x, y) \in X \times X \mid \langle x, y \rangle = 0 \},$$
(2.5)

which was studied in, e.g., [8], as well as

$$\widetilde{C} := \{(u,v) \in X \times X \mid ||u||^2 - ||v||^2 = 0\}.$$
(2.6)

Proposition 2.4. The following hold:

- (i) $\lim_{\alpha \to 0} \widetilde{C}_{\alpha} = \widetilde{C} \times \mathbb{R}$. (ii) $\lim_{\alpha \to 0} C_{\alpha} = C \times \mathbb{R}$.
- *Proof.* (i): First we show that $\limsup_{\alpha\to 0} \widetilde{C}_{\alpha} \subseteq \widetilde{C} \times \mathbb{R}$. Let $(u_{\alpha}, v_{\alpha}, \gamma_{\alpha}) \to (u, v, \gamma)$ and $(u_{\alpha}, v_{\alpha}, \gamma_{\alpha}) \in \widetilde{C}_{\alpha}$ with $\alpha \to 0$. Then $||u_{\alpha}||^2 ||v_{\alpha}||^2 = 2\alpha\gamma_{\alpha}$ gives $||u||^2 ||v||^2 = 0$ when $\alpha \to 0$, so $(u, v, \gamma) \in \widetilde{C} \times \mathbb{R}$.

Next we show $\widetilde{C} \times \mathbb{R} \subseteq \liminf_{\alpha \to 0} \widetilde{C}_{\alpha}$. Let $(u, v, \gamma) \in \widetilde{C} \times \mathbb{R}$, i.e., $||u||^2 - ||v||^2 = 0$ and $\gamma \in \mathbb{R}$. Let $\varepsilon > 0$. We consider three cases:

Case 1: $\gamma = 0$. Then $(u_{\alpha}, v_{\alpha}, 0) = (u, v, 0) \in \widetilde{C}_{\alpha}$ for every α .

Case 2: $\gamma \neq 0$ but (u, v) = (0, 0). If $\alpha \gamma > 0$, take $(u_{\alpha}, 0, \gamma)$ with $||u_{\alpha}||^2 - 0 = \alpha \gamma$ so that $(u_{\alpha}, 0, \gamma) \in C_{\alpha}$; if $\alpha \gamma < 0$, take $(0, v_{\alpha}, \gamma)$ with $0 - ||v_{\alpha}||^2 = \alpha \gamma$ so that $(0, v_{\alpha}, \gamma) \in C_{\alpha}$. Then

$$|(u_{\alpha},0,\gamma)-(0,0,\gamma)|| = ||u_{\alpha}|| = \sqrt{|\alpha\gamma|} < \varepsilon$$

or

$$\|(0, v_{\alpha}, \gamma) - (0, 0, \gamma)\| = \|v_{\alpha}\| = \sqrt{|\alpha\gamma|} < \varepsilon,$$

if $|\alpha| < \varepsilon^2/|\gamma|$.

Case 3: $\gamma \neq 0$ and $(u, v) \neq (0, 0)$. Take $\alpha \in \mathbb{R}$ such that

$$|\alpha| < \min\left\{\frac{\varepsilon \|(u,v)\|}{|\gamma|}, \frac{\|(u,v)\|^2}{|\gamma|}\right\},\,$$

and set

$$\lambda := \frac{\alpha \gamma}{\|(u,v)\|^2}.$$

Then

$$|\lambda| = \frac{|\alpha \gamma|}{\|(u,v)\|^2} < 1.$$

Now set

$$u_{\alpha} := \sqrt{1+\lambda}u, \quad v_{\alpha} := \sqrt{1-\lambda}v.$$

Then

$$||u_{\alpha}||^{2} - ||v_{\alpha}||^{2} = (1+\lambda)||u||^{2} - (1-\lambda)||v||^{2}$$

$$=\lambda(\|u\|^2+\|v\|^2)=\alpha\gamma,$$

so that $(u_{\alpha}, v_{\alpha}, \gamma) \in \widetilde{C}_{\alpha}$ and

$$\begin{split} \|(u_{\alpha}, v_{\alpha}, \gamma) - (u, v, \gamma)\| &= \sqrt{(\sqrt{1 + \lambda} - 1)^2} \|u\|^2 + (\sqrt{1 - \lambda} - 1)^2 \|v\|^2} \\ &= \sqrt{\frac{\lambda^2}{(1 + \sqrt{1 + \lambda})^2}} \|u\|^2 + \frac{\lambda^2}{(1 + \sqrt{1 - \lambda})^2} \|v\|^2} \\ &\leq \sqrt{\lambda^2 (\|u\|^2 + \|v\|^2)} = |\lambda| \|(u, v)\| < \varepsilon. \end{split}$$

(ii): This follows from (i) because that $C_{\alpha} = A\widetilde{C}_{\alpha}$ and $C \times \mathbb{R} = A(\widetilde{C} \times \mathbb{R})$ and that A is an isometry. See also [4, Theorem 4.26].

Definition 2.1. (Graphical limits of mappings) (See [4, Definition 5.32].) For a sequence of set-valued mappings $S^k : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$, we say S^k converges graphically to *S*, in symbols $S^k \xrightarrow{g} S$, if for every $x \in \mathbb{R}^n$ one has

$$\bigcup_{\{x^k \to x\}} \limsup_{k \to \infty} S^k(x^k) \subseteq S(x) \subseteq \bigcup_{\{x^k \to x\}} \liminf_{k \to \infty} S^k(x^k).$$

Fact 2.1. (Rockafellar–Wets) (See [4, Example 5.35].) For closed subsets sets S^k , S of \mathbb{R}^n , one has $P_{S^k} \xrightarrow{g} P_S$ if and only if $S^k \to S$.

We are now ready for our main results which we will derive in the next section.

3. PROJECTION ONTO A RECTANGULAR HYPERBOLIC PARABOLOID

We begin with projections onto rectangular hyperbolic paraboloids. In view of Proposition 2.2(iii), to find $P_{C_{\alpha}}$ it suffices to find $P_{\widetilde{C}_{\alpha}}$. That is, for every $(u_0, v_0, \gamma_0) \in X \times X \times \mathbb{R}$, we need to solve:

$$\min_{u,v,\gamma} \quad f(u,v,\gamma) := \|u - u_0\|^2 + \|v - v_0\|^2 + \beta^2 |\gamma - \gamma_0|^2 \tag{3.1a}$$

subject to
$$h(u, v, \gamma) := ||u||^2 - ||v||^2 - 2\alpha\gamma = 0.$$
 (3.1b)

Theorem 3.1. Let $(u_0, v_0, \gamma_0) \in X \times X \times \mathbb{R}$. Then the following statements hold:

(i) If $u_0 \neq 0, v_0 \neq 0$, then

$$P_{\widetilde{C}_{\alpha}}(u_0, v_0, \gamma_0) = \left\{ \left(\frac{u_0}{1+\lambda}, \frac{v_0}{1-\lambda}, \gamma_0 + \frac{\lambda \alpha}{\beta^2} \right) \right\},\tag{3.2}$$

where the unique $\lambda \in]-1,1[$ solves the following (essentially) quintic equation

$$g(\lambda) := \frac{(\lambda^2 + 1)p - 2\lambda q}{(1 - \lambda^2)^2} - \frac{2\lambda\alpha^2}{\beta^2} - 2\alpha\gamma_0 = 0, \qquad (3.3)$$

and where $p := ||u_0||^2 - ||v_0||^2$ and $q := ||u_0||^2 + ||v_0||^2$. (ii) If $u_0 = 0, v_0 \neq 0$, then

(a) If
$$\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) < -\frac{\|\nu_0\|^2}{8}$$
, then

$$P_{\widetilde{C}_{\alpha}}(0, \nu_0, \gamma_0) = \left\{ \left(0, \frac{\nu_0}{1 - \lambda}, \gamma_0 + \frac{\lambda \alpha}{\beta^2}\right) \right\},$$
(3.4)

for a unique $\lambda \in [-1,1[$ that solves the (essentially) cubic equation

$$g_1(\lambda) := \frac{\|v_0\|^2}{(1-\lambda)^2} + \frac{2\lambda\alpha^2}{\beta^2} + 2\alpha\gamma_0 = 0.$$
(3.5)

(b) If $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) \ge -\frac{\|\nu_0\|^2}{8}$, then

$$P_{\widetilde{C}_{\alpha}}(0,v_0,\gamma_0) = \left\{ \left(u, \frac{v_0}{2}, \gamma_0 - \frac{\alpha}{\beta^2} \right) \ \middle| \ \|u\| = \sqrt{2\alpha \left(\gamma_0 - \frac{\alpha}{\beta^2} \right) + \frac{\|v_0\|^2}{4}}, u \in X \right\},$$
(3.6)

which is a singleton if and only if $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) = -\frac{\|v_0\|^2}{8}$. (iii) *When* $u_0 \neq 0, v_0 = 0$, *we have:*

(a) If $\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) > \frac{\|u_0\|^2}{8}$, then

$$P_{\widetilde{C}_{\alpha}}(u_0, 0, \gamma_0) = \left\{ \left(\frac{u_0}{1+\lambda}, 0, \gamma_0 + \frac{\lambda \alpha}{\beta^2} \right) \right\}$$
(3.7)

for a unique $\lambda \in \left]-1,1\right[$ that solves the (essentially) cubic equation

$$g_2(\lambda) := \frac{\|u_0\|^2}{(1+\lambda)^2} - \frac{2\lambda\alpha^2}{\beta^2} - 2\alpha\gamma_0 = 0.$$
(3.8)

(b) If $\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) \leq \frac{\|u_0\|^2}{8}$, then

$$P_{\widetilde{C}_{\alpha}}(u_{0},0,\gamma_{0}) = \left\{ \left(\frac{u_{0}}{2}, v, \gamma_{0} + \frac{\alpha}{\beta^{2}}\right) \mid \|v\| = \sqrt{-2\alpha \left(\gamma_{0} + \frac{\alpha}{\beta^{2}}\right) + \frac{\|u_{0}\|^{2}}{4}}, v \in X \right\}, \quad (3.9)$$

which is a singleton if and only if $\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) = \frac{\|u_0\|^2}{8}$.

(iv) When $u_0 = 0$, $v_0 = 0$, we have: (a) If $\alpha \gamma_0 > \frac{\alpha^2}{\beta^2}$, then the projection is the non-singleton set

$$P_{\widetilde{C}_{\alpha}}(0,0,\gamma_0) = \left\{ \left(u, 0, \gamma_0 - \frac{\alpha}{\beta^2} \right) \mid \|u\| = \sqrt{2\alpha \left(\gamma_0 - \frac{\alpha}{\beta^2}\right)}, u \in X \right\}.$$
 (3.10)

(b) If $|\alpha \gamma_0| \leq \frac{\alpha^2}{\beta^2}$, then

$$P_{\widetilde{C}_{\alpha}}(0,0,\gamma_0) = \{(0,0,0)\}.$$
(3.11)

(c) If $\alpha \gamma_0 < -\frac{\alpha^2}{\beta^2}$, then the projection is the non-singleton set

$$P_{\widetilde{C}_{\alpha}}(0,0,\gamma_0) = \left\{ \left(0, \nu, \gamma_0 + \frac{\alpha}{\beta^2}\right) \mid \|\nu\| = \sqrt{-2\alpha \left(\gamma_0 + \frac{\alpha}{\beta^2}\right)}, \nu \in X \right\}.$$
 (3.12)

Proof. Observe that

$$\nabla f(u,v,\gamma) = (2(u-u_0), 2(v-v_0), 2\beta^2(\gamma-\gamma_0))$$

and

$$\nabla h(u,v,\gamma) = (2u,-2v,-2\alpha).$$

Since $\alpha \neq 0$, we have $\forall (u, v, \gamma) \in X \times X \times \mathbb{R}$, $\nabla h(u, v, \gamma) \neq 0$. Using [9, Proposition 4.1.1], we obtain the following KKT optimality conditions of (3.1):

$$(1+\lambda)u = u_0 \tag{3.13a}$$

$$(1-\lambda)v = v_0 \tag{3.13b}$$

$$\beta^2(\gamma - \gamma_0) - \lambda \alpha = 0 \tag{3.13c}$$

$$||u||^2 - ||v||^2 - 2\alpha\gamma = 0$$
 (3.13d)

where $\lambda \in \mathbb{R}$ is the Lagrange multiplier.

The proofs of (i)-(iv) are presented in Sections 3.1-3.4 below.

3.1. **Case (i):** $u_0 \neq 0, v_0 \neq 0$. *Proof.* Because $u_0 \neq 0, v_0 \neq 0$, we obtain $\lambda \neq \pm 1$. Solving (3.13a), (3.13b) and (3.13c) gives $u = \frac{u_0}{(1+\lambda)}, v = \frac{v_0}{(1-\lambda)}$ and $\gamma = \gamma_0 + \frac{\lambda\alpha}{\beta^2}$. By Proposition 2.3, $1 + \lambda > 0$ and $1 - \lambda > 0$, i.e., $\lambda \in]-1, 1[$. Substituting *u* and *v* back into equation (3.13d), we get the (essentially) quintic equation (3.3). Using also p < q and q > 0, we have

$$\begin{aligned} (\forall \lambda \in]-1,1[) \ g'(\lambda) &= \frac{2}{(1-\lambda^2)^3} \big(-q(1+3\lambda^2) + p(\lambda^3+3\lambda) \big) - 2\frac{\alpha^2}{\beta^2} \\ &< \frac{2}{(1-\lambda^2)^3} \big(-q(1+3\lambda^2) + q(\lambda^3+3\lambda) \big) - 2\frac{\alpha^2}{\beta^2} \\ &= \frac{2q(\lambda-1)^3}{(1-\lambda^2)^3} - 2\frac{\alpha^2}{\beta^2} = \frac{-2q}{(1+\lambda)^3} - 2\frac{\alpha^2}{\beta^2} \\ &< 0; \end{aligned}$$

hence, g is strictly decreasing. Moreover, $g(-1) = +\infty$, $g(1) = -\infty$ and g is continuous on]-1,1[. Thus, $g(\lambda) = 0$ has unique zero in]-1,1[.

3.2. Case (ii): $u_0 = 0, v_0 \neq 0$. *Proof.* When $u_0 = 0$, the objective function is

$$f(u, v, \gamma) = ||u||^2 + ||v - v_0||^2 + \beta^2 |\gamma - \gamma_0|^2,$$

and the KKT optimality conditions (3.13) become

$$(1+\lambda)u = 0 \tag{3.14a}$$

$$(1 - \lambda)v = v_0 \tag{3.14b}$$

$$\gamma = \gamma_0 + \frac{\lambda \alpha}{\beta^2} \tag{3.14c}$$

$$||u||^2 - ||v||^2 = 2\alpha\gamma.$$
(3.14d)

Then (3.14a) gives

$$1 + \lambda = 0 \text{ or } u = 0.$$
 (3.15)

Because $v_0 \neq 0$, we have $1 - \lambda \neq 0$, so that

$$v = \frac{v_0}{1 - \lambda}.\tag{3.16}$$

By Proposition 2.3, $\lambda < 1$.

Our analysis is divided into the following three situations:

Situation 1: $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) < -\frac{\|\nu_0\|^2}{8}$.

In view of (3.15), we analyze two cases.

Case 1: $1 + \lambda = 0$, i.e., $\lambda = -1$. By (3.16), $v = \frac{v_0}{2}$, and then (3.14d) and (3.14c) give

$$||u||^2 = 2\alpha\gamma + \frac{||v_0||^2}{4} = 2\alpha\left(\gamma_0 - \frac{\alpha}{\beta^2}\right) + \frac{||v_0||^2}{4} < 0,$$

which is absurd.

Case 2: u = 0. By (3.14d), $-||v||^2 = 2\alpha\gamma$, together with (3.16) and (3.14c), we have

$$g_1(\lambda) := rac{\|v_0\|^2}{(1-\lambda)^2} + 2lpha \Big(\gamma_0 + rac{\lambda lpha}{eta^2}\Big) = 0.$$

As

$$g_1'(\lambda) = \frac{2\|\nu_0\|^2}{(1-\lambda)^3} + \frac{2\alpha^2}{\beta^2} > 0 \text{ on }]-\infty, 1[,$$

 g_1 is strictly increasing on $]-\infty, 1[$. Moreover, $g_1(1) = +\infty$ and

$$g_1(-1) = \frac{\|v_0\|^2}{4} + 2\alpha \left(\gamma_0 - \frac{\alpha}{\beta^2}\right) < 0.$$

Because g_1 is strictly increasing and continuous, by the Intermediate Value Theorem, there exists a unique $\lambda \in [-1, 1]$ such that $g_1(\lambda) = 0$. Hence, the possible optimal solution is given by

$$\left(0, \frac{\nu_0}{1-\lambda}, \gamma_0 + \frac{\lambda \alpha}{\beta^2}\right),$$
 (3.17)

where $g_1(\lambda) = 0$ and $\lambda \in [-1, 1[$.

Combining Case 1 and Case 2, we obtain that (3.17) is the unique projection. Situation 2: $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) > -\frac{\|\nu_0\|^2}{8}$.

In view of (3.15), we consider two cases:

Case 1: $1 + \lambda = 0$, i.e., $\lambda = -1$. By (3.16), $v = \frac{v_0}{2}$, and then (3.14d) and (3.14c) give

$$||u||^2 = 2\alpha\gamma + \frac{||v_0||^2}{4} = 2\alpha\left(\gamma_0 - \frac{\alpha}{\beta^2}\right) + \frac{||v_0||^2}{4} > 0.$$

The possible optimal value is attained at

$$\left(u, \frac{v_0}{2}, \gamma_0 - \frac{\alpha}{\beta^2}\right) \tag{3.18}$$

with $||u||^2 = 2\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) + \frac{||v_0||^2}{4}$ such that

$$f\left(u, \frac{v_0}{2}, \gamma_0 - \frac{\alpha}{\beta^2}\right) = 2\alpha\gamma_0 - \frac{\alpha^2}{\beta^2} + \frac{\|v_0\|^2}{2}.$$
 (3.19)

Case 2: u = 0. By (3.14d), $-||v||^2 = 2\alpha\gamma$, together with (3.14c), we have

$$g_1(\lambda) := \frac{\|v_0\|^2}{(1-\lambda)^2} + 2\alpha \left(\gamma_0 + \frac{\lambda \alpha}{\beta^2}\right) = 0.$$

As

$$g_1'(\lambda) = \frac{2\|v_0\|^2}{(1-\lambda)^3} + \frac{2\alpha^2}{\beta^2} > 0 \text{ on }]-\infty, 1[,$$

 g_1 is strictly increasing. Observe that

$$g_1(-1) = \frac{\|v_0\|^2}{4} + 2\alpha \left(\gamma_0 - \frac{\alpha}{\beta^2}\right) > 0,$$

and $g_1(-\infty) = -\infty$. By the Intermediate Value Theorem, there exists a unique $\lambda \in]-\infty, -1[$ such that $g_1(\lambda) = 0$ because g_1 is strictly increasing and continuous. The possible optimal value is attained at (recall (3.16))

$$\left(0, \frac{v_0}{1-\lambda}, \gamma_0 + \frac{\lambda \alpha}{\beta^2}\right)$$

with

$$f\left(0, \frac{\nu_0}{1-\lambda}, \gamma_0 + \frac{\lambda\alpha}{\beta^2}\right) = \frac{\lambda^2 ||\nu_0||^2}{(1-\lambda)^2} + \frac{\lambda^2\alpha^2}{\beta^2},$$
(3.20)

where λ is the unique solution of

$$g_1(\lambda) := \frac{\|v_0\|^2}{(1-\lambda)^2} + 2\alpha \left(\gamma_0 + \frac{\lambda \alpha}{\beta^2}\right) = 0 \text{ in }]-\infty, -1[.$$
 (3.21)

Because both Case 1 and Case 2 may occur, we have to compare possible optimal objective function values, namely, (3.19) and (3.20). We claim that Case 1 wins, i.e.,

$$2\alpha\gamma_{0} - \frac{\alpha^{2}}{\beta^{2}} + \frac{\|v_{0}\|^{2}}{2} < \frac{\lambda^{2}\|v_{0}\|^{2}}{(1-\lambda)^{2}} + \frac{\lambda^{2}\alpha^{2}}{\beta^{2}}.$$
(3.22)

In view of (3.21), we have

$$0 < \frac{\|v_0\|^2}{(1-\lambda)^2} = -2\alpha \left(\gamma_0 + \frac{\lambda\alpha}{\beta^2}\right), \text{ and so } \alpha \left(\gamma_0 + \frac{\lambda\alpha}{\beta^2}\right) < 0.$$
(3.23)

To show (3.22), we shall reformulate it in equivalent forms:

$$\left(\lambda^2 - \frac{(1-\lambda)^2}{2}\right) \frac{\|\nu_0\|^2}{(1-\lambda)^2} + (1+\lambda^2)\frac{\alpha^2}{\beta^2} > 2\alpha\gamma_0,$$

which is

$$\frac{\lambda^2 + 2\lambda - 1}{2} \left(-2\alpha \left(\gamma_0 + \frac{\lambda \alpha}{\beta^2}\right) \right) + (1 + \lambda^2) \frac{\alpha^2}{\beta^2} > 2\alpha \gamma_0$$

by (3.23). After simplifications, this reduces to

$$\frac{\alpha^2}{\beta^2}(1+\lambda)^2(1-\lambda) > \alpha\gamma_0(1+\lambda)^2.$$

Since $\lambda + 1 < 0$, this is equivalent to

$$\frac{\alpha^2}{\beta^2}(1-\lambda) > \alpha \gamma_0, \quad \text{i.e.,} \quad \alpha \left(\gamma_0 + \frac{\lambda \alpha}{\beta^2}\right) < \frac{\alpha^2}{\beta^2}$$

which obviously holds because of (3.23) and $\alpha^2/\beta^2 > 0$.

Hence, equation (3.18) of Case 1 gives the optimal solution. Situation 3:

$$\alpha\left(\gamma_0 - \frac{\alpha}{\beta^2}\right) = -\frac{\|\nu_0\|^2}{8}.$$
(3.24)

We again consider two cases.

Case 1: $1 + \lambda = 0$, i.e., $\lambda = -1$. By (3.14b), $v = \frac{v_0}{2}$ and then (3.14d) and (3.14c) give

$$||u||^2 = 2\alpha\gamma + \frac{||v_0||^2}{4} = 2\alpha\left(\gamma_0 - \frac{\alpha}{\beta^2}\right) + \frac{||v_0||^2}{4} = 0,$$

so u = 0. The possible optimal value is attained at

$$\left(0, \frac{v_0}{2}, \gamma_0 - \frac{\alpha}{\beta^2}\right) \tag{3.25}$$

with

$$f\left(0,\frac{v_0}{2},\gamma_0-\frac{\alpha}{\beta^2}\right)=\frac{\|v_0\|^2}{4}+\frac{\alpha^2}{\beta^2}.$$

Case 2: u = 0. By (3.14d), $-||v||^2 = 2\alpha\gamma$, together with (3.14c), we have

$$g_2(\lambda) := \frac{\|v_0\|^2}{(1-\lambda)^2} + 2\alpha \left(\gamma_0 + \frac{\lambda \alpha}{\beta^2}\right) = 0.$$

By (3.24),

$$g_2(-1) = \frac{\|v_0\|^2}{4} + 2\alpha \left(\gamma_0 - \frac{\alpha}{\beta^2}\right) = 0.$$

As

$$g_2'(\lambda) = \frac{2\|v_0\|^2}{(1-\lambda)^3} + \frac{2\alpha^2}{\beta^2} > 0 \text{ on }]-\infty, 1[,$$

 g_2 is strictly increasing and continuous on $]-\infty, 1[$, so $\lambda = -1$ is the unique solution in $]-\infty, 1[$. Then the possible optimal value is attained at

$$\left(0,\frac{v_0}{2},\gamma_0-\frac{\alpha}{\beta^2}\right)$$

with

$$f\left(0, \frac{v_0}{2}, \gamma_0 - \frac{\alpha}{\beta^2}\right) = \frac{\|v_0\|^2}{4} + \frac{\alpha^2}{\beta^2}.$$
 (3.26)

Therefore, Case 1 and Case 2 give exactly the same solution. The optimal solution is given by (3.25), and it can be recovered by (3.18), the optimal solution of Situation 2.

3.3. Case (iii): $u_0 \neq 0, v_0 = 0$. *Proof.* The minimization problem now is

minimize
$$f(u, v, \gamma) = ||u_0 - u||^2 + ||v||^2 + \beta^2 |\gamma_0 - \gamma|^2$$
 (3.27a)

subject to
$$||u||^2 - ||v||^2 = 2\alpha\gamma.$$
 (3.27b)

Rewrite it as

minimize
$$f(u, v, \gamma) = ||v||^2 + ||u_0 - u||^2 + \beta^2 |\gamma_0 - \gamma|^2$$
 (3.28a)

subject to
$$||v||^2 - ||u||^2 = 2(-\alpha)\gamma.$$
 (3.28b)

Luckily, we can apply Section 3.2 for the point $(0, u_0, \gamma_0)$ and parameter $-\alpha$. More precisely, when $-\alpha(\gamma_0 - \frac{-\alpha}{\beta^2}) < -\frac{\|u_0\|^2}{8}$, the optimal solution to (3.28) is

$$\left(0, \frac{u_0}{1-\tilde{\lambda}}, \gamma_0 + \frac{\tilde{\lambda}(-\alpha)}{\beta^2}\right)$$

where $ilde{g}_2(ilde{\lambda})=0,\, ilde{\lambda}\in]{-}1,1[$, and

$$\tilde{g}_2(\tilde{\lambda}) = \frac{\|u_0\|^2}{(1-\tilde{\lambda})^2} + 2(-\alpha)\left(\gamma_0 - \frac{\tilde{\lambda}\alpha}{\beta^2}\right) = 0.$$

Put $\lambda = -\tilde{\lambda}$. Simplifications give: when $\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) > \frac{\|u_0\|^2}{8}$, the optimal solution to (3.28) is

$$\left(0, \frac{u_0}{1+\lambda}, \gamma_0 + \frac{\lambda \alpha}{\beta^2}\right) \tag{3.29}$$

where $g_2(\lambda) = 0, \lambda \in \left]-1, 1\right[$, and

$$g_2(\lambda) := \tilde{g}_2(-\lambda) = \frac{\|u_0\|^2}{(1+\lambda)^2} - 2\alpha \left(\gamma_0 + \frac{\lambda \alpha}{\beta^2}\right) = 0.$$

Switching the first and second components in (3.29) gives the optimal solution to (3.27).

When $-\alpha(\gamma_0 - \frac{-\alpha}{\beta^2}) \ge -\frac{\|u_0\|^2}{8}$, the optimal solution to (3.28) is

$$\left(v,\frac{u_0}{2},\gamma_0-\frac{-\alpha}{\beta^2}\right)$$

with

$$\|v\|^2 = 2(-\alpha)\left(\gamma_0 - \frac{-\alpha}{\beta^2}\right) + \frac{\|u_0\|^2}{4}.$$

That is, when $\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) \leq \frac{\|u_0\|^2}{8}$, the optimal solution to (3.28) is

$$\left(v, \frac{u_0}{2}, \gamma_0 + \frac{\alpha}{\beta^2}\right) \tag{3.30}$$

with

$$\|v\|^2 = -2\alpha \left(\gamma_0 + \frac{\alpha}{\beta^2}\right) + \frac{\|u_0\|^2}{4}.$$

Switching the first and second components in (3.30) gives the optimal solution to (3.27).

3.4. Case (iv): $u_0 = v_0 = 0$. *Proof.* The objective function is $f(u, v, \gamma) = ||u||^2 + ||v||^2 + \beta^2 |\gamma - \gamma_0|^2$, and the KKT optimality conditions (3.13) become

$$(1+\lambda)u = 0, \tag{3.31a}$$

$$(1-\lambda)v = 0, \tag{3.31b}$$

$$\gamma = \gamma_0 + \frac{\lambda \alpha}{\beta^2}, \qquad (3.31c)$$

$$||u||^2 - ||v||^2 = 2\alpha\gamma.$$
(3.31d)

We shall consider three cases:

(i)
$$\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) > 0$$
; hence, $\gamma_0 - \frac{\alpha}{\beta^2} \neq 0$.

(ii) $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) = 0$; hence, $\gamma_0 - \frac{\alpha}{\beta^2} = 0$. (iii) $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) < 0$; hence, $\gamma_0 - \frac{\alpha}{\beta^2} \neq 0$.

For each item (i)–(iii), we will apply (3.31):

Case 1: $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) > 0$. By (3.31a), we have $\lambda = -1$ or u = 0. We consider two subcases.

Subcase 1: $\lambda = -1$. Using (3.31b), (3.31c) and (3.31d), we obtain v = 0, $\gamma = \gamma_0 - \frac{\alpha}{\beta^2}$, and

$$\|u\|^2 = 2\alpha \left(\gamma_0 - \frac{\alpha}{\beta^2}\right). \tag{3.32}$$

Therefore, the candidate for the solution is $(u, 0, \gamma_0 - \frac{\alpha}{\beta^2})$ with *u* given by (3.32) and its objective function value is

$$f\left(u,0,\gamma_0-\frac{\alpha}{\beta^2}\right) = 2\alpha\left(\gamma_0-\frac{\alpha}{\beta^2}\right) + 0 + \beta^2\left(\frac{-\alpha}{\beta^2}\right)^2 = 2\alpha\gamma_0-\frac{\alpha^2}{\beta^2}.$$
 (3.33)

Subcase 2: u = 0. Using (3.31b)–(3.31d), we obtain $-||v||^2 = 2\alpha\gamma$, $\gamma = \gamma_0 + \frac{\lambda\alpha}{\beta^2}$ and $(1 - \lambda)v = 0$. We have to consider two further cases: $1 - \lambda = 0$ or v = 0.

(i) v = 0. We get $-(0)^2 = 2\alpha\gamma \Rightarrow \gamma = 0$ because $\alpha \neq 0$. This gives a possible solution (0,0,0) with function value

$$f(0,0,0) = ||u||^2 + ||v||^2 + \beta^2 |\gamma - \gamma_0|^2 = \beta^2 \gamma_0^2.$$
(3.34)

(ii) $\lambda = 1$. We have $\gamma = \gamma_0 + \frac{\alpha}{\beta^2}$ and $-\|v\|^2 = 2\alpha(\gamma_0 + \frac{\alpha}{\beta^2})$. So, $0 \le \|v\|^2 = -2\alpha(\gamma_0 + \frac{\alpha}{\beta^2})$. However,

$$-2\alpha\left(\gamma_{0}+\frac{\alpha}{\beta^{2}}\right) = \underbrace{-2\alpha\left(\gamma_{0}-\frac{\alpha}{\beta^{2}}\right)}_{<0} - \frac{4\alpha^{2}}{\beta^{2}} < 0$$
(3.35)

because $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) > 0$. This contradiction shows $\lambda = 1$ does not happen. We now compare objective function values (3.33) and (3.34):

$$2\alpha\gamma_{0} - \frac{\alpha^{2}}{\beta^{2}} < \beta^{2}\gamma_{0}^{2} \Leftrightarrow \beta^{2}\gamma_{0}^{2} + \frac{\alpha^{2}}{\beta^{2}} - 2\alpha\gamma_{0} > 0 \Leftrightarrow \left(\beta\gamma_{0} - \frac{\alpha}{\beta}\right)^{2} > 0 \Leftrightarrow \beta^{2}\left(\gamma_{0} - \frac{\alpha}{\beta^{2}}\right)^{2} > 0,$$

which holds because $\gamma_0 - \frac{\alpha}{\beta^2} \neq 0$. Hence, the optimal solution is $(u, 0, \gamma_0 - \frac{\alpha}{\beta^2})$ with $||u|| = \sqrt{2\alpha(\gamma_0 - \frac{\alpha}{\beta^2})}$. That is,

$$P_{\widetilde{C}_2}(0,0,\gamma_0) = \left\{ \left(u, 0, \gamma_0 - \frac{\alpha}{\beta^2} \right) \mid \|u\| = \sqrt{2\alpha \left(\gamma_0 - \frac{\alpha}{\beta^2} \right)} \right\}.$$

Case 2: $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) = 0$; hence, $\gamma_0 - \frac{\alpha}{\beta^2} = 0$. By (3.31a), we have two subcases to consider. **Subcase 1:** $\lambda = -1$. We have $\nu = 0$, $\gamma = \gamma_0 - \frac{\alpha}{\beta^2} = 0$, $||u||^2 = 2\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) = 0$. The possible solution is (0, 0, 0).

Subcase 2: u = 0. We have $-||v||^2 = 2\alpha\gamma$ and $\gamma = \gamma_0 + \frac{\lambda\alpha}{\beta^2}$. By (3.31b), v = 0 or $\lambda = 1$. This requires us to consider two further cases. For v = 0, we get $\gamma = 0$, which gives a possible solution (0,0,0). For $\lambda = 1$, we get $\gamma = \gamma_0 + \frac{\alpha}{\beta^2}$, $||v||^2 = -2\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) = \frac{-4\alpha^2}{\beta^2} < 0$, which is impossible, i.e., $\lambda = 1$ does not happen.

Both **Subcase 1** and **Subcase 2** give the same solution (0,0,0). Therefore, we have the optimal solution is (0,0,0), when $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) = 0$; equivalently, when $\gamma_0 = \frac{\alpha}{\beta^2}$.

Case 3: $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) < 0$. In view of (3.31a), we have $\lambda = -1$ or u = 0. We show that $\lambda = -1$ can't happen. Indeed, when $\lambda = -1$, by (3.31b)–(3.31c), we have v = 0, $\gamma = \gamma_0 - \frac{\alpha}{\beta^2}$, and $0 \le ||u||^2 = 2\alpha\gamma = 2\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) < 0$, which is impossible. Therefore, we consider only the case u = 0. Then (3.31b)–(3.31d) yield $||v||^2 = -2\alpha\gamma$, $\gamma = \gamma_0 + \frac{\lambda\alpha}{\beta^2}$, and $(1 - \lambda)v = 0$, which requires us to consider two further cases.

Subcase 1: v = 0. Then $\gamma = 0$. The possible optimal solution is (0,0,0) and its objective function value is

$$f(0,0,0) = ||u||^2 + ||v||^2 + \beta^2 |\gamma - \gamma_0|^2 = \beta^2 \gamma_0^2.$$
(3.36)

Subcase 2: $\lambda = 1$. Then u = 0, $\gamma = \gamma_0 + \frac{\alpha}{\beta^2}$, and $-\|v\|^2 = 2\alpha(\gamma_0 + \frac{\alpha}{\beta^2})$. We consider three additional cases based on the sign of $\alpha(\gamma_0 + \frac{\alpha}{\beta^2})$.

- (i) $\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) > 0$. This case never happens because the relation $0 \ge -\|v\|^2 = 2\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) > 0$ is absurd.
- (ii) $\alpha'(\gamma_0 + \frac{\alpha}{\beta^2}) = 0$. As $\alpha \neq 0$, we have $\gamma_0 + \frac{\alpha}{\beta^2} = 0$. This gives $\gamma = 0, u = 0$ and v = 0. So the possible optimal solution is (0, 0, 0).
- (iii) $\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) < 0$. We have $\gamma_0 + \frac{\alpha}{\beta^2} \neq 0$. The possible optimal solution is $(0, v, \gamma_0 + \frac{\alpha}{\beta^2})$ with $||v|| = \sqrt{-2\alpha(\gamma_0 + \frac{\alpha}{\beta^2})}$ and function value

$$f\left(0, \nu, \gamma_0 + \frac{\alpha}{\beta^2}\right) = -2\alpha \left(\gamma_0 + \frac{\alpha}{\beta^2}\right) + \beta^2 \left(\frac{\alpha}{\beta^2}\right)^2 = -2\alpha \gamma_0 - \frac{\alpha^2}{\beta^2}.$$
 (3.37)

Both (i) and (ii) imply that (0,0,0) from **Subcase 1** is the only optimal solution, when $\alpha^2/\beta^2 > \alpha\gamma_0 \geq -\alpha^2/\beta^2$.

When $\alpha \gamma_0 < -\frac{\alpha^2}{\beta^2}$, both **Subcase 1** and **Subcase 2** happen. We have to compare objectives (3.36) and (3.37). We claim $f(0, v, \gamma_0 + \frac{\alpha}{\beta^2}) < f(0, 0, 0)$. Indeed, this is equivalent to

$$-2\alpha\gamma_{0} - \frac{\alpha^{2}}{\beta^{2}} < \beta^{2}\gamma_{0}^{2} \Leftrightarrow \beta^{2}\gamma_{0}^{2} + 2\alpha\gamma_{0} + \frac{\alpha^{2}}{\beta^{2}} > 0 \Leftrightarrow \left(\beta\gamma_{0} + \frac{\alpha}{\beta}\right)^{2} > 0 \Leftrightarrow \beta^{2}\left(\gamma_{0} + \frac{\alpha}{\beta^{2}}\right)^{2} > 0$$

which holds because $\gamma_0 + \frac{\alpha}{\beta^2} \neq 0$. Therefore, the optimal solution is $(0, v, \gamma_0 + \frac{\alpha}{\beta^2})$ with $||v|| = \sqrt{-2\alpha(\gamma_0 + \frac{\alpha}{\beta^2})}$, i.e.,

$$P_{\widetilde{C}_2}(0,0,\gamma_0) = \left\{ \left(0, v, \gamma_0 + \frac{\alpha}{\beta^2}\right) \mid \|v\| = \sqrt{-2\alpha \left(\gamma_0 + \frac{\alpha}{\beta^2}\right)} \right\}$$

when $\alpha \gamma_0 < \frac{-\alpha^2}{\beta^2}$.

Altogether, Sections 3.1-3.4 conclude the proof of Theorem 3.1.

Let us illustrate Theorem 3.1.

Example 3.1. Suppose that $X = \mathbb{R}$, $\alpha = 5$, and $\beta = 1$. Writing *z* instead of γ , we note that \widetilde{C}_{α} turns into the set

$$S := \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 - y^2 = 10z \} = \operatorname{gra} ((x, y) \mapsto \frac{1}{10}(x^2 - y^2)).$$

Let us now compute $P_S(x_0, y_0, z_0)$ for various points.

(i) Suppose that $(x_0, y_0, z_0) = (2, -3, 4)$. In view of Theorem 3.1(i), we set $p := |x_0|^2 - |y_0|^2 = 2^2 - (-3)^2 = -5$ and $q := |x_0|^2 + |y_0|^2 = 2^2 + (-3)^2 = 13$. Following (3.3), we consider the equation

$$\frac{(\lambda^2 + 1)p - 2\lambda q}{(1 - \lambda^2)^2} - \frac{2\lambda\alpha^2}{\beta^2} - 2\alpha\gamma_0 = -\frac{5\lambda^2 + 26\lambda + 5}{(1 - \lambda^2)^2} - 50\lambda - 40 = 0$$

which has $\lambda = -0.52416$ as its unique (approximate) root in]-1, 1[. Using (3.2) now yields

$$P_{S}(x_{0}, y_{0}, z_{0}) = \left\{ \left(\frac{x_{0}}{1+\lambda}, \frac{y_{0}}{1-\lambda}, z_{0} + \frac{\lambda \alpha}{\beta^{2}} \right) \right\}$$
$$= \left\{ \left(4.20311, -1.96830, 1.37919 \right) \right\}$$

This is depicted in Figure 1 with the green arrow.

(ii) Suppose that $(x_0, y_0, z_0) = (0, -3, 3)$.

In view of Theorem 3.1(ii), we evaluate $\alpha(z_0 - \frac{\alpha}{\beta^2}) = 5(3-5) = -10 < -\frac{9}{8} = -\frac{|y_0|^2}{8}$ and we are thus in case (ii)(a). In view of (3.5), we consider the equation

$$\frac{|y_0|^2}{(1-\lambda)^2} + \frac{2\lambda\alpha^2}{\beta^2} + 2\alpha z_0 = \frac{9}{(1-\lambda)^2} + 50\lambda + 30 = 0$$

which has $\lambda = -0.66493$ as its unique (approximate) root in]-1, 1[. Using (3.4) now yields

$$P_{S}(x_{0}, y_{0}, z_{0}) = \left\{ \left(0, \frac{v_{0}}{1 - \lambda}, \gamma_{0} + \frac{\lambda \alpha}{\beta^{2}}\right) \right\}$$
$$= \left\{ \left(0, -1.80187, -0.32467\right) \right\}.$$

This is depicted in Fig. 1 with a single blue arrow.

(iii) Suppose that $(x_0, y_0, z_0) = (0, \sqrt{32}, 6) = (0, 5.65685, 6)$. In view of Theorem 3.1(ii), we evaluate $\alpha(z_0 - \frac{\alpha}{\beta^2}) = 5(6-5) = 5 > -4 = -\frac{32}{8} = -\frac{|y_0|^2}{8}$ and we are thus in case (ii)(b). We compute

$$\sqrt{2\alpha\left(z_0 - \frac{\alpha}{\beta^2}\right) + \frac{|y_0|^2}{4}} = \sqrt{10(6-5) + \frac{32}{4}} = \sqrt{18}$$

and now (3.6) yields

$$P_{S}(x_{0}, y_{0}, z_{0}) = \left\{ \left(x, \frac{y_{0}}{2}, z_{0} - \frac{\alpha}{\beta^{2}} \right) \ \middle| \ |x| = \sqrt{2\alpha \left(z_{0} - \frac{\alpha}{\beta^{2}} \right) + \frac{|y_{0}|^{2}}{4}}, u \in \mathbb{R} \right\}$$
$$= \left\{ \left(\pm \sqrt{18}, \sqrt{8}, 1 \right) \right\} = \left\{ \left(\pm 4.24264, 2.82843, 1 \right) \right\}.$$

This is depicted in Figure 1 with double blue arrows.

(iv) Suppose that $(x_0, y_0, z_0) = (0, 0, 6)$. In view of Theorem 3.1(iv), we have $\alpha z_0 = 5(6) = 30 > 25 = \frac{\alpha^2}{\beta^2}$ and we are thus in case (iv)(a). We compute

$$\sqrt{2\alpha\left(\gamma_0 - \frac{\alpha}{\beta^2}\right)} = \sqrt{10(6-5)} = \sqrt{10}$$

and now (3.10) yields

$$P_{S}(x_{0}, y_{0}, z_{0}) = \left\{ \left(x, 0, z_{0} - \frac{\alpha}{\beta^{2}}\right) \mid |x| = \sqrt{2\alpha \left(z_{0} - \frac{\alpha}{\beta^{2}}\right)}, u \in \mathbb{R} \right\}$$
$$= \left\{ \left(\pm \sqrt{10}, 0, 1\right) \right\} = \left\{ \left(\pm 3.16228, 0, 1\right) \right\}.$$

This is depicted in Figure 1 with double black arrows.

(v) Suppose that $(x_0, y_0, z_0) = (0, 0, 4)$.

In view of Theorem 3.1(iv), we have $|\alpha z_0| = |5(4)| = 20 < 25 = \frac{\alpha^2}{\beta^2}$ and we are thus in case (iv)(b). Therefore,

$$P_S(x_0, y_0, z_0) = \{(0, 0, 0)\}.$$

This is depicted in Figure 1 with a single black arrow.

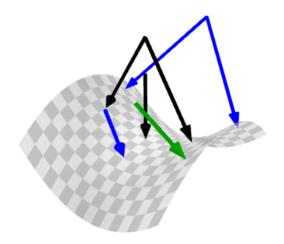


FIGURE 1. Visualization of the 5 projections from Example 3.1.

4. FURTHER RESULTS

Recall that

$$C_{\alpha} = \{ (x, y, \gamma) \in X \times X \times \mathbb{R} \mid \langle x, y \rangle = \alpha \gamma \},\$$

and this is the representation more natural to use in Deep Learning (see [2]). Armed with Theorem 3.1, the projection onto C_{α} now readily obtained:

Theorem 4.1. Let $(x_0, y_0, \gamma_0) \in X \times X \times \mathbb{R}$. Then the following hold:

(i) If $x_0 \neq \pm y_0$, then

$$P_{C_{\alpha}}(x_0, y_0, \gamma_0) = \left\{ \left(\frac{x_0 - \lambda y_0}{1 - \lambda^2}, \frac{y_0 - \lambda x_0}{1 - \lambda^2}, \gamma_0 + \frac{\lambda \alpha}{\beta^2} \right) \right\}$$

for a unique $\lambda \in \left]-1,1\right[$ that solves the (essentially) quintic equation

$$g(\lambda) := \frac{(\lambda^2+1)p - 2\lambda q}{(1-\lambda^2)^2} - \frac{2\lambda \alpha^2}{\beta^2} - 2\alpha \gamma_0 = 0,$$

where $p := 2 \langle x_0, y_0 \rangle$ and $q := ||x_0||^2 + ||y_0||^2$. (ii) If $y_0 = -x_0 \neq 0$, then we have the following:

(11) If $y_0 = -x_0 \neq 0$, then we have the following a) When $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) < -\frac{\|x_0\|^2}{4}$, then

$$P_{C_{\alpha}}(x_0, -x_0, \gamma_0) = \left\{ \left(\frac{x_0}{1-\lambda}, \frac{-x_0}{1-\lambda}, \gamma_0 + \frac{\lambda \alpha}{\beta^2} \right) \right\}$$

for a unique $\lambda \in]-1,1[$ that solves

$$g_1(\boldsymbol{\lambda}) := \frac{2\|\boldsymbol{x}_0\|^2}{(1-\boldsymbol{\lambda})^2} + \frac{2\boldsymbol{\lambda}\alpha^2}{\boldsymbol{\beta}^2} + 2\alpha\boldsymbol{\gamma}_0 = 0.$$

b) When $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) \ge -\frac{\|x_0\|^2}{4}$, then

 $P_{C_{\alpha}}(x_{0}, -x_{0}, \gamma_{0}) = \left\{ \left(\frac{x_{0}}{2} + \frac{u}{\sqrt{2}}, -\frac{x_{0}}{2} + \frac{u}{\sqrt{2}}, \gamma_{0} - \frac{\alpha}{\beta^{2}}\right) \mid \|u\| = \sqrt{2\alpha \left(\gamma_{0} - \frac{\alpha}{\beta^{2}}\right) + \frac{\|x_{0}\|^{2}}{2}}, \ u \in X \right\}$

which is a singleton if and only if $\alpha(\gamma_0 - \frac{\alpha}{\beta^2}) = -\frac{\|x_0\|^2}{4}$. (iii) If $y_0 = x_0 \neq 0$, then we have the following:

a) When $\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) > \frac{\|x_0\|^2}{4}$, then

$$P_{C_{\alpha}}(x_0, x_0, \gamma_0) = \left\{ \left(\frac{x_0}{1+\lambda}, \frac{x_0}{1+\lambda}, \gamma_0 + \frac{\lambda \alpha}{\beta^2} \right) \right\}$$

for a unique $\lambda \in \left]-1,1\right[$ that solves the (essentially) cubic equation

$$g_2(\lambda) := \frac{2\|x_0\|^2}{(1+\lambda)^2} - \frac{2\lambda\alpha^2}{\beta^2} - 2\alpha\gamma_0 = 0.$$

b) If $\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) \leq \frac{\|x_0\|^2}{4}$, then $P_{C_{\alpha}}(x_0, x_0, \gamma_0) = \left\{ \left(\frac{x_0}{2} - \frac{v}{\sqrt{2}}, \frac{x_0}{2} + \frac{v}{\sqrt{2}}, \gamma_0 + \frac{\alpha}{\beta^2}\right) \mid \|v\| = \sqrt{-2\alpha\left(\gamma_0 + \frac{\alpha}{\beta^2}\right) + \frac{\|x_0\|^2}{2}}, v \in X \right\}$ which is a singleton if and only if $\alpha(\gamma_0 + \frac{\alpha}{\beta^2}) = \frac{\|x_0\|^2}{4}$.

(iv) If $x_0 = y_0 = 0$, then we have the following: a) When $\alpha \gamma_0 > \frac{\alpha^2}{\beta^2}$, then the projection is the non-singleton set

$$P_{C_{\alpha}}(0,0,\gamma_{0}) = \left\{ \left(\frac{u}{\sqrt{2}}, \frac{u}{\sqrt{2}}, \gamma_{0} - \frac{\alpha}{\beta^{2}}\right) \mid \|u\| = \sqrt{2\alpha \left(\gamma_{0} - \frac{\alpha}{\beta^{2}}\right), u \in X} \right\}.$$

b) When $|\alpha\gamma_{0}| \leq \frac{\alpha^{2}}{\beta^{2}}$, then

$$P_{C_{\alpha}}(0,0,\gamma_0) = \{(0,0,0)\}.$$

c) When $\alpha \gamma_0 < -\frac{\alpha^2}{\beta^2}$, then the projection is the non-singleton set

$$P_{C_{\alpha}}(0,0,\gamma_0) = \left\{ \left(-\frac{\nu}{\sqrt{2}}, \frac{\nu}{\sqrt{2}}, \gamma_0 + \frac{\alpha}{\beta^2} \right) \mid \|\nu\| = \sqrt{-2\alpha \left(\gamma_0 + \frac{\alpha}{\beta^2}\right)}, \nu \in X \right\}.$$

Proof. With

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} \operatorname{Id} & -\frac{1}{\sqrt{2}} \operatorname{Id} & 0\\ \frac{1}{\sqrt{2}} \operatorname{Id} & \frac{1}{\sqrt{2}} \operatorname{Id} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

in mind, by Proposition 2.2(iii) we have

$$P_{C_{\alpha}}[x_0, y_0, \gamma_0]^{\mathsf{T}} = A P_{\widetilde{C}_{\alpha}} A^{\mathsf{T}}[x_0, y_0, \gamma_0]^{\mathsf{T}}$$
$$= A P_{\widetilde{C}_{\alpha}} \left[\frac{x_0 + y_0}{\sqrt{2}}, \frac{-x_0 + y_0}{\sqrt{2}}, \gamma_0 \right]^{\mathsf{T}}.$$

Hence (i)–(iv) follow by applying Theorem 3.1.

Remark 4.1. Theorem 4.1(i) was given in [2, Appendix B] without a rigorous mathematical justification.

It is interesting to ask what happens when $\alpha \rightarrow 0$.

Theorem 4.2. Suppose that $X = \mathbb{R}^n$. Then $P_{C_{\alpha}} \xrightarrow{g} P_{C \times \mathbb{R}} = P_C \times \text{Id and } P_{\widetilde{C}_{\alpha}} \xrightarrow{g} P_{\widetilde{C} \times \mathbb{R}} = P_{\widetilde{C}} \times \text{Id}$ when $\alpha \to 0$.

Proof. Apply Proposition 2.4 and Fact 2.1.

Remark 4.2. The projection onto the cross C, P_C , has been given in [8].

Acknowledgments

HHB and XW were supported by NSERC Discovery Grants. MKL was partially supported by a SERB-UBC Fellowship and NSERC Discovery Grants of HHB and XW.

REFERENCES

- [1] B. Odehnal, H. Stachel, G. Glaeser, The Universe of Quadrics, Springer, 2020.
- [2] V. Elser, Learning without loss, Fixed Point Theory Algo. Sci. Eng. 2021 (2021), 12.
- [3] H.H. Bauschke, M. Krishan Lal, X. Wang, Projections onto hyperbolas and bilinear constraints in Hilbert spaces, 2021. https://arxiv.org/abs/2112.02181.
- [4] R.T. Rockafellar, R.J-B Wets, Variational Analysis, Springer-Verlag, New York, 1998.
- [5] F. Bernard, L. Thibault, Prox-regular functions in Hilbert spaces, J. Math. Anal. Appl. 303 (2005), 1-14.

H.H. BAUSCHKE, M. KRISHAN LAL, X. WANG

- [6] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, Inc., New York, 1989.
- [7] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhäuser, 1990.
- [8] H.H. Bauschke, M. Krishan Lal, X. Wang, The projection onto the cross, Set-Valued Var. Anal. 30 (2022), 997–1009.
- [9] D.P. Bertsekas, Nonlinear Programming, third edition, Athena Scientific, Belmont, Massachusetts, USA, 2016.