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HAO HU1,∗, XINXIN LI2,∗

1Department of Mathematical Sciences, Clemson University, Clemson, SC, USA
2School of Mathematics, Jilin University, Changchun, China

Abstract. We propose a special facial reduction algorithm (FRA) for the Shor semidefinite programming
(SDP) relaxation of the quadratically constrained quadratic program (QCQP). Under the mild assump-
tion, our special FRA only requires solving a linear programming problem instead of a semidefinite
program. In particular, when applied to the binary quadratic program, the proposed special FRA needs
fewer assumptions. From a computational perspective, this result improves the scalability and stability
of the SDP approach for QCQP problems. In addition, we also discover a new class of semidefinite
programs whose singularity degree can be computed easily. This new class complements the limited
examples of singularity degrees in the literature. As a by-product, our special FRA can be used to upper
bound the dimension of any set defined by quadratic inequalities.
Keywords. Binary quadratic program; Exposing vector; Quadratically constrained quadratic program;
Singularity degree.
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1. INTRODUCTION

SDP is a powerful optimization model with many applications in various fields, such as eco-
nomics, engineering, and machine learning. The primary issue in SDP is that the time com-
plexity of solving an SDP instance scales poorly with the size of the problem. In this work,
we attempt to address this issue by examining the effectiveness of an existing regularization
technique for certain special SDP instances.

Facial reduction algorithm (FRA) proposed by Borwein and Wolkowicz is an important tool
in modern convex optimization, see [1, 2]. FRA is a preprocessing step for optimization prob-
lems, and it is essential in making algorithms stable and efficient for finding the optimal so-
lution. The key idea behind FRA is to remove redundancy in the problem. For example, in
linear programming, FRA is equivalent to identifying primal or dual slack variables that are
identically zero on the feasible set. An interesting connection between the degeneracy and strict
feasibility in linear programming can be found in [3]. For general conic optimization problems,
it is important to impose additional constraint qualifications. Without constraint qualification, it
could lead to the loss of stability with respect to perturbations in the data. Therefore, it is critical
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to preprocess the problem to find its optimal solution in a numerically stable way. Through re-
moving redundancy, FRA provides a robust framework for recovering a constraint qualification
called Slater’s condition. An excellent survey of the facial reduction algorithm can be found in
[4].

In this paper, we focus on FRA applied to semidefinite programming (SDP) problems. SDP is
a convex optimization problem with a rich history and a significant impact on numerical applica-
tions. If a given SDP problem instance does not satisfy Slater’s condition, FRA can reformulate
the problem iteratively until Slater’s condition is restored. In fact, each reformulation step in
this reduction process is more challenging than solving the original SDP problem. Therefore,
one has to use special strategies in the implementation of FRA in practice. For example, an
important strategy is based on the investigation of the problem structures analytically. In [5],
the authors study SDP relaxation for a combinatorial optimization problem called quadratic as-
signment problem; And they implement FRA analytically to restore Slater’s condition and thus
require no extra computations. It is also the first study to employ this analytical strategy for
combinatorial optimization problems. This idea of using analytical formula is later applied to
the SDP relaxations of many other combinatorial problems and becomes a significant technique
in this area, see [6, 7, 8, 9, 10, 11]. There are also special FRA strategies for general SDP
problems, see [12, 13, 14, 15]. In [12], the positive semidefinite cone in the SDP is replaced
by a computationally more tractable cone. This technique is called partial facial reduction, and
it can produce approximations with different user-specified accuracy. It is effective for a wide
range of problems. In [13], a special FRA called Sieve-SDP is proposed; it attempts to find
specific, easily identifiable structures in the constraints of the SDP. A striking feature of Sieve-
SDP is that it does not rely on any external solvers, and only Cholesky factorization is used as
a subroutine. This simple recipe makes it very efficient for suitable SDP problem instances.

FRA is not only a computational tool but also important in theoretical analysis. In [16],
Sturm defines the singularity degree as the fewest number of iterations required in the facial
reduction algorithm to restore Slater’s condition. The singularity degree can be seen as a mea-
surement of ill-conditioning. Sturm derives a Hölderian error bound based on the singularity
degree for the feasible region of any semidefinite programming problems. Sturm’s error bound
is very influential, and many exciting new results are developed subsequently. For example,
Sturm’s bound is extended and applied to more interesting cases in [17, 18, 19]. In [20], the
bound is used to explain how the exponential size solutions arise in SDP. In [21], a strengthened
Barvinok-Pataki bound on SDP rank is derived using singularity degree. The singularity degree
of the linear image of a cone is investigated in [22].

As the singularity degree depends on the FRA, it is generally not possible to compute it for
arbitrary SDP problem instances. There are very limited examples whose singularity degrees are
known. In [16], the author provides an SDP instance with the largest possible singularity degree,
and it is used as an example to demonstrate the numerical errors caused by a large singularity
degree. The singularity degree of the positive semidefinite matrix completion problem is studied
in [23, 24].

This paper investigates FRA for the Shor SDP relaxation of QCQP. In general, each step
in FRA requires solving a semidefinite programming problem which is equally challenging to
solve as the original problem. We propose a special FRA which can be applied to the Shor
SDP relaxation, and under the mild assumption, it only requires solving a linear programming
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problem. Similar to other special FRAs, our FRA is not exact in the sense that we do not
guarantee to recover Slater’s condition. By relating our work with the existing special FRAs,
it suggests that we achieve a good trade-off between exactness and computational efficiency.
As a by-product, we also come up with a class of SDP instances whose singularity degree can
be computed easily. This is a valuable addition to the limited examples in the literature. We
also note that the proposed FRA can be used to upper bound the dimension of sets defined by
quadratic inequalities.

2. NOTATIONS AND BACKGROUND ON FRA

We let Rm×n denote the set of m-by-n real matrices. For X ,Y ∈ Rm×n, let 〈X ,Y 〉 denote the
usual trace inner product of X and Y , tr(XTY ). We let Rn

+ (Rn
++, resp.) denote the nonnegative

(positive, resp.) orthant of n-coordinates. We let Sn denote the space of n-by-n symmetric
matrices. A matrix X ∈ Sn is called positive semidefinite if 〈x,Xx〉 ≥ 0 for all x ∈Rn. The set of
n×n positive semidefinite (definite, resp.) matrices is denoted by Sn

+ (Sn
++, resp.), and we use

the notation X � 0 (X � 0, resp.) to denote the membership X ∈ Sn
+ (X ∈ Sn

++, resp.).
Given a matrix X , we use range(X) and null(X) to denote the range and the nullspace of X ,

respectively. A face f is said to be proper if f 6= Sn
+ and f 6= /0. Given a convex set C ⊆ Sn

+, the
minimal face of Sn

+ containing C, with respect to set inclusion, is denoted by face(C). A face f
is said to be exposed if there exists W ∈ Sn

+\{0} such that

f =
{

X ∈ Sn
+ | 〈W,X〉= 0

}
.

Every face of Sn
+ is exposed, and the matrix W is referred to as an exposing vector. The faces of

Sn
+ can be characterized in terms of the range of any of its maximal rank elements. Moreover, it

is well-known that each face is isomorphic to a smaller dimensional positive semidefinite cone,
as is seen in the subsequent theorem. Its proof can be found in Proposition 10.1.2 from [25].

Theorem 2.1. Let f be a face of Sn
+ and X ∈ f a maximal rank element with rank r and

orthogonal spectral decomposition

X =
[

V U
][ D 0

0 0

][
V U

]T ∈ Sn
+, D ∈ Sr

++.

Then f =VSr
+V T and relint ( f ) =VSr

++V T . Moreover, W ∈ Sn
+ is an exposing vector for f if

and only if W ∈USn−r
+ UT .

Let A : Sn → Rm be a linear operator and b ∈ Rm. The feasible region of a semidefinite
programming problem can be defined as

F := {X ∈ Sn
+ |A (X) = b}. (2.1)

We say that Slater’s condition holds for the problem if there exists a matrix X̂ ∈ F∩Sn
++. When

Slater’s condition is failed for S, it implies that the entire feasible set S is contained in a proper
face of the semidefinite cone Sn

+. If f is a face of Sn
+ containing the feasible set F , then we can

use Theorem 2.1 to rewrite F equivalently as

F = {V RV T ∈ Sn |AV (R) = b,R ∈ Sr
+}. (2.2)

Here, we define AV (·) := A (V ·V T ). Then, it is obvious that Slater’s condition holds for opti-
mization problems with the above constraint. Therefore, the key issue is to find (the minimal)
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face f . As all the proper faces of a semidefinite cone are exposed, it suffices to find the expos-
ing vector for the minimal face f . FRA attempts to identify an exposing vector by solving the
auxiliary problem

{y |A ∗(y)� 0, bT y = 0}. (2.3)

Then A ∗(y) is an exposing vector, and it defines an exposed face containing F . In general, the
reformulation (2.2) after FRA may still not satisfy Slater’s condition. When this is the case,
one simply needs to reapply FRA for the reformulated set (2.2). At each step, the size of the
positive semidefinite constraint becomes strictly smaller, and thus, this procedure stops after at
most n−1 steps. The smallest number of steps for FRA to restore Slater’s condition is called the
singularity degree, which is denoted by sd(F). Thus, the singularity degree sd(F) is an integer
between 0 and n−1. Apart from the reduction in the size of the positive semidefinite constraint,
at least one linear constraint in A (X) = b becomes redundant and thus can be discarded, see
[26]. In general, finding an exposing vector by solving the auxiliary problem (2.3) is difficult.
Indeed, (2.3) is also a semidefinite program, and it may fail Slater’s condition as well.

3. THE SHOR SDP RELAXATION FOR QCQPS

Quadratically constrained quadratic programs(QCQPs) are an important class of nonconvex
optimization problems, and they can be formulated as

inf{q0(x) | qi(x)≤ 0 ∀ i = 1, . . . ,m} ,

where q0, . . . ,qm : Rn→ R are quadratic functions. For each i, we write

qi(x) = xT Aix+2bT
i x+ ci

for Ai ∈ Sn, bi ∈ Rn and ci ∈ R. The feasible region is denoted by

P = {x ∈ Rn | qi(x)≤ 0 ∀ i = 1, . . . ,m} . (3.1)

SDP relaxation plays an important role in the study of the QCQP, [27, 28, 29]. In [30], the au-
thors study the exactness of the SDP relaxation for the QCQP, as well as the efficient algorithms
for solving them.

We consider a convex relaxation for P called the Shor SDP relaxation. Define Qi ∈ Sn+1 and
the linear operator A : Sn+1→ Rm as follows:

Qi :=
[

ci bT
i

bi Ai

]
and A (Y ) =

〈Q1,Y 〉
...

〈Qm,Y 〉

 .
The Shor relaxation for (3.1) can be written as

S :=
{

Y ∈ Sn+1
+ | Y00 = 1, A (Y )+ s = 0 for some s ∈ Rm

+

}
, (3.2)

Note that if P is full dimensional, then S always satisfies Slater’s condition.

Lemma 3.1. If P is r-dimensional, then S contains a feasible solution Y such that

rank(Y) = r+1.

In particular, P is full-dimensional implies that S satisfies Slater’s condition.
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Proof. If P is r-dimensional, then there exist r+ 1 affinely independent vectors x1, . . . ,xr+1 in
F such that qi(x)≤ 0. Define X = 1

r+1 ∑
r+1
i=1 xixT

i and x = 1
r+1 ∑

r+1
i=1 xi. Then

Y =

[
1 xT

x X

]
=

1
r+1

r+1

∑
i=1

[
1
xi

][
1
xi

]T

� 0.

The affine independence implies that the rank of Y is exactly r + 1. The matrix Y is clearly
positive semidefinite. For j ∈ {1, . . . ,m}, we have

(A (Y )) j = 〈A j,X〉+2bT
j x+ c =

1
r+1

r+1

∑
i=1

(
xT

i A jxi +2bT
j xi + c

)
≤ 0.

Thus Y ∈ S for some s ∈ Rm
+. In particular, this means if P is full dimensional, then Y ∈ Sn+1

++

has full rank, and thus S satisfies Slater’s condition. �

Remark 3.2. Slater’s condition for S in (3.2) is sometimes referred to as partial-polyhedral
Slater’s (PPS) condition, as it does not capture the polyhedron cone Rm

+ for the variable s. To
simplify the presentation, we simply use the classical term Slater’s condition here. If necessary,
all the results in this paper can be generalized to include the polyhedron cone Rm

+ as well.

4. A SPECIAL FRA FOR THE SHOR SDP RELAXATIONS

In this section, we provide a special FRA for the Shor SDP relaxation. The key idea is to relax
S further into a larger set S̃ whose exposing vectors can be computed via linear programming.
As S ⊆ S̃, any exposing vector for S̃ is also an exposing vector for S. Moreover, we are able
to find an exposing vector of maximum rank for S̃ at each facial reduction step, and thus this
allows us to compute the singularity degree of S̃. Like any other special FRAs, the proposed
FRA is not guaranteed to always restore Slater’s condition.

Let K ⊂ Sn+1 be a convex cone such that Y ∈ K if and only if the n× n submatrix of
Y formed by the last n rows and columns are positive semidefinite. It should be clear that
Sn+1 ⊂K and thus the set S̃ defined below is a further relaxation for S.

S̃ :=
{

Y ∈K | Y00 = 1, A (Y )+ s = 0 for s ∈ Rm
+

}
. (4.1)

Proposition 4.1. Suppose Slater’s condition does not hold for S̃ in (4.1). Then there exists a
vector y satisfying

0 6= (A ∗(y),y) ∈K ∗×Rm
+. (4.2)

In addition, A ∗(y) in (4.2) is a non-trivial exposing vector for S̃.

Proof. Define the affine set

L :=
{
(Y,s) ∈ Sn+1×Rm | Y00 = 1,A (Y )+ s = 0

}
.

If Slater’s condition does not hold for S̃, then (coneL) and the interior of
(
K ×Rm

+

)
have an

empty intersection. By the hyperplane separation theorem, there exists 0 6= (W, t) ∈ Sn×Rm

and α ∈ R such that

(1) 〈W,Y 〉+ tT s≥ α for every (Y,s) ∈ int(K ×Rm
+).

(2) 〈W,Y 〉+ tT s≤ α for every (Y,s) ∈ coneL.
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As 0 ∈ coneL and 0 is in the closure of (intK )×Rm
+, we have α = 0. This also shows that

(W, t) ∈
(
K ×Rm

+

)∗
= K ∗×Rm

+. As 〈W,X〉+ tT s≤ 0 is a valid inequality for the affine set L,
we conclude that (W,s) = (A ∗(y),y) for some vector y.

�

Note that the dual cone K ∗ is the set of matrices in Sn+1 such that the first row and the first
column are zeros, and the n×n submatrix formed by the last n rows and columns are positive
semidefinite. This allows us to write (4.2) into a more explicit form, i.e.,

∑
m
i=1 Aiyi ∈ Sn

+

yT [B c
]

= 0
y ≥ 0,

(4.3)

where B = [b1,b2, . . . ,bm]
T and c = [c1,c2, . . . ,cm]

T . Below, we obtain an interesting result for
a special case; when the data matrices A1, . . . ,Am are positive semidefinite, finding a vector y
satisfying (4.2) reduces to solving a linear program.

Theorem 4.2. Let the data matrices A1, . . . ,Am in (4.3) be positive semidefinite. Then the ex-
posing vector for S̃ can be obtained from any feasible solution in the set

{y ∈ Rm
+ | yT [B c

]
= 0}. (4.4)

Proof. Suppose that A1, . . . ,Am ∈ Sn
+. Then any y ∈ Rn

+ implies that ∑
m
i=1 Aiyi ∈ Sn

+. Thus,
finding a solution to system (4.2) is equivalent to finding a nontrivial solution in the polyhedron
(4.4). �

Next, we show that after FR, the facially reduced program has the same form as S̃ in (4.1).
This allows us to restore Slater’s condition for S̃ by applying FRA a finite number of times.

Let y be a vector satisfying (4.2). Let V ∈ Rn×r be a matrix with orthonormal columns satis-
fying range(V ) = null(A ∗(y)). Define AV := A (V RV T ) where R ∈ Sr. After facial reduction,
we obtain a spectrahedron S̃1 defined over a smaller dimensional space

S̃1 :=
{

R ∈ Sr
+ |AV (R)+ s = 0 for s ∈ Rm

+

}
. (4.5)

It holds that R ∈ S̃1 if and only if V RV T ∈ S̃. The new feasible region S̃1 has the same form as S
in (4.1). (The only difference is that the constraint Y00 = 1 becomes different, but this does not
affect the simplification in Theorem 4.2.) Moreover, Ai ∈ Sn

+ implies that V T AiV ∈ Sr
+. Thus if

S̃1 is not strictly feasible, then we can facially reduce the set (4.5) in the same way as before to
obtain S̃2. This yields a chain of feasible sets, say, S0 := S,S1, . . . ,Sk for some positive integer k;
and the sizes of these sets are strictly decreasing. As we have a finite-dimensional problem, we
restore Slater’s condition after a finite number of steps. The singularity degree sd(S) is defined
as the smallest length k of any chain of feasible sets. It is well-known that if we choose any
exposing vector of maximum rank at each facial reduction step, we obtain a chain of minimum
length; see [26, 31].

It turns out that we can not only compute an exposing vector efficiently by solving a linear
programming problem but also obtain a maximum rank exposing vector A ∗(y) for S̃. This is
achieved by computing a feasible vector y for (4.2) such that the number of non-zero entries in
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y is maximized, i.e,
max ‖y‖0

subject to yT [B c
]
= 0

y≥ 0,
(4.6)

where ‖y‖0 is the l0-norm of y.

Lemma 4.3. Assume A1, . . . ,Am in (4.3) are positive semidefinite. Let y′ be optimal for (4.6).
Then A ∗(y′) is a maximum rank exposing vector for S̃.

Proof. Assume that y′′ satisfies (4.2) and rankA ∗(y′′) > rankA ∗(y′). This means supp(y′′) 6⊆
supp(y′). Let λ ∈ (0,1) be arbitrary. Define y∗ = λy′+(1−λ )y′′. By the convexity, we have
that y∗ is also a feasible solution to (4.6). Moreover supp(y′)( supp(y∗). This is a contradiction
to the optimality of y′. �

The l0-norm maximization problem (4.6) can be converted into a linear programming prob-
lem using standard techniques in the literature, see [32, 33]. We include a self-contained proof
here.

Lemma 4.4. Let (p∗,q∗) be the optimal solution for the following linear programming problem

max eT p
subject to (p+q)T [B c

]
= 0

0≤ p≤ 1
q≥ 0.

(4.7)

It holds that p∗+q∗ is optimal for (4.6).

Proof. Assume that p∗+ q∗ is not optimal for (4.6). Let y∗ be any optimal solution to (4.6).
Then ‖p∗+ q∗‖0 < ‖y∗‖0, and thus the set E = {i | p∗i = q∗i = 0 and y∗i > 0} is not empty.
Define a new solution for (4.7) by setting

p̃ = min{p∗+q∗+ y∗,1} and q̃ = max{p∗+q∗+ y∗−1,0}.
Note that (p̃, q̃) is feasible for (4.7). Moreover, eT p̃ > eT p∗ as E is not empty. This is a
contradiction. �

As the l0-norm maximization problem (4.6) can be solved using a linear program. Thus, we
can compute the singularity degree of S̃ efficiently.

Theorem 4.5. The singularity degree of S̃ in (4.1) can be computed in polynomial time.

To the best of our knowledge, there are minimal SDP instances whose singularity degrees
are known. Our example in Theorem 4.5 extends the range of information provided by the
other examples. Further research is needed to comprehensively understand singularity degree,
an important parameter in SDP.

Remark 4.6. Note that if B has full row rank, then Slater’s condition holds for S̃ trivially1.
Thus, we receive no dimensional reduction by considering S̃. Moreover, the assumption on the
data matrices can be considered stringent. This represents one of the worst-case scenarios
in our approach. Fortunately, for certain practical cases like binary quadratic programs, this
issue can be alleviated. This is discussed in the next section.

1We would like to thank Haesol Im for her helpful comments.
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5. BINARY QUADRATIC PROGRAMS

Binary quadratic programs (BQPs) are an important special case of QCQPs, and it is widely
used to model combinatorial optimization problems. In this section, we show that the assump-
tion in Theorem 4.2 on the positive semidefiniteness of the data matrices A1, . . . ,Am can be
partially discarded without loss of generality for BQP.

For BQP, the feasible set P can be written as

P = {x ∈ {0,1}n | qi(x)≤ 0 ∀ i = 1, . . . ,m} .
The binary constraint x ∈ {0,1}n allows us to reformulate the quadratic constraints qi such that
the data matrices Ai are positive semidefinite. To be more precise, we simply note that

qi(x) = xT (Ai− riI)x+2(bi + ri)
T x+ ci,

for any constant ri. In particular, we may choose ri to be the smallest eigenvalue of Ai, which
makes Ai− riI positive semidefinite. In a similar fashion, we can assume B does not have full
row rank to avoid the worst-case scenario in Remark 4.6.

In this case, the relaxation S̃ boils down into

S̃ :=
{

Y ∈K | arrow(Y ) = e0, A (Y )+ s = 0 for some s ∈ Rm
+

}
,

where e0 is the first unit vector and arrow : Sn+1→ Rn+1 is a linear operator defined by

arrow(Y ) =


Y00

Y11− 1
2(Y01 +Y10)

...
Ynn− 1

2(Y0n +Yn0)

 ∈ Rn+1.

Here the arrow operator is used as a relaxation for the binary constraint x2
i = xi.

Similar to Proposition 4.1, if S̃ does not satisfy Slater’s condition, then there exists a solution
(y,z) ∈ Rm×Rn+1 to the system

0 6= (A ∗(y)+ arrow∗(z),y) ∈K ∗×Rm
+ and z0 = 0, (5.1)

where the dual operator arrow∗ : Rn→ Sn+1 is given by

arrow∗(z) =


z0 −1

2z1 −1
2z2 · · · −1

2zn
−1

2z1 z1 0 · · · 0
−1

2z2 0 z2 0
...

... . . . ...
−1

2zn 0 · · · 0 zn

 .
Denote by z̃∈Rn the last n entries in z∈Rn+1. Then (5.1) can be written as a system in variable
(y, z̃) ∈ Rm×Rn, i.e.,

∑
m
i=1 Aiyi +Diag(z̃) ∈ Sn

+

yT [B c
]
− 1

2 z̃ = 0
y ≥ 0.

(5.2)

Since we can assume A1, . . . ,Am are positive semidefinite without loss of generality, it is always
possible to set z̃ = 0 and solve (5.2) as a linear programming problem as in Theorem 4.2 for
(4.3). However, we would not be able to identify an exposing vector from (5.2) of maximum
rank for S̃, as z̃ is a free variable.
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6. APPLICATIONS AND RELATED WORKS

6.1. Upper bounds. In view of Lemma 3.1, if the Shor SDP relaxation S in (3.2) does not
satisfy Slater’s condition, then P in (3.1) is not full dimensional. The dimension of P can be
upper bounded using the exposing vector W for S̃. To be more precise, if W ∈ Sn+1

+ is an
exposing vector for S, then dim(P) ≤ n− rank(W). Since it is difficult to find an exposing
vector for S, we can replace the Shor relaxation S by S̃ in (4.1). Indeed, as S ⊆ S̃, it holds
that dim(P) ≤ n− rank(W) for any exposing vector W of S̃ as well. More importantly, we
can compute a maximum rank exposing vector W for S̃ Lemma 4.3 efficiently. This forms a
procedure to upper bound the dimension of any set defined by quadratic inequalities through
semidefinite programming.

6.2. Relation with partial facial reduction. If we compare the sets S in (3.2) and S̃ in (4.1),
the key difference is that the positive semidefinite constraint Y ∈ Sn+1

+ is replaced by a weaker
constraint Y ∈K , see the definition of K before (4.1). This replacement can be viewed as a
special case of an existing method in [12]. Permenter and Parrilo introduce a special FRA called
partial facial reduction algorithm. The main idea is to replace the positive semidefinite cone in
(2.1) with a user-specified computational tractable cone. The philosophy behind their method
is an argument by Andersen and Andersen, which can be stated as “the most effective prepro-
cessing approach should be straightforward and efficient”. Therefore, they replace the positive
semidefinite constraints Y ∈ Sn+1

+ by polyhedron cones or positive semidefinite constraints on
all 2×2 principal submatrices of Y . This yields a computationally tractable FRA.

Under their framework, it is also possible to replace the constraints Y ∈ Sn+1
+ by positive

semidefinite constraints on all k×k principal submatrices of Y for any k≤ n+1. This is related
to the Factor-width-k matrices; see [34]. When k = n+ 1, we solve the original FR auxiliary
problem. Thus, when k = n, this stands for the best approximation of FRA under this framework
in some sense. However, it is also computationally more expensive for large k, which does not
fit the philosophy of Andersen and Andersen anymore. Indeed, it is mentioned in [12] that using
this representation is not always practical when k is too large.

In this work, we consider a special relaxation S̃ in (4.1) whose computational complexity is
close to the case of using factor-width-k matrices with k = n. Thus, our special FRA applied to
S̃ is expected to have a good chance to capture the exposing vectors from the original intractable
auxiliary problem (2.3). Our key contribution shows that FRA applied to S̃ is significantly easier
than for S.

7. CONCLUSION

In this work, we address the issue of poor scalability in SDPs by examining the effectiveness
of the facial reduction algorithm. We apply FRA to the Shor SDP relaxation of QCQPs. Under
the mild assumption, we show that the auxiliary problem in FRA collapses into a linear pro-
gramming problem that can be solved very efficiently. Thus, we obtain a partial facial reduction
at a very low cost, which is otherwise intractable. We also note that the proposed FRA requires
fewer assumptions when applied to the binary quadratic programs. We use the framework of an
existing special FRA to argue that our algorithm makes a good trade-off between the exactness
of facial reduction and computational complexity. In addition, we construct new semidefinite
programming problems whose singularity degrees are known, and this is a good addition to the
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list of limited examples in the literature. We also note that our special FRA can be used to find
an upper bound for the dimension of any set defined by quadratic inequalities.
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