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Abstract. We extend to C×W1,2-local minimizers and nonautonomous perturbation function, the nec-
essary optimality conditions recently derived, via continuous-time approximations, for W1,2×W1,2-local
minimizers of an optimal control problem governed by a controlled nonconvex sweeping process with
autonomous perturbation function.
Keywords. Controlled and perturbed nonconvex sweeping process; Continuous-time approximations;
Local minimizers; Necessary optimality conditions; Nonsmooth analysis.
2020 Mathematics Subject Classification. 49J52, 49K15, 49J21.

1. INTRODUCTION

Moreau’s sweeping process is a mathematical model introduced in [1, 2, 3] to describe an
elastoplastic mechanical system. Since then, this model appeared in several fields such as me-
chanics, electrical circuits, engineering, economics, crowd motion control, traffic equilibria,
hysteresis phenomena, etc. (see, e.g., [4]). Since the dynamic of this model is an evolution
differential inclusions involving an unbounded and discontinuous multifunction, namely, the
normal cone to a set, the sweeping process model falls outside the scope of standard differential
inclusions. Therefore, new techniques are required to address optimal control problems over
sweeping processes.

In this paper, we are interested in deriving necessary optimality conditions, phrased in terms
of the weak-Pontryagin-type maximum principle, for the optimal control problems governed
by W1,2-controlled and nonautonomously perturbed sweeping processes. The autonomous case
was successfully treated in [5, 6, 7] via discrete approximations, and in [8] via continuous
approximations. In these references, the authors considered W1,2×W1,2-local minimizers, and
obtained, in addition to necessary optimality conditions, the strong convergence of velocities,
that is, the optimal states of the original problem are strongly approximated, in the W1,2-norm,
by the optimal states of the approximating problems. It is worth to mention that, unlike the case
for standard optimal control problems, where the optimal control functions have weak regularity
properties, applications of optimal control problems over sweeping processes have shown to
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possess optimal control functions with strong regularity properties, such as, W1,2 (see, e.g., [6],
[7, Examples 9.1 & 9.2]).

The continuous approximation used in [8] was based on approximating the normal cone by an
exponential penalization term. This innovative technique was introduced in [9, 10], and further
developed in [11, 12, 13, 14, 15]. The autonomous assumption on the perturbation function
in [8], and also in [5, 6, 7], played a crucial role in the derivation of the necessary optimality
conditions using W1,2-controls, especially, in the proof of the strong convergence of velocities.

The goal of this paper is to extend the weak Pontryagin maximum principle derived in [8]
to the case where the perturbation function is nonautonomous and the t-dependence is merely
measurable. In order to reach this goal, it turns out that the strong convergence of velocities has
to be weakened in the following sense: While the convergence of the approximating problems
solutions to those of the original problem remains uniform for the state component and strong in
W1,2 for the control component, it is rather weak* in L∞ for the state velocities. Consequently,
our necessary optimality conditions, which coincide with those obtained in [8], are derived
for C×W1,2-local minimizers. For this class of local minimizers, our formulation here of the
approximating problems via the exponential penalization technique is different than that in [8],
and so is the proof of existence of optimal solutions for these problems (Lemma 3.1) as well as
the proof of Lemma 3.2.

The paper is organized as follows. In the next section, we present our basic notations, de-
fine our optimal control problem (P) governed by a W1,2-controlled and perturbed sweeping
process, list the hypotheses satisfied by the data of (P), and state the main result of the paper,
namely, necessary optimality conditions in the form of weak Pontryagin principle for C×W1,2-
local minimizers of (P). Section 3 is devoted to the proof of our main result. An example
illustrating the utility of our main result is provided in Section 4.

2. MAIN RESULT

2.1. Basic notations. The following are the basic notations and definitions used in this paper:

• For the Euclidean norm and the usual inner product, we use ‖ · ‖ and 〈·, ·〉, respectively.

• For y ∈ Rn and r > 0, we define the open (resp. closed) ball centered at y with radius
r as Br(y) := y+ rB (resp. B̄r(y) := y+ rB̄), where B and B̄ denotes the open and the
closed unit ball, respectively.

• For C ⊂ Rn, the boundary, the interior, the closure, the convex hull, the complement,
and the polar of C are denoted by bdryC, intC, clC, convC, Cc, and C◦, respectively.

• The distance from a point x ∈ Rn to a set C ⊂ Rn is denoted by d(x,C).

• For an extended-real-valued function h : Rn −→ R∪{∞}, the effective domain of h is
domh, and the epigraph of h is epih.

• For a multifunction F : Rn ⇒ Rm, we denote by GrF ⊂ Rn×Rm the graph of F .

• The space Lp([a,b];Rn) designates the Lebesgue space of p-integrable functions
h : [a,b] −→ Rn. We denote by ‖ · ‖p and ‖ · ‖∞ the norms of Lp([a,b];Rn) and
L∞([a,b];Rn) (or C([a,b];Rn)), respectively. For C ⊂ Rd compact, the set of contin-
uous functions from C to Rn is denoted by C(C;Rn).
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• The set of all m×n-matrix functions on [a,b] is denoted by Mm×n([a,b]).

• A function h : [a,b] −→ Rn is said to be a BV -function if h has a bounded variation.
The set of all such functions is denoted by BV ([a,b];Rn). We denote by NBV [a,b] the
normalized space of BV -functions on [a,b] that consists of those BV -functions h such
that h(a) = 0 and h is right continuous on (a,b) (see e.g., [16, p.115]).

• The space C∗([a,b];R) denotes the dual of C([a,b];R), equipped with the supremum
norm. The induced norm on C∗([a,b];R) is denoted by ‖ · ‖T.V.. As a consequence of
Riesz representation theorem, we can interpret the elements of C∗([a,b];R) as being in
M([a,b]), the set of finite signed Radon measures on [a,b] equipped with the weak*
topology. Thereby, to each element of C∗([a,b];R) it corresponds a unique element in
NBV [a,b] related through the Stieltjes integral and both elements have the same total
variation. The set C⊕(a,b) designates the subset of C∗([a,b];R) taking nonnegative
values on nonnegative-valued functions in C([a,b];R).

• By Wk,p([a,b];Rn), k ∈ N and p ∈ [0,+∞], we denote the classical Sobolev space.
Hence, the set of all absolutely continuous functions from [a,b] to Rn is W1,1([a,b];Rn).
Note that in this paper, the Sobolev space W1,2([a,b];Rm) will be considered with the
norm ‖u(·)‖W 1,2 := ‖u(·)‖∞+‖u̇(·)‖2. Hence, the convergence of a sequence un strongly
in the norm topology of the space W 1,2([a,b];Rm) is equivalent to the uniform conver-
gence of un on [a,b] and the strong convergence in L2 of its derivative u̇n.

• For C ⊂ Rn closed and c ∈C, we denote by NP
C (c), NL

C(c), and NC(c), the proximal, the
Mordukhovich (or limiting), and the Clarke normal cones to C at c, respectively.

• For F : [a,b] ⇒ Rm a multifunction with closed and nonempty values, N̄L
F(t)(y) stands

for the graphical closure at (t,y) of the multifunction (t,y) 7→NL
F(t)(y), that is, the graph

of N̄L
F(·)(·) is the closure of the graph of NL

F(·)(·).

• For h : Rn −→ R∪ {∞} lower semicontinuous and x ∈ domh, we denote by ∂ Ph(x),
∂ Lh(x), and ∂h(x) the proximal, the Mordukhovich (or limiting), and the Clarke sub-
differential of h at x, respectively. Note that if h is Lipschitz near x, then the Clarke
generalized gradient of h at x is also denoted by ∂h(x).

• If h : Rn −→ R∪{∞} is C1,1 near x ∈ domh, then the Clarke generalized Hessian of h
at x is denoted by ∂ 2h(x). On the other hand, if H : Rn −→Rn is Lipschitz near x ∈Rn,
then the Clarke generalized Jacobian of H at x is denoted by ∂H(x).

• For F : [a,b] ⇒ Rm a lower semicontinuous multifunction with closed and nonempty
values, we define

∂
>
x d(x,F(t))

:= conv
{

ζ = lim
i−→∞

ζi : ‖ζi‖= 1, ζi ∈ NP
F(ti)(xi) and (ti,xi)

GrF−−→ (t,x)
}
,

where (ti,xi)
GrF−−→ (t,x) signifies that (ti,xi)−→ (t,x) with xi ∈ F(ti) for all i. Note that

∂ >
x d(x,F(t)) coincides with ∂ >

x g(t,x) of [17, p.121] for g(t,x) := d(x,F(t)), see [18,
Corollary 2.2].



196 C. NOUR, V. ZEIDAN

• For r > 0, a closed and nonempty set S ⊂ Rn is said to be r-prox-regular if for all
s ∈ bdryS and for all ζ ∈ NP

S (s) unit, we have 〈ζ ,x− s〉 ≤ 1
2r‖x− s‖2 for all x ∈ S. For

more information about prox-regularity, see [19].

2.2. Statement of problem (P) and hypotheses. We consider the following fixed time Mayer-
type optimal control problem involving W1,2-controlled and perturbed sweeping systems

(P) : Minimize g(x(0),x(1))
over (x,u) ∈W1,1([0,1];Rn)×W such that
(D)

[
ẋ(t) ∈ f (t,x(t),u(t))−∂ϕ(x(t)), a.e. t ∈ [0,1],
x(0) ∈C0 ⊂ domϕ,

x(1) ∈C1,

where g : Rn×Rn −→ R∪{∞}, f : [0,1]×Rn×Rm −→ Rn, ϕ : Rn −→ R∪{∞}, ∂ stands for
the Clarke subdifferential, C := domϕ is the zero-sublevel set of a function ψ : Rn −→ R, that
is, C = {x ∈ Rn : ψ(x) ≤ 0}, C0 ⊂ C, C1 ⊂ Rn, and, for U : [0,1] ⇒ Rm a multifunction and
U :=

⋃
t∈[0,1]U(t), the set of control functions W is defined by

W := W1,2([0,1];U) =
{

u ∈W1,2([0,1];Rm) : u(t) ∈U(t), ∀t ∈ [0,1]
}
.

Note that if (x,u) solves (D), it necessarily follows that x(t) ∈C, ∀t ∈ [0,1].
A pair (x,u) is admissible for (P) if x : [0,1] −→ Rn is absolutely continuous, u ∈W, and

(x,u) satisfies the controlled and perturbed sweeping process (D), called the dynamic of (P).
An admissible pair (x̄, ū) for (P) is said to be a C×W1,2-local minimizer if there exists δ > 0
such that

g(x̄(0), x̄(1))≤ g(x(0),x(1)), (2.1)

for all (x,u) admissible for (P) with ‖x− x̄‖∞ ≤ δ , ‖u− ū‖∞ ≤ δ , and ‖u̇− ˙̄u‖2
2 ≤ δ . Note that if

inequality (2.1) is satisfied by any admissible pairs (x,u), then (x̄, ū) is called a global minimizer
(or an optimal solution) for (P).

Let (x̄, ū) be a C×W1,2-local minimizer for (P) with associated δ such that the following
hypotheses hold for B̄δ (x̄) :=

⋃
t∈[0,1]

B̄δ (x̄(t)):

H1: There exist ρ̃ > 0 and M` > 0 such that f (·,x,u) is Lebesgue-measurable for (x,u) ∈
[C∩ B̄δ (x̄)]× [(U+ ρ̃B̄)∩ B̄δ (ū)]; and for a.e. t ∈ [0,1] we have that: (x,u) 7→ f (t,x,u)
is M`-Lipschitz on [C∩ B̄δ (x̄(t))]×

[(
U(t)+ ρ̃B̄

)
∩ B̄δ (ū(t))

]
; and ‖ f (t,x,u)‖ ≤M` for

all (x,u) ∈ [C∩ B̄δ (x̄(t))]× [U(t)∩ B̄δ (ū(t))] .
H2: The set C := domϕ is given by C = {x ∈ Rn : ψ(x)≤ 0}, where ψ : Rn −→ R.

H2.1: There exists ρ > 0 such that ψ is C1,1 on C+ρB.
H2.2: There is a constant η > 0 such that ‖∇ψ(x)‖> 2η for all x satisfying ψ(x) = 0.
H2.3: The function ψ is coercive, that is, lim‖x‖−→∞ ψ(x) = +∞.
H2.4: The set C has a connected interior.

This hypothesis is only required to guarantee that C is compact. Hence, (H2.3) can be replaced by the bound-
edness of C.

This hypothesis is only imposed to obtain the extension function Φ of ϕ , see [14, Remark 3.2 & Lemma
3.4(iii)]. Thus, when such an extension is readily available, as is the case when ϕ is the indicator function of C,
hypothesis (H2.4) is omitted.
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H3: The function ϕ is globally Lipschitz on C and C1 on intC. Moreover, the function ∇ϕ

is globally Lipschitz on intC.
H4: For the sets C0, C1, and U(·) we have that:

H4.1: The set C0 ⊂C is nonempty and closed.
H4.2: The graph of U(·) is a L×B measurable set, and, for t ∈ [0,1], U(t) is closed, and

bounded uniformly in t.
H4.3: The set C1 ⊂ Rn is nonempty and closed.
H4.4: The multifunction U(·) is lower semicontinuous.
H4.5: The multifunction U(·) satisfies the constraint qualification (CQ) at ū, that is,

conv(N̄L
U(t)(ū(t))) is pointed ∀t ∈ [0,1].

H5: There exist ρ̃ > 0 and Lg > 0 such that g is Lg-Lipschitz on C̃0(δ )×C̃1(δ ), where

C̃i(δ ) :=
[
(Ci∩ B̄δ (x̄(i)))+ ρ̃B̄

]
∩C, for i = 0,1.

Let MC be a bound of the compact set C. We denote by M̄ψ an upper bound of ‖∇ψ(·)‖ on
C, and by 2Mψ a Lipschitz constant of ∇ψ(·) over the compact set C+ ρ

2 B̄ chosen large enough
so that Mψ ≥ 4η

ρ
.

Remark 2.1. Since f satisfies (H1), then by [20, Theorem 1] applied to each component, fi,
of f = ( f1, · · · , fn), there exists a function f̃ : [0,1]×Rn×Rm −→ Rn, such that, for almost
all t ∈ [0,1], f̃ (t, ·, ·) is globally Lipschitz on Rn×Rm, and f (t,x,u) = f̃ (t,x,u) for all (x,u) ∈
[C∩ B̄δ (x̄(t))]×

[(
U(t)+ ρ̃B̄

)
∩ B̄δ (ū(t))

]
. Moreover, there exists a new constant M ≥M` such

that f̃ satisfies the assumption (A1) of [14], in which the constant multifunction U is replaced
by U(·)∩ B̄δ (ū(·)). Since in this paper we only consider local optimality notions, then, without
loss of generality, we shall use the function f instead of its extension f̃ . In particular, we use
that f satisfies the assumption (A1) of [14], and hence, all the results of [14, Sections 3, 4 &
5] are valid. Now, by [14, Lemma 3.4], C is η

Mψ
-prox-regular, and ϕ admits a C1-extension Φ

from C to Rn satisfying ∂ϕ(x) = {∇Φ(x)}+NC(x) for all x ∈C, with

NC(x) = {λ∇ψ(x) : λ ≥ 0}, ∀x ∈ bdryC, (2.2)

and for some K > 0,

|Φ(x)| ≤ K and ‖∇Φ(x)‖ ≤ K, ∀x ∈ Rn, and ‖∇Φ(x)−∇Φ(y)‖ ≤ K‖x− y‖, ∀x, y ∈ Rn.

This gives that (D) can be equivalently phrased in terms of the normal cone to C and the exten-
sion Φ of ϕ , as follows

(D)

[
ẋ(t) ∈ fΦ(t,x(t),u(t))−NC(x(t)), a.e. t ∈ [0,1],
x(0) ∈C0 ⊂C,

where fΦ : [0,1]×Rn×Rm −→ Rn is defined by

fΦ(t,x,u) := f (t,x,u)−∇Φ(x), ∀(t,x,u) ∈ [0,1]×Rn×Rm,

and hence, ‖ fΦ(t,x,u)‖ ≤ M̄ := M+K.

The following notations and facts, extracted from [14], will be used throughout the paper.

For more information about the (CQ) property, see [8, Remark 5.2].
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• For any (x,u) solution of (D), we have by [14, Equation 50] that

‖ẋ(t)− fΦ(t,x(t),u(t))‖ ≤ ‖ fΦ(t,x(t),u(t))‖ ≤ M̄, t ∈ [0,1] a.e.,

and hence, ‖ẋ‖∞ ≤ 2M̄.
• For given x(·) : [0,1]→ Rn, we define

I0(x) := {t ∈ [0,1] : x(t) ∈ bdryC} and I-(x) := [0,1]\ I0(x).

• We define the set U by

U := {u : [0,1]→ Rm : u is measurable and u(t) ∈U(t), t ∈ [0,1] a.e.}.

• For (x,u) ∈W1,1([0,1];Rn)×U with x(0) ∈C0 and x(t) ∈C for all t ∈ [0,1], we have
from (2.2) and Filippov selection theorem ([21, Theorem 2.3.13]) that x is a solution for
(D) corresponding to the control u if and only if there exists a nonnegative measurable
function ξ supported on I0(x) such that (x,u,ξ ) satisfies

ẋ(t) = fΦ(t,x(t),u(t))−ξ (t)∇ψ(x(t)), t ∈ [0,1] a.e. (2.3)

In this case, the nonnegative function ξ supported in I0(x) with (x,u,ξ ) satisfying equa-
tion (2.3), is unique, belongs to L∞([0,1];R+), and

ξ (t) = 0 for t ∈ I-(x),

ξ (t) = ‖ẋ(t)− fΦ (t,x(t),u(t))‖
‖∇ψ(x(t))‖ ∈

[
0, M̄

2η

]
for t ∈ I0(x) a.e.,

‖ξ‖∞ ≤ M̄
2η
.

(2.4)

• Since (x̄, ū) solves the dynamic (D), we denote by ξ̄ the corresponding function in
L∞([0,1];R+) such that (x̄, ū, ξ̄ ) satisfies (2.3) and (2.4).
• Let (γk)k be a sequence satisfying

γk >
2M̄
η

for all k ∈ N, and γk −−−−→
k−→∞

∞. (2.5)

• The sequence (αk)k is defined by

αk :=
ln
(

ηγk
2M̄

)
γk

, k ∈ N. (2.6)

By (2.5) and (2.6), we have that

γke−αkγk =
2M̄
η

, αk > 0, αk↘ and lim
k−→∞

αk = 0. (2.7)

• The sequence (ρk)k is defined by ρk := αk
η

for all k ∈ N. By (2.7) we have that ρk > 0
for all k ∈ N, ρk↘ and lim

k−→∞
ρk = 0.

• For k ∈ N, the approximating system (Dγk) is defined as

(Dγk)

[
ẋ(t) = fΦ(t,x(t),u(t))− γkeγkψ(x(t))∇ψ(x(t)) a.e. t ∈ [0,1],
x(0) ∈C.
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Lemma 4.1 of [14] yields that, for each k, the system (Dγk) with given x(0)= cγk ∈C and
uγk ∈U, has a unique solution xγk ∈W1,2([0,1];Rn) such that xγk(t) ∈C for all t ∈ [0,1],
and (‖ẋγk‖2)k is uniformly bounded. To such a solution xγk , we associate

ξγk(·) := γkeγkψ(xγk (·)). (2.8)

• For k ∈ N, we define the set C(k) := {x ∈C : ψ(x)≤−αk} ⊂C.
• The sequence (c̄γk)k is defined by

c̄k :=

{
x̄(0), ∀k ∈ N, if x̄(0) ∈ intC,

x̄(0)−ρk
∇ψ(x̄(0))
‖∇ψ(x̄(0))‖ , ∀k ∈ N, if x̄(0) ∈ bdryC.

From [14, Remark 3.6(ii)] we have that, for k sufficiently large, c̄γk ∈ intC(k). More-
over, c̄γk −→ x̄(0) as k −→ ∞.
• For each k ∈ N, we denote by x̄γk the unique solution of (Dγk) corresponding to (c̄γk , ū).

Theorem 4.1 of [14] yields that x̄γk converges in C uniformly to x̄.
• We fix δo > 0 such that

δo ≤

{
min{r̂x̄(0),δ} if x̄(0) ∈ intC,

min{ro,δ} if x̄(0) ∈ bdryC,

where ro > 0 is the constant in [14, Theorem 3.1(iii)], and r̂x̄(0) > 0 with k̂x̄(0) ∈ N are
the constants in [14, Remark 3.6(ii)] corresponding to c := x̄(0).
• We define the set C0(k) by

C0(k) :=

{
C0∩ B̄δo(x̄(0)) , ∀k ∈ N, if x̄(0) ∈ intC,[
C0∩ B̄δo(x̄(0))

]
−ρk

∇ψ(x̄(0))
‖∇ψ(x̄(0))‖ , ∀k ∈ N, if x̄(0) ∈ bdryC.

One can easily verify that

lim
k→∞

C0(k) =C0∩ B̄δo(x̄(0)) and C0(k)⊂ C̃0(δ ), for k large enough. (2.9)

Moreover, from [14, Theorem 3.1(iii) & Remark 3.6(ii)], we have that, for k sufficiently
large,

C0(k)⊂C(k)⊂C. (2.10)

• We define the set C1(k) by

C1(k) :=
[(

C1∩ B̄δo(x̄(1))
)
− x̄(1)+ x̄γk(1)

]
∩C, k ∈ N.

One can easily verify that

lim
k→∞

C1(k) =C∩C1∩ B̄δo(x̄(1)) and C1(k)⊂ C̃1(δ ) for k large enough. (2.11)

2.3. Statement of the main result. Before presenting the main result of this paper, namely the
necessary optimality conditions for a given C×W1,2-local minimizer of (P), we establish the
following existence of optimal solution theorem for (P), which is parallel to [5, 7, Theorems
4.1] where a discretization technique is used.

Theorem 2.1 (Existence of optimal solution for (P)). Assume that (H2)-(H4.3) hold, and that:
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• For fixed (x,u) ∈C×U, f (·,x,u) is Lebesgue-measurable; and there exists M > 0 such
that, for a.e. t ∈ [0,1], (x,u) 7→ f (t,x,u) is continuous on C×U(t); for all u ∈U(t),
x 7→ f (t,x,u) is M-Lipschitz on C; and ‖ f (t,x,u)‖ ≤M for all (x,u) ∈C×U(t).
• The function g : Rn×Rn→ R∪{∞} is lower semicontinuous.
• A minimizing sequence (x j,u j) for (P) exists such that (‖u̇ j‖2) j is bounded.
• Problem (P) has at least one admissible pair (yo,vo) with (yo(0),yo(1)) ∈ domg.

Then problem (P) admits a global optimal solution (x̃, ũ) such that, along a subsequence, we
have

x j
uniformly−−−−−−→

C([0,1];Rn)
x̃, u j

uniformly−−−−−−→
C([0,1];Rm)

ũ, ẋ j
weakly*−−−−−−−→

L∞([0,1];Rn)
˙̃x, and u̇ j

weakly−−−−−−−→
L2([0,1];Rm)

˙̃u.

Proof. The fact that (P) admits an admissible pair (yo,vo) with (yo(0),yo(1)) ∈ domg yields
that inf(x,u)(P)< ∞. Since all admissible solutions (x,u) of (P) have (x(0),x(1)) in the compact
set C0× (C1∩C), then the lower semicontinuity of g gives that inf(x,u)(P) is finite. As the min-
imizing sequence (x j,u j) j solves (D) and C is compact, it follows that the sequences (‖ẋ j‖∞) j
and (‖x j‖∞) j are bounded by 2M̄ and MC, respectively.

On the other hand, by hypothesis, we have that (‖u̇ j‖2) j is bounded, and by the t-uniform
boundedness of U(t) in (H4.2), the sequence (‖u j‖∞) j is also bounded. Hence, Arzela-Ascoli’s
theorem produces a subsequence, we do not relabel, of (x j,u j) j, that converges uniformly to an
absolutely continuous pair (x̃, ũ) with (x̃(t), ũ(t)) ∈C×U(t) for all t ∈ [0,1], (ẋ j) j converging
to ˙̃x in the weak*-topology of L∞, and (u̇ j) j converging weakly in L2 to ˙̃u. As for all j ∈ N,
(x j(0),x j(1)) ∈C0×C1, then (H4.1) and (H4.3) yield that (x̃(0), x̃(1)) ∈C0×C1.

To prove that (x̃, ũ) satisfies the sweeping process in (D), we use the equivalence invok-
ing (2.3). Let (ξ j) j be the L∞([0,1],R+)- sequence associated via (2.3)-(2.4) to the sequence
(x j,u j) j admissible for (D). As (2.4) yields that (‖ξ j‖∞) j is bounded by M̄

2η
, and (ξ j) j

admits a subsequence, we do not relabel that weakly* converges in L∞([0,1];R+) to some
ξ̃ ∈ L∞([0,1];R+). Using that (x j,u j,ξ j) satisfies (2.3) together with the assumptions on f , and
the properties of Φ and ψ , it easily follows upon taking the limit as j −→ ∞ in

x j(t) = x j(0)+
∫ t

0
[ fΦ(s,x j(s),u j(s))−ξ j(s)∇ψ(x j(s))] ds, ∀t ∈ [0,1],

that also (x̃, ũ, ξ̃ ) satisfies (2.3). We now show that ξ̃ is supported in I0(x̃). Let t ∈ I-(x̃) be
fixed, that is, x̃(t) ∈ intC. Since (x j) j converges uniformly to x̃, then we can find δ̃ > 0 and
jo ∈ N such that for all s ∈ (t− δ̃ , t + δ̃ )∩ [0,1]. For all j ≥ jo, we have x j(s) ∈ intC. Hence
ξ j(s) = 0, as ξ j satisfies (2.4). Thus, ξ j(s) −→ 0 for s ∈ (t− δo, t + δo)∩ [0,1], and whence,
ξ̃ (t) = 0, proving that ξ̃ is supported in I0(x). Thus, (x̃, ũ) solves (D) and (x̃, ũ, ξ̃ ) satisfies
(2.4). Therefore, (x̃, ũ) is admissible for (P). Owed to the lower semicontinuity of g and to
(x̃, ũ) being the uniform limit of the minimizing sequence (x j,u j) j, the optimality of (x̃, ũ) for
(P) follows readily. �

The following theorem, Theorem 2.2, is the main result of this paper. It provides necessary
optimality conditions in the form of weak Pontryagin principle for a C×W1,2-local minimizer
(x̄, ū) in (P). These optimality conditions extend those given in [8, Theorem 4.8], where (x̄, ū)
is a W1,2×W1,2-local minimizer and the perturbation function is autonomous. Note that in the
statement of Theorem 2.2, we use the following nonstandard notions of subdifferentials, which
are strictly smaller than their counterparts in standard notions:
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• ∂`ϕ and ∂ 2
` ϕ defined on C, are the extended Clarke generalized gradient and the ex-

tended Clarke generalized Hessian of ϕ , respectively (see [14, Equation (9)-(10)]). Note
that if ∂`ϕ(x) is a singleton, then we use the notation ∇̀ instead of ∂`.
• ∂

(x,u)
` f (t, ·, ·) is the extended Clarke generalized Jacobian of f (t, ·, ·) defined on the set
[C∩ B̄δ (x̄(t))]×

[
(U(t)+ ρ̃B̄)∩ B̄δ (ū(t))

]
(see [14, Equation (11)]).

• ∂ 2
` ψ is the Clarke generalized Hessian relative to intC of ψ (see [14, Equation (12)]).

• ∂ L
` g is the limiting subdifferential of g relative to int

(
C̃0(δ )×C̃1(δ )

)
(see [14, Equation

(8)]).

Theorem 2.2 (Necessary optimality conditions). Let (x̄, ū) be a C×W1,2-local minimizer for
(P) with associated δ > 0 at which (H1)-(H5) hold. Then, there exist λ ≥ 0, an adjoint vector
p̄ ∈ BV ([0,1];Rn), a finite signed Radon measure ν̄ on [0,1] supported on I0(x̄), L∞-functions
ζ̄ (·), θ̄(·) and ϑ̄(·) in Mn×n([0,1]), and an L∞-function ω̄(·) in Mn×m([0,1]), such that(

(ζ̄ (t), ω̄(t)), θ̄(t), ϑ̄(t)
)
∈ ∂

(x,u)
` f (t, x̄(t), ū(t))×∂

2
` ϕ(x̄(t))×∂

2
` ψ(x̄(t)), t ∈ [0,1] a.e.,

and the following holds:

(i) (The admissible equation)
(a) ˙̄x(t) = f (t, x̄(t), ū(t))− ∇̀ ϕ(x̄(t))− ξ̄ (t)∇ψ(x̄(t)), t ∈ [0,1] a.e.,
(b) ψ(x̄(t))≤ 0, ∀t ∈ [0,1];

(ii) (The nontriviality condition)

‖p̄(1)‖+λ = 1;

(iii) (The adjoint equation) For any h ∈C([0,1];Rn), we have∫
[0,1]
〈h(t),d p̄(t)〉 =

∫ 1

0

〈
h(t),

(
θ̄(t)− ζ̄ (t)T

)
p̄(t)

〉
dt

+
∫ 1

0
ξ̄ (t)

〈
h(t), ϑ̄(t)p(t)

〉
dt +

∫
[0,1]
〈h(t),∇ψ(x̄(t))〉dν̄ ;

(iv) (The complementary slackness conditions)
(a) ξ̄ (t) = 0, ∀t ∈ I-(x̄),
(b) ξ̄ (t)〈∇ψ(x̄(t), p̄(t)〉= 0, ∀t ∈ [0,1] a.e.;

(v) (The transversality equation)

(p̄(0),−p̄(1)) ∈ λ∂
L
` g(x̄(0), x̄(1))+

[
NL

C0
(x̄(0))× NL

C1
(x̄(1))

]
;

(vi) (The weak maximization condition)

ω̄(t)T p̄(t) ∈ conv N̄L
U(t)∩B̄δ (ū(t))

(ū(t)), t ∈ [0,1] a.e.

If, in addition, there exist εo > 0 and r > 0 such that U(t)∩ B̄εo(ū(t)) is r-prox-regular
for all t ∈ [0,1], then, for t ∈ [0,1] a.e.,

max
{〈

ω̄(t)T p̄(t),u
〉
− ‖ω̄(t)T p̄(t)‖

min{εo,2r} ‖u− ū(t)‖2 : u ∈U(t)
}

is attained at ū(t).

Furthermore, if C1 = Rn, then λ 6= 0 and is taken to be 1, and the nontriviality condition (i) is
eliminated.
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Remark 2.2. The following are simplified versions of the weak maximization condition of The-
orem 2.2 for the special cases: (a) U(t) is r-prox-regular for all t ∈ [0,1], (b) U(t)∩ B̄εo(ū(t))
is convex for all t ∈ [0,1], and (c) U(t) is convex for all t ∈ [0,1].

(a) We take εo −→ ∞ to obtain that, for t ∈ [0,1] a.e.,

max
{〈

ω̄(t)T p̄(t),u
〉
− ‖ω̄(t)T p̄(t)‖

2r ‖u− ū(t)‖2 : u ∈U(t)
}

is attained at ū(t).

(b) We take r −→ ∞ to obtain that, for t ∈ [0,1] a.e.,

max
{〈

ω̄(t)T p̄(t),u
〉
− ‖ω̄(t)T p̄(t)‖

εo
‖u− ū(t)‖2 : u ∈U(t)

}
is attained at ū(t).

(c) We take both εo −→ ∞ and r −→ ∞ to obtain that, for t ∈ [0,1] a.e.,

max
{〈

ω̄(t)T p̄(t),u
〉

: u ∈U(t)
}

is attained at ū(t).

3. PROOF OF THE MAIN RESULTS

The proof of Theorem 2.2 is presented in three steps.

Step 1: Approximating problems for (P). We introduce the following sequence of approxi-
mating problems:

(Pγk) : Minimize
J(x,z,u) := g(x(0),x(1))+ 1

2

(
‖u(0)− ū(0)‖2 + z(1)+‖x(0)− x̄(0)‖2)

over (x,z,u) ∈W1,2([0,1];Rn)×W1,1([0,1];R)×W such that
(Dγk)

ẋ(t) = fΦ(t,x(t),u(t))− γkeγkψ(x(t))∇ψ(x(t)), t ∈ [0,1] a.e.,
ż(t) = ‖u̇(t)− ˙̄u(t)‖2, t ∈ [0,1] a.e.,
(x(0),z(0)) ∈C0(k)×{0},

x(t) ∈ B̄δ (x̄(t)) and u(t) ∈U(t)∩ B̄δ (ū(t)), ∀t ∈ [0,1],

(x(1),z(1)) ∈C1(k)× [−δ ,δ ].

Lemma 3.1. For k sufficiently large, problem (Pγk) has an optimal solution (xγk ,zγk ,uγk) such
that, for ξγk defined in (2.8), we have, along a subsequence, we do not relabel, that

uγk

strongly−−−−→
W

ū, xγk

uniformly−−−−−−→
C([0,1];Rn)

x̄, zγk

strongly−−−−−−−−→
W 1,1([0,1];R+)

0, and (ẋγk ,ξγk)
weakly*−−−−−−−−−−→

L∞([0,1];Rn×R+)
( ˙̄x, ξ̄ ).

In addition, we have:
(i) xγk(t) ∈C(k)⊂ intC, ∀t ∈ [0,1].
(ii) 0≤ ξγk(t)≤

2M̄
η
, ∀t ∈ [0,1].

(iii) ‖ẋγk(t)‖ ≤ M̄+
2M̄M̄ψ

η
, ∀t ∈ [0,1] a.e.

(iv) xγk(i) ∈
[(

Ci∩ B̄δo(x̄(i))
)
+ ρ̃B

]
∩ (intC)⊂ intC̃i(δ ), for i = 0,1.

Proof. By (2.9) and (2.11), let k be large enough so that C0(k) ⊂ C̃0(δ ) and C1(k) ⊂ C̃1(δ ).
Since x̄γk −→ x̄ uniformly, then, for k sufficiently large, x̄γk(t) ∈ B̄δ (x̄(t)), ∀t ∈ [0,1]. Thus,
using that c̄γk ∈ C0(k), for all k ∈ N, and x̄(1) ∈ C1 ∩ B̄δo(x̄(1)), it follows that, for k large,
(x̄γk , z̄γk := 0, ū) is an admissible triplet for (Pγk).
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Now, fix k large enough so that C0(k)×C1(k) ⊂ C̃0(δ )× C̃1(δ ) and (x̄γk ,0, ū) is admissible
for (Pγk). Using (H5) and the definition of J(x,z,u), we obtain that J(x,z,u) is bounded from
below, and hence, inf(Pγk) is finite. Let (xn

γk
,zn

γk
,un

γk
)n ∈W1,2([0,1];Rn)×W1,1([0,1];R)×W

be a minimizing sequence for (Pγk), that is, for each n ∈ N, (xn
γk
,zn

γk
,un

γk
) is admissible for (Pγk),

and

lim
n−→∞

J(xn
γk
,zn

γk
,un

γk
) = inf(Pγk)< ∞. (3.1)

Since for each n, xn
γk

solves (Dγk) for (xn
γk
(0),un

γk
), and (xn

γk
(0))n ∈ C0(k) ⊂ C, then, by [14,

Lemma 4.1], we have that the sequence (xn
γk
)n is uniformly bounded in C([0,1];Rn) and the

sequence (ẋn
γk
)n is uniformly bounded in L2.

On the other hand, from (H4.2), we have that sets U(t) are compact and uniformly bounded.
Then the sequence (un

γk
)n, which is in W, is uniformly bounded in C([0,1];Rm). Moreover, its

derivative sequence, (u̇n
γk
)n, must be uniformly bounded in L2, since we have zn

γk
(t)=

∫ t
0 ‖u̇n

γk
(τ)−

˙̄u(τ)‖2dτ, ∀t ∈ [0,1]. Hence,

‖u̇n
γk
‖2 ≤ ‖u̇n

γk
− ˙̄u‖2 +‖ ˙̄u‖2 = (zn

γk
(1))

1
2 +‖ ˙̄u‖2 ≤

√
δ +‖ ˙̄u‖2. (3.2)

Therefore, by Arzelà-Ascoli theorem, along a subsequence (we do not relabel), (xn
γk
,un

γk
)n con-

verges uniformly to a pair (xγk ,uγk) and (ẋn
γk
, u̇n

γk
)n converges weakly in L2 to the pair (ẋγk , u̇γk).

Hence, (xγk ,uγk) ∈W1,2([0,1];Rn)×W. Moreover,

‖u̇γk− ˙̄u‖2
2 ≤ liminf

n−→∞
‖u̇n

γk
− ˙̄u‖2

2. (3.3)

Define

zγk(t) :=
∫ t

0
‖u̇γk(τ)− ˙̄u(τ)‖2dτ, ∀t ∈ [0,1]. (3.4)

We claim that (xγk ,zγk ,uγk) is optimal for (Pγk). First we prove its admissibility. Clearly we have

zγk ∈W1,1([0,1];R), żγk(t) = ‖u̇γk(t)− ˙̄u(t)‖2 ∀t ∈ [0,1] a.e., and zγk(0) = 0.

Moreover, since ‖u̇n
γk
− ˙̄u‖2

2 = zn
γk
(1) ∈ [−δ ,δ ], (3.3) yields that

zγk(1) ∈ [−δ ,δ ]. (3.5)

The inclusions (xγk(0),xγk(1))∈C0(k)×C1(k), and xγk(t)∈ B̄δ (x̄(t)) and uγk(t)∈U(t)∩B̄δ (ū(t)),
for all t ∈ [0,1], follow directly from C0(k), C1(k), B̄δ (x̄(t)) and U(t)∩ B̄δ (ū(t)) being closed
for all t ∈ [0,1], and from the uniform convergence, as n −→ ∞, of the sequence (xn

γk
,un

γk
) to

(xγk ,uγk). To prove that xγk is the solution of (Dγk) corresponding to (xγk(0),uγk), we take the
limit, as n−→ ∞, in this integral form of the admissible equation in (Dγk) for (xn

γk
,un

γk
),

xn
γk
(t) = xn

γk
(0)+

∫ t

0

[
fΦ(s,xn

γk
(s),un

γk
(s))− γkeγkψ(xn

γk
(s))

∇ψ(xn
γk
(s))
]

ds, ∀ t ∈ [0,1],

and use that (xn
γk
(t),un

γk
(t)) ∈ [C∩ B̄δ (x̄(t))]× [U(t)∩ B̄δ (ū(t))], (xn

γk
,un

γk
) converges uniformly

to (xγk ,uγk), (H1) and (H2.1) hold, and that Φ is C1, and we conclude that (xγk ,uγk) satisfies the
same equation, that is,

ẋγk(t) = fΦ(t,xγk(t),uγk(t))− γkeγkψ(xγk (t))∇ψ(xγk(t)), t ∈ [0,1] a.e.,
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which terminated the proof of the admissibility of (xγk ,zγk ,uγk) for (Pγk). For its optimality, from
(3.1) and the uniform convergence of (xn

γk
,un

γk
) to (xγk ,uγk), it follows that

inf(Pγk) = lim
n−→∞

J(xn
γk
,zn

γk
,un

γk
)

= lim
n−→∞

(
g(xn

γk
(0),xn

γk
(1))+

1
2

(
‖un

γk
(0)− ū(0)‖2+‖u̇n

γk
− ˙̄u‖2

2+‖xn
γk
(0)− x̄(0)‖2

))
= g(xγk(0),xγk(1))+

1
2
‖uγk(0)− ū(0)‖2+

1
2

liminf
n−→∞

‖u̇n
γk
− ˙̄u‖2

2+
1
2
‖xγk(0)−x̄(0)‖2

≥ g(xγk(0),xγk(1))+
1
2
‖uγk(0)− ū(0)‖2 +

1
2
‖u̇γk− ˙̄u‖2

2 +
1
2
‖xγk(0)− x̄(0)‖2

= J(xγk ,zγk ,uγk).

Therefore, for each such k, (xγk ,zγk ,uγk) is an optimal solution to (Pγk).
For the convergence of (xγk ,zγk ,uγk)k when k −→ ∞, we first note that the sequence (uγk)k in

W has uniformly bounded derivative in L2. This follows from using (3.4) and (3.5) to obtain
that (3.2) also holds when (un

γk
,zn

γk
) is replaced by (uγk ,zγk). Hence, using the arguments similar

to those used above for (un
γk
)n, we obtain the existence of u ∈W such that, along a subsequence

not relabled, uγk converges uniformly to u, u̇γk converges weakly in L2 to u̇, and

‖u̇− ˙̄u‖2
2 ≤ liminf

k−→∞
‖u̇γk− ˙̄u‖2

2. (3.6)

On the other hand, by (2.10), we have C0(k)⊂C, for k large. By [14, Theorem 4.1 & Lemma
4.2], the sequence (xγk ,ξγk)k, where ξγk is given via (2.8), admits a subsequence, not relabled,
such that (xγk)k converges uniformly to some x ∈W1,2([0,1];Rn) with images in C, (ẋγk ,ξγk)k
converges weakly in L2 to (ẋ,ξ ), and ξ is supported on I0(x). Furthermore, (x,u,ξ ) satisfies
(2.3)-(2.4) and x uniquely solves (D) for (x(0),u). Now, as xγk(0) ∈C0(k), for k large, equation
(2.9)(a), implies that x(0) ∈C0∩ B̄δo(x̄(0)). Hence, (x,u,ξ ) satisfies{

ẋ(t) = fΦ(t,x(t),u(t))−ξ (t)∇ψ(x(t)) ∈ f (t,x(t),u(t))−∂ϕ(x(t)) a.e. t ∈ [0,1],
x(0) ∈C0∩ B̄δo(x̄(0)).

Since xγk(1) ∈C1(k) for k large, equation (2.11)(a) implies that x(1) ∈C1∩ B̄δo(x̄(0)). Further-
more, for all t ∈ [0,1], from the facts that xγk(t)∈ B̄δ (x̄(t)) and uγk(t)∈U(t)∩ B̄δ (ū(t)), and that
(xγk ,uγk) converges uniformly to (x,u), we obtain x(t) ∈ B̄δ (x̄(t)) and u(t) ∈U(t)∩ B̄δ (ū(t)),
for all t ∈ [0,1]. In addition, we have that

‖u̇− ˙̄u‖2
2

(3.6)
≤ liminf

k−→∞
‖u̇γk− ˙̄u‖2

2 = liminf
k−→∞

zγk(1)
(3.5)
∈ [−δ ,δ ],

proving that (x,u) is admissible for (P). Thus, by the local optimality of (x̄, ū) for (P), we have
that

g(x̄(0), x̄(1))≤ g(x(0),x(1)). (3.7)

Now by using the admissibility of (x̄γk ,0, ū) and the optimality of (xγk ,zγk ,uγk) for (Pγk), it
follows that

J(xγk ,zγk ,uγk)≤ g(x̄γk(0), x̄γk(1))+
1
2
‖x̄γk(0)− x̄(0)‖2. (3.8)
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Hence, using the uniform convergence of x̄γk to x̄, (3.8), (3.7), the Lipschitz continuity of g, and
the uniform convergence of xγk to x, we obtain

g(x(0),x(1)) ≤ liminf
k−→∞

(
g(xγk(0),xγk(1))+

1
2
(
‖uγk(0)− ū(0)‖2+‖u̇γk− ˙̄u‖2

2+‖xγk(0)− x̄(0)‖2))
= liminf

k−→∞
J(xγk ,zγk ,uγk)

≤ liminf
k−→∞

(
g(x̄γk(0), x̄γk(1))+

1
2
‖x̄γk(0)− x̄(0)‖2

)
=g(x̄(0), x̄(1))≤ g(x(0),x(1)).

Thus

u(0) = ū(0) and liminf
k−→∞

(
‖u̇γk− ˙̄u‖2

2
)
= 0, and (3.9)

x(0) = x̄(0) and g(x̄(0), x̄(1)) = g(x(0),x(1)). (3.10)

Equality (3.9) gives the existence of a subsequence of uγk , without relabel, such that u̇γk con-
verges strongly in L2 to ˙̄u. It results that uγk converges uniformly to ū, and hence, u = ū.
Consequently,

uγk

strongly−−−−→
W

ū,

which yields that zγk −→ 0 in the strong topology of W 1,1([0,1];R+). Moreover, as u = ū, then
x and x̄ solve the dynamic (D) with the same control ū and initial condition; see (3.10). Hence,
by the uniqueness of the solution of (D), we have x = x̄. Using (2.4), we also obtain that ξ = ξ̄ .
Therefore,

xγk

uniformly−−−−−−→
C([0,1];Rn)

x̄ and (ẋγk ,ξγk)
weakly−−−−−−−−−−→

L2([0,1];Rn×R+)
( ˙̄x, ξ̄ ).

As xγk(0)∈C0(k), we have that xγk(0)∈C(k) for k sufficiently large. Hence using [14, Theo-
rem 5.1], we obtain that the conditions (i)-(iii) of the “In addition” part, hold true, which implies
that a subsequence, we do not relabel, of (ẋγk ,ξγk) also converges weakly* in L∞([0,1],Rn+1)

to ( ˙̄x, ξ̄ ). Moreover, since xγk(1) ∈
[(

C1∩ B̄δo(x̄(1))
)
− x̄(1)+ x̄γk(1)

]
∩ (intC) and x̄γk(1) con-

verges to x̄(1), it follows that xγk(1)∈
[(

C1∩ B̄δo(x̄(1))
)
+ ρ̃B

]
∩(intC), for k sufficiently large.

On the other hand, the definition of C0(k) and the convergence of ρk to 0 yield that, for k large
enough, xγk(0) ∈

[(
C0∩ B̄δo(x̄(0))

)
+ ρ̃B

]
∩ (intC). �

Step 2: Maximum principal for the approximation problems. We proceed and rewrite the
approximating problems (Pγk) as a standard optimal control problem with state constraints in
which the control u, which is in W1,2, is considered as another state variable and its derivative,
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v := u̇ is the control. For v̄ := ˙̄u, problem (Pγk) is reformulated in the following manner:

(Pγk) : Minimize
J(x,z,u,v) := g(x(0),x(1))+ 1

2

(
‖u(0)− ū(0)‖2 +‖x(0)− x̄(0)‖2 + z(1)

)
over (x,z,u) ∈W1,1([0,1];Rn)×W1,1([0,1];R)×W1,1([0,1];Rm)

and measurable functions v : [0,1]−→ Rm such that

ẋ(t) = fΦ(t,x(t),u(t))− γkeγkψ(x(t))∇ψ(x(t)), t ∈ [0,1] a.e.,

u̇(t) = v(t), t ∈ [0,1] a.e.,

ż(t) = ‖v(t)− v̄(t)‖2, t ∈ [0,1] a.e.,
x(t) ∈ B̄δ (x̄(t)) and u(t) ∈U(t)∩ B̄δ (ū(t)), ∀t ∈ [0,1],

(x(0),u(0),z(0)) ∈C0(k)×Rm×{0},
(x(1),u(1),z(1)) ∈C1(k)×Rm× [−δ ,δ ].

In the following lemma, we apply to the above sequence of reformulated problems (Pγk),
where k is as large as in Lemma 3.1, the nonsmooth Pontryagin maximum principle for standard
optimal control problems with implicit state constraints (see, e.g., [21, Theorem 9.3.1] and [21,
p.332]). For this purpose, (x,z,u) is the state function in (Pγk) and v is the control. Thus
(xγk ,zγk ,uγk) is the optimal state, where (xγk ,uγk) is obtained from Lemma 3.1 and zγk(t) :=∫ t

0 ‖u̇γk(s)− ˙̄u(s)‖2 ds, and vγk = u̇γk is the optimal control.

Lemma 3.2. For k large enough, there exist λγk ≥ 0, pγk ∈W1,1([0,1];Rn), qγk ∈W1,1([0,1];Rm),
Ωγk ∈ NBV ([0,1];Rm), µo

γk
∈ C⊕([0,1];Rm), and a µo

γk
-integrable function βγk : [0,1] −→ Rm

such that Ωγk(t) =
∫
[0,t]βγk(s)µ

o
γk
(ds), for all t ∈ (0,1], and:

(i) (The nontriviality condition) For all k ∈ N, we have

‖pγk(1)‖+‖qγk‖∞ +‖µo
γk
‖T.V. +λγk = 1;

(ii) (The adjoint equation) For a.e. t ∈ [0,1],(
ṗγk(t)

q̇γk(t)

)
∈ −

(
∂
(x,u) fΦ(t,xγk(t),uγk(t))

)T
pγk(t)

+

(
γkeγkψ(xγk (t))∂ 2ψ(xγk(t))pγk(t)

0

)
(3.11)

+

(
γ2

k eγkψ(xγk (t))∇ψ(xγk(t))〈∇ψ(xγk(t)), pγk(t)〉
0

)
;

(iii) (The transversality equation)

(pγk(0),−pγk(1)) ∈

λγk∂
Lg(xγk(0),xγk(1))+

[(
λγk(xγk(0)−x̄(0))+NL

C0(k)(xγk(0))
)
×NL

C1(k)(xγk(1))
]
,

and
qγk(0) = λγk(uγk(0)− ū(0)), −qγk(1) = Ωγk(1);
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(iv) (The maximization condition) For a.e. t ∈ [0,1],

max
v∈Rm

{
〈qγk(t)+Ωγk(t),v〉−

λγk

2
‖v− ˙̄u(t)‖2

}
is attained at u̇γk(t);

(v) (The measure properties)

supp{µo
γk
} ⊂

{
t ∈ [0,1] : (t,uγk(t)) ∈ bdryGr [U(t)∩ B̄δ (ū(t))]

}
, and

βγk(t) ∈ ∂
>
u d(uγk(t),U(t)∩ B̄δ (ū(t))) µ

o
γk

a.e.,

with ∂ >
u d(uγk(t),U(t)∩ B̄δ (ū(t)))⊂

[(
conv N̄L

U(t)∩B̄δ (ū(t))
(uγk(t))

)
∩ (B̄\{0})

]
.

Proof. We intend to apply to the optimal solution,
(
(xγk ,uγk ,zγk),vγk

)
, of the reformulated (Pγk),

the multiple state constraints maximum principle [21, p.331] in which

(h1(t,x,u),h2(t,x,u)) := (d(x, B̄δ (x̄(t))),d(u,U(t)∩ B̄δ (ū(t)))) .

First, we show that the constraint qualification (CQ) that holds for U(·) at ū, also holds true
at uγk , for k large enough. Indeed, if this is false, then, by [18, Proposition 2.3], there exist an
increasing sequence (kn)n in N and a sequence tn ∈ [0,1] such that tn −→ to ∈ [0,1] and

0 ∈ ∂
>
u d(uγkn

(tn),U(tn)), ∀n ∈ N. (3.12)

The continuity of ū and the uniform convergence of uγkn
to ū yield that (uγkn

(tn))n converges to
ū(to). Hence, using the fact that the multifunction (t,x) 7→ ∂ >

u d(x,U(t)) has closed values and
a closed graph, we conclude from (3.12) that 0 ∈ ∂ >

u d(ū(to),U(to)). This contradicts that the
constraint qualification is satisfied by U(·) at ū. Thus, for k sufficiently large, U(·) satisfies the
constraint qualification (CQ) at uγk .

One can easily prove the lower semicontinuity of the multifunctions t 7→ B̄δ (x̄(t)) and t 7→[
U(t)∩ B̄δ (ū(t))

]
, and hence, the functions h1 and h2 that are Lipschitz in (x,u) are lower semi-

continuous in (t,x,u). A simple argument by contradiction that uses the uniform convergence of
uγk to ū, the local property of the limiting normal cone, and the constraint qualification (CQ) be-
ing satisfied by U(·) at uγk , yields that, for k sufficiently large, the multifunction U(·)∩ B̄δ (ū(·))
satisfies the constraint qualification (CQ) at uγk . Since t 7→ B̄δ (x̄(t)) is lower semicontinuous
and its values are closed, convex, and have nonempty interior, and xγk converges uniformly to x̄,
then we deduce that, for k large enough, B̄δ (x̄(·)) satisfies the constraint qualification (CQ) at
xγk . As for all t ∈ [0,1], uγk(t) ∈U(t), and by Theorem 3.1, xγk(t) ∈ intC, then (H1) yields that,
for t ∈ [0,1] a.e., we have f (t, ·, ·) is M`-Lipschitz on the neighborhood of (xγk(t),uγk(t)). On
the other hand, by Theorem 3.1, we have, for k sufficiently large,

(xγk(0),xγk(1)) ∈
[(

C0∩ B̄δo(x̄(0))
)
+ ρ̃B

]
∩ (intC)×

[(
C1∩ B̄δo(x̄(1))

)
+ ρ̃B

]
∩ (intC)

⊂ int(C̃0(δ )×C̃1(δ )).

Therefore, the data of (Pγk) satisfy all the hypotheses of the maximum principle stated in [21,
p.331], which is deduced from [21, Theorem 9.3.1], by taking the scalar state constraint function
therein to be h(t,x,u) = max{h1(t,x,u),h2(t,x,u)}. When applying that maximum principle to
(Pγk) at the optimal solution

(
(xγk ,zγk ,uγk),vγk

)
, we notice that

• As in Step 2 of the proof of [13, Theorem 5.1], the adjoint variable pγk corresponding to
xγk satisfies the adjoint equation that is linear in pγk and: there exists M1 > 0 such that

‖pγk(t)‖ ≤M1‖pγk(1)‖ for all t ∈ [0,1],
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which gives that pγk = 0 if and only if pγk(1) = 0. Therefore, in the nontriviality condi-
tion, ‖pγk‖∞ can be replaced by ‖pγk(1)‖.
• From Remark (a) on [21, page 330], the set I(x̄) in the statement of [21, Theorem 9.3.1],

and hence in that of [21, p.331] for h1 and h2, can be replaced by

{t ∈ [0,1] : ∂
>
x h(t, x̄(t)) 6= /0}. (3.13)

Moreover, if h(t,x) := d(x,F(t)), where F : [0,1]⇒Rm is a lower semicontinuous mul-
tifunction with closed and nonempty values, then we obtain from [18, Proposition 2.3(a)
& Equation (2.15)] that

{t ∈ [0,1] : ∂
>
x h(t, x̄(t)) 6= /0}= {t ∈ [0,1] : (t, x̄(t)) ∈ bdryGrF(t)}. (3.14)

• The measure corresponding to the state constraint “x(t) ∈ B̄δ (x̄(t)) for all t ∈ [0,1]"
(or equivalently “h1(t,x(t),u(t)) ≤ 0") is null. This is due to the fact, from Theorem
3.1, that for k sufficiently large, xγk(t) ∈ Bδ (x̄(t)) for all t ∈ [0,1], which gives, for k
sufficiently large, that this measure is supported in

{t ∈ [0,1] : ∂
>
(x,u)h1(t,xγk(t),uγk(t)) 6= /0}

(3.14)
= {t ∈ [0,1] : (t,xγk(t)) ∈ bdryGrBδ (x̄(t))}

=

t ∈ [0,1] : (t,xγk(t)) ∈
⋃

t∈[0,1]
{t}×Sδ (x̄(t))

= /0,

where Sδ (x̄(t)) := {x ∈ Rn : ‖x− x̄(t)‖= δ}.
• The adjoint vector eγk corresponding to the optimal state zγk is the constant −λγk

2 (where
λγk is the cost multiplier). Indeed, since vγk converges strongly in L2 to v̄, we have, for
k sufficiently large, that zγk(1) ∈ [0,δ )⊂ int([−δ ,δ ]). Adding to this that ėγk(t) = 0 for
t ∈ [0,1] a.e., and using transversality condition, we obtain that

eγk(t) = eγk(1) ∈ −
{

λγk
2

}
−NL

[−δ ,δ ](zγk(1)) =−
{

λγk
2

}
, ∀t ∈ [0,1].

Hence, for k sufficiently large, eγk(t) =−
λγk
2 for all t ∈ [0,1].

• The BV -function associated to the state constraint “u(t) ∈U(t)∩ B̄δ (ū(t))" (or equiv-
alently “h2(t,x(t),u(t)) ≤ 0") in the multiple state maximum principle takes the form∫
[0,t)βγk(t)µ

o
γk
(dt), for t ∈ [0,1) and

∫
[0,1]βγk(t)µ

o
γk
(dt), for t = 1, where, by (3.13) and

(3.14),

supp{µo
γk
} ⊂

{
t ∈ [0,1] : (t,uγk(t)) ∈ bdryGr [U(t)∩ B̄δ (ū(t))]

}
,

βγk(t) ∈ ∂
>
u d(uγk(t),U(t)∩ B̄δ (ū(t))) µ

o
γk

a.e.,
and, by the (CQ) property and [21, Formula (9.17)],

∂
>
u d(uγk(t),U(t)∩ B̄δ (ū(t)))⊂

[
conv N̄L

U(t)∩B̄δ (ū(t))
(uγk(t))∩ (B̄\{0})

]
.

However, with a simple normalization procedure (see, e.g., the relevant part in the proof
of [22, Theorem 3.4]), we can easily obtain a function Ωγk ∈NBV ([0,1];Rm) satisfying,
together with βγk and µo

γk
, Ωγk(t) =

∫
[0,t]βγk(t)µ

o
γk
(dt), for t ∈ (0,1], Ωγk(0) = 0, and the

statement of the multiple state maximum principle remains valid with this function Ωγk .
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Therefore, we obtain the existence of λγk ≥ 0, pγk ∈ W1,1([0,1];Rn), qγk ∈ W1,1([0,1];Rm),
Ωγk ∈NBV ([0,1];Rm), µo

γk
∈C⊕([0,1];Rm), and a Borel measurable function βγk : [0,1]−→Rm

such that Ωγk(t) =
∫
[0,t]βγk(s)µ

o
γk
(ds) for all t ∈ (0,1], Ωγk(0) = 0, and conditions (i)-(v) of

this lemma hold. Note that in the adjoint equation (3.11), the values of f (t, ·, ·) outside the
set [C∩ B̄δ (x̄(t))]×

[
(U(t)+ ρ̃B̄)∩ B̄δ (ū(t))

]
are not involved in the calculation of the subdif-

ferential ∂ (x,u) fΦ(t,xγk(t),uγk(t)) since (xγk(t),uγk(t)) belongs to the interior of that set, for k
sufficiently large and for all t ∈ [0,1]. �

Step 3: Finalizing the proof. By Lemma 3.2, since the conditions (i)-(v) of [8, Proposition
4.7] are valid, it is sufficient to follow the proof of [8, Theorem 4.8] to terminate the proof of
Theorem 2.2.

4. EXAMPLE

In this section, we present an example in which we illustrate how Theorem 2.2 can be used
to find an optimal solution when the perturbation function is nonautonomous. We consider the
problem (P) in which (see Figure 1):

• The nonautonomous perturbation mapping f : [0, π

2 ]×R2×R−→ R2 is defined by

f (t,(x1,x2),u) = (t− x1− x2−u,−t + x1− x2 +u).

• The function ψ : R2 −→R is defined by ψ(x1,x2) := (x2
1+x2

2−1)(x2
1+x2

2−4). Hence,
set C is the nonconvex and compact

C := {(x1,x2) : (x2
1 + x2

2−1)(x2
1 + x2

2−4)≤ 0}.

• The objective function g : R4 −→ R∪{∞} is defined by

g(x1,x2,x3,x4) :=

{
1
2(x

2
3 + x2

4−1) (x3,x4) ∈C,

∞ Otherwise.

• The function ϕ is the indicator function of C.
• The control multifunction is U(t) := [t,π] for all t ∈ [0, π

2 ].
• The two sets C0 and C1 are defined by C0 := {(1,0)} and C1 := {(0,x2) : x2 ≥ 0}.

One can easily verify that hypotheses (H2)-(H4.4) are satisfied. Adding to this that f (t, ·, ·)
is globally Lipschitz on R2×R, g is globally Lipschitz on R2×C, and U(t) is convex with
nonempty interior, we deduce that all the hypotheses of Theorem 2.2 are satisfied. Since g
vanishes on the unit circle and is strictly positive elsewhere in C, we may seek for (P) an
optimal solution (x̄, ū) such that, if possible, x̄ := (x̄1, x̄2) belongs to the unit circle. Hence we
have{

x̄2
1(t)+ x̄2

2(t) = 1, ∀t ∈ [0, π

2 ]; and x̄1(t) ˙̄x1(t)+ x̄2(t) ˙̄x2(t) = 0, ∀t ∈ [0, π

2 ] a.e.,

x̄(0)T = (1,0) and x̄(π

2 )
T = (0,1).

(4.1)

Applying Theorem 2.2 to this optimal solution (x̄, ū) and using Remark 2.2(c), we obtain the
existence of an adjoint vector p̄ := (p̄1, p̄2) ∈ BV ([0, π

2 ];R
2), a finite signed Radon measure ν̄

on
[
0, π

2

]
, ξ̄ ∈ L∞([0, π

2 ];R
+), and λ ≥ 0 such that, when incorporating equations (4.1) into (i)-

(vi), these latter simplify to the following:
(a) ‖p̄(π

2 )‖+λ = 1.
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FIGURE 1. Example 4

(b) The admissibility equation holds, that is, for t ∈ [0, π

2 ] a.e.,{
˙̄x1(t) = t− x̄1(t)− x̄2(t)− ū+6x̄1(t)ξ̄ (t),
˙̄x2(t) =−t + x̄1(t)− x̄2(t)+ ū+6x̄2(t)ξ̄ (t).

(c) The adjoint equation is satisfied, that is, for t ∈ [0, π

2 ],

d p̄(t) =

(
1 −1
1 1

)
p̄(t)dt + ξ̄ (t)

(
8x̄2

1(t)−6 8x̄1(t)x̄2(t)
8x̄1(t)x̄2(t) 8x̄2

2(t)−6

)
p̄(t)dt

− 6
(

x̄1(t)
x̄2(t)

)
dν̄ .

(d) The complementary slackness condition is valid, that is,

ξ̄ (t)(p̄1(t)x̄1(t)+ p̄2(t)x̄2(t)) = 0, t ∈
[
0, π

2

]
a.e.

(e) The transversality condition holds: −p̄(π

2 ) ∈ λ{(0,1)}+{(α,0) ∈ R2 : α ∈ R}
(f) max{u(p̄2(t)− p̄1(t)) : u ∈ [t,π]} is attained at ū(t) for t ∈ [0, π

2 ] a.e.
From (4.1) combined with (b), we deduce that

ξ̄ (t) =
1+(ū(t)− t)(x̄1(t)− x̄2(t))

6
, ∀t ∈ [0, π

2 ]. (4.2)

On the other hand, the use of (d) and (4.1) in (c) yields that, for t ∈ [0, π

2 ],{
d p̄1 = (p̄1(t)− p̄2(t)−6ξ̄ (t)p̄1(t))dt−6x̄1(t)dν̄ ,

d p̄2 = (p̄1(t)+ p̄2(t)−6ξ̄ (t)p̄2(t))dt−6x̄2(t)dν̄ .
(4.3)

Now in order to exploit (f), we temporarily assume that

p̄2(t)< p̄1(t) for t ∈ [0, π

2 ] a.e., (4.4)

hoping to be able to find p̄1 and p̄2 satisfying this condition. In this case, ū(t) = t for all
t ∈ [0, π

2 ], which gives using (4.2) that ξ̄ (t) = 1
6 for all t ∈

[
0, π

2

]
. Using these values of ū and
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ξ̄ , and (4.1), we can solve for (x̄1, x̄2) the two differential equations of (b) to obtain that

x̄(t)T = (cos t,sin t), ∀t ∈ [0, π

2 ].

Employing (a), (d), (e), and (4.3), a simple calculation yields thatλ = 3
8 and p̄(π

2 ) = (1
2 ,−

3
8),

p̄(t)T = 1
2(sin t,−cos t) on [0, π

2 ) and dν̄ = 1
16 δ{π

2

} on [0, π

2 ],

where δ{a} denotes the unit measure concentrated on the point a. Note that, for all t ∈ [0, π

2 ], we
have p̄2(t) < p̄1(t). Hence, the temporary assumption (4.4) is satisfied. Therefore, the above
analysis, realized via Theorem 2.2, produces an admissible pair (x̄, ū), where

x̄(t)T = (cos t,sin t) and ū(t) = t, ∀t ∈ [0, π

2 ],

which is optimal for (P).
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