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Abstract. Federated learning (FL) has found many important applications in smart-phone-APP based
machine learning applications. Although many algorithms have been studied for FL, to the best of our
knowledge, algorithms for FL with nonconvex constraints have not been studied. This paper studies FL
over Riemannian manifolds, which finds important applications such as federated PCA and federated
kPCA. We propose a Riemannian federated SVRG (RFedSVRG) method to solve federated optimization
over Riemannian manifolds. We analyze its convergence rate under different scenarios. Numerical
experiments are conducted to compare RFedSVRG with the Riemannian counterparts of FedAvg and
FedProx. We observed from the numerical experiments that the advantages of RFedSVRG are significant.
Keywords. Convergence rate; Federated learning; Machine learning; Nonconvex constraints; Riemannian
manifolds.
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1. INTRODUCTION

Federated learning (FL) has drawn lots of attentions recently due to its wide applications in
modern machine learning. Canonical FL aims at solving the following finite-sum problem [1, 2,
3]:

min
x∈Rd

f (x) :=
1
n

n

∑
i=1

fi(x), (1.1)

where each of the fi (or the data associated with fi) is stored in different client/agent that could
have different physical locations and different hardware. This makes the mutual connection
impossible [1]. Therefore, there is a central server that can collect the information from different
agents and output a consensus that minimizes the summation of the loss functions from all the
clients. The aim of such a framework is to utilize the computation resources of different agents
while still maintain the data privacy by not sharing data among all the local agents. Thus the
communication is always between the central server and local servers. This setting is commonly
observed in modern smart-phone-APP based machine learning applications [1]. We emphasize
that we always consider the heterogeneous data scenario where the functions fi’s might be
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different and have different optimal solutions. This problem is inherently hard to solve because
each local minima will empirically diverge the update from the global optimum [4, 5].

In this paper, we consider the following FL problem over a Riemannian manifold M :

min
x∈M

f (x) :=
1
n

n

∑
i=1

fi(x) (1.2)

where fi : M → R are smooth but not necessarily (geodesically) convex. It is noted that
most FL algorithms are designed for the unconstrained setting and convex constraint setting
[1, 2, 5, 6, 7, 8, 9, 10], and FL problems with nonconvex constraints such as (1.2) have not been
considered. The main difficulty for solving (1.2) lies in aggregating points over a nonconvex set,
which may lead to the situation where the averaging point is outside of the constraint set.

One motivating application of (1.2) is the federated kPCA problem

min
X∈St(d,r)

f (X) :=
1
n

n

∑
i=1

fi(X), where fi(X) =−1
2

Tr(X>AiX), (1.3)

where St(d,r) = {X ∈ Rd×r|X>X = Ir} denotes the Stiefel manifold, and Ai is the covariance
matrix of the data stored in i-th local agent. When r = 1, (1.3) reduces to classical PCA

min
‖x‖2=1

f (x) :=
1
n

n

∑
i=1

fi(x), where fi(x) =−
1
2

x>Aix. (1.4)

Another motivating example is the Karcher mean problem on positive definite cone [11]:

min
X�0

f (X) :=
1
n

n

∑
i=1

fi(X), where fi(X) = ‖ log(X−1/2AiX−1/2)‖2
F, (1.5)

where Ai � 0 is the covariance matrix of the data stored on i-th local agent. This problem finds its
application in diffusion tensor imaging [12, 13, 14], elasticity theory [15] and Electroencephalog-
raphy (EEG) Classification [16]. This problem is an example of Riemannian optimization with
geodesically convex objective, for which we are able to obtain better convergence result.

Existing FL algorithms are not applicable to (1.3)-(1.5) due to the difficulty on aggregating
points on nonconvex set. This motivates us to study FL algorithms for optimization on manifold.

1.1. Main Contributions. We focus on designing efficient federated algorithms for solving
(1.2). Our main contributions are:
(1) We propose a Riemannian federated SVRG [17] algorithm (RFedSVRG) for solving (1.2). We

prove that the convergence rate of our RFedSVRG is O(1/ε2) for obtaining an ε-stationary
point. This result matches that of its Euclidean counterparts [5]. To the best of our knowledge,
this is the first algorithm for solving FL problems on Riemannian manifolds with convergence
guarantees.

(2) The main novelty of our RFedSVRG algorithm is a consensus step on the tangent space of the
manifold. We compare this new approach with the widely used Karcher mean approach. We
show that our method achieves certain “regularization” property and performs very well in
practice.

(3) We conduct extensive numerical experiments on our method for solving the PCA (1.4),
kPCA (1.3) and PSD Karcher mean (1.5) problems with both synthetic and real data. The
numerical results demonstrate that our RFedSVRG algorithm significantly outperforms the
Riemannian counterparts of two widely used FL algorithms: FedAvg [2] and FedProx [4].
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1.2. Related Work. Federated optimization. The most natural idea for FL is the FedAvg

algorithm [2], which averages local gradient descent updates and yields a good empirical
convergence. However in the data heterogeneous situation, FedAvg suffers from the client-drift
effect that each local client will drift the solution towards the minimum of their own local
loss function [5, 6, 7, 8, 9, 10]. Many ideas were studied to resolve this issue. For example,
[4] proposed the FedProx algorithm, which regularizes each of the local gradient descent
update to ensure that the local iterates are not far from the previous consensus point. The
FedSplit [10] was proposed later to further mitigate the client-drift effect and convergence
results were obtained for convex problems. FedNova [18] was also proposed to improve the
performance of FedAvg, however it still suffers from a fundamental speed-accuracy conflict
under objective heterogeneity [5]. Variance reduction techniques were also incorporated to
FL leading to two new algorithms: federated SVRG (FSVRG) [1] and FedLin [5]. These two
algorithms require transmitting the full gradient from the central server to each local client for
local gradient updates, therefore require more communication between clients and the central
server. Nevertheless, FedLin achieves the theoretical lower bound for strongly convex objective
functions [5] with an acceptable amount of increase in the communication cost.

Decentralized optimization on manifolds. Decentralized distributed optimization on mani-
fold has also drawn attentions in recent years [19, 20, 21]. Under this setting, each local agent
solves a local problem and then the central server takes the consensus step. The consensus step
is usually done by calculating the Karcher mean on the manifold [20, 22], or calculating the
minimizer of the sum of the square of the Euclidean distances in the embedded submanifold
case [19]. Such consensus steps usually require solving an additional problem inexactly with no
exact convergence rate guarantee [22, 23].

It is worth mentioning that the PCA problem under federated learning setting has been
considered in the literature [24]. The proposed method in [24] relies on the SVD of data matrices
and a subspace merging technique, which is very different from our method. The aim of the
algorithm in [24] is to achieve (ε,δ )-differential privacy. In contrast, we mainly consider the
convergence rate of our method. Therefore our work is totally different from [24].

2. PRELIMINARIES ON RIEMANNIAN OPTIMIZATION

In this part, we briefly review the basic tools we use for optimization on Riemannian mani-
folds [25, 26, 27, 28]. Due to the limit of space, more detailed discussions are given in supple-
mentary material A. Suppose M is an m-dimensional Riemannian manifold with Riemannian
metric g : TM ×TM → R. We first review the notion of the Riemannian gradients.

Definition 2.1 (Riemannian gradients). For a Riemannian manifold with Riemannian metric
g, the Riemannian gradient for f ∈C∞(M ) is the unique tangent vector grad f (x) ∈ TxM such
that d f (ξ ) = g(grad f ,ξ ), ∀ξ ∈ TxM , where d f is the differential of function f defined as
d f (ξ ) := ξ ( f ).

For the convergence analysis, we also need the notion of exponential mapping and parallel
transport. We first review the definition of exponential mapping

Definition 2.2 (Exponential mapping). Given x ∈M and ξ ∈ TxM , the exponential mapping
Expx is defined as a mapping from TxM to M s.t. Expx(ξ ) := γ(1) with γ being the geodesic
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with γ(0) = x, γ̇(0) = ξ . A natural corollary is Expx(tξ ) := γ(t) for t ∈ [0,1]. Another useful
fact is d(x,Expx(ξ )) = ‖ξ‖x since γ ′(0) = ξ which preserves the speed.

Throughout this paper, we always assume that M is complete, so that Expx is always defined
for every ξ ∈ TxM . For ∀x,y ∈M , the inverse of the exponential mapping Exp−1

x (y) ∈ TxM is
called the logarithm mapping, and we have d(x,y) = ‖Exp−1

x (y)‖x, which will be a useful fact
in the convergence analysis. We now present the definition of parallel transport.

Definition 2.3 (Parallel transport). Given a Riemannian manifold (M ,g) and two points x,y ∈
M , the parallel transport Px→y : TxM → TyM 1 is a linear operator which keeps the inner product:
∀ξ ,ζ ∈ TxM , we have 〈Px→yξ ,Px→yζ 〉y = 〈ξ ,ζ 〉x.

Parallel transport is useful since the Lipschitz condition for the Riemannian gradient requires
moving the gradients in different tangent spaces “parallel” to the same tangent space.

We now present the definition of Lipschitz smoothness and convexity on Riemannian mani-
folds, which will be utilized in our convergence analysis.

Definition 2.4 (L-smoothness on manifolds). f is called Lipschitz smooth on manifold M if
there exists L≥ 0 such that the following inequality holds for function f :

‖grad f (y)−Py→xgrad f (x)‖ ≤ Ld(x,y). (2.1)

For complete Riemannian manifold, we have [11]:

f (y)≤ f (x)+
〈
gx,Exp−1

x (y)
〉

x +
Lg

2
d2(x,y), ∀x,y ∈M . (2.2)

The definition of geodesic convexity is given below (see, e.g., [11]).

Definition 2.5 (Geodesic convex). A function f ∈ C1(M ) is geodesically convex if for all
x,y ∈M , there exists a geodesic γ such that γ(0) = x, γ(1) = y and

f (γ(t))≤ (1− t) f (x)+ t f (y), ∀t ∈ [0,1].

Or equivalently,
f (y)≥ f (x)+ 〈grad f (x),Exp−1

x (y)〉x.

3. THE RFEDSVRG ALGORITHM

The most challenging task for FL on Riemannian manifolds is the consensus step. Suppose
the central server receives x(i), i ∈ St ⊂ [n] from each of the local clients at round t, the question
is how the central server aggregates the points to output a unique consensus. In Euclidean space,
the most straightforward way is to take the average 1

k ∑i∈St x(i) with k = |St |. However, this
approach does not apply to the Riemannian setting due to the loss of linearity: the arithmetic
average of points can be outside of the manifold. A natural choice for the consensus step on the
manifold is to take the Karcher mean of the points [22]:

xt+1← argminx
1
k ∑

i∈St

d2(x,x(i)), (3.1)

1Notice that the existence of parallel transport depends on the curve connecting x and y, which is not a problem
for complete Riemannian manifold because we always take the unique geodesic that connects x and y.
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FIGURE 1. Comparison of two consensus methods on S 2

where xt+1 is the next iterate point on the central server. This is a natural generalization of the
arithmetic average because d2(x,y) = ‖x− y‖2 in Euclidean space. However, solving (3.1) can
be time consuming in practice.

We propose the following tangent space consensus step:

xt+1← Expxt

(
1
k ∑

i∈St

Exp−1
xt
(x(i))

)
, (3.2)

where we project each of the point x(i)t back to the tangent space Txt M and then take their average
on the tangent space. The consensus step (3.2) has several advantages over the Karcher mean
method (3.1). First, (3.2) is of closed-form and easy to compute. Second, (3.2) still coincides
with the arithmetic mean when the manifold reduces to the Euclidean space. Third, the tangent
space mean (3.2) can easily be extended to the following moving average mean:

Expxt

(
β

k ∑
i∈St

Exp−1
xt
(x(i))

)
,

which corresponds to (1−β )xt +
β

k ∑i∈St x(i) in the Euclidean space, while the Karcher mean
cannot be easily extended in this scenario. Last, (3.2) has the following “regularization” property
as the distance between two consensus points can be controlled, and the Karcher mean method
(3.1) does not have this kind of property.

Lemma 3.1. For the update defined in (3.2), it holds that d(xt+1,xt)≤ 1
k ∑i∈St d(x(i),xt).

To further illustrate this “regularization” property of the tangent space mean (3.2), we consider
an (extreme) example on the unit sphere S 2 (see Figure 1) . Here we take xt on the north pole
and two point from the local server as x(1) and x(2), also ξ (i) = Exp−1

xt
(x(i)) ∈ Txt M . Then the

tangent space mean (3.2) would yield the original point xt , whereas the Karcher mean could yield
any point on the vertical great circle, depending on the starting point in solving the optimization
problem (3.1).

Our RFedSVRG algorithm is presented in Algorithm 1, which is a non-trivial manifold extension
of the FSVRG algorithm [1]. For RFedSVRG, the local gradient update becomes

x(i)`+1← Exp
x(i)`

[
−η

(i)
(

grad fi(x
(i)
` )−P

xt→x(i)`
(grad fi(xt)−grad f (xt))

)]
, (3.3)
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which matches the existing manifold SVRG work [29]. The introduction of the parallel transport
P

xt→x(i)`
is necessary because we need to “transport” all the vectors to the same tangent space

to conduct addition and subtraction. The algorithm utilizes the gradient information at the
previous iterate grad f (xt), thus avoids the “client-drift” effect and correctly converges to the
global stationary points. This is confirmed by both the theory and the numerical experiments.

Algorithm 1: Riemannian FedSVRG Algorithm (RFedSVRG)

input :n, k, T , {η(i)}, {τi}
output :Option 1: x̃ = xT ; or Option 2: x̃ is uniformly sampled from {x1, ...,xT}

1 for t = 0, ...,T −1 do
2 Uniformly sample St ⊂ [n] with |St |= k;
3 for each agent i in St do
4 Receive x(i)0 = xt from the central server;
5 for `= 0, ...,τi−1 do
6 Take the local gradient step (3.3).
7 end
8 Send x̂(i) (obtained by one of the following options) to the central server

• Option 1: x̂(i) = x(i)τi ;
• Option 2: x̂(i) is uniformly sampled from {x(i)1 , ...,x(i)τi };

9 end
10 The central server aggregates the points by the tangent space mean (3.2);
11 end

4. CONVERGENCE ANALYSIS

In this section we analyze the convergence behaviour of the RFedSVRG algorithm (Algorithm
1). Before we proceed to the convergence results, we briefly review the necessary assumptions,
which are standard assumptions for optimization on manifolds [11, 30].

Assumption 4.1 (Smoothness). Suppose that fi is Li-smooth as defined in (2.4). It implies that
f is L-smooth with L = ∑

n
i=1 Li.

Now we give the convergence rate results for Algorithm 1. Specifically, Theorem 4.1 gives
the convergence rate of Algorithm 1 with τi = 1, Theorem 4.2 gives the convergence rate of
Algorithm 1 with τi > 1, and Theorem 4.3 gives the convergence rate of Algorithm 1 when the
objective function is geodescially convex.

Theorem 4.1 (Nonconvex, Algorithm 1 with τi = 1). Suppose the problem (1.2) satisfies As-
sumption 4.1. If we run Algorithm 1 with Option 1 in Line 8, η(i) ≤ 1

L and τi = 1 (i.e. only one
step of gradient update for each agent), then the Option 1 of the output of Algorithm 1 satisfies:

min
t=0,...,T

‖grad f (xt)‖2 ≤ O

(
L( f (x0)− f (x∗))

T

)
. (4.1)
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Remark 4.1. The proof of Theorem 4.1 heavily relies on the choice of τi = 1 and the consensus
step (3.2). When τi > 1, we need to introduce multiple exponential mappings at multiple points
for each iteration, which makes the convergence analysis much more challenging due to the loss
of linearity. Moreover, the aggregation step makes the situation even worse. However, we are
able to show the convergence of Algorithm 1 with τi > 1 when k = 1. Our numerical experiments
show the effectiveness of the RFedSVRG algorithm with both τi = 1 and τi > 1.

To prove the convergence of the Algorithm 1 with τi > 1, we also need the following regular-
ization assumption over the manifold M [29].

Assumption 4.2 (Regularization over manifold). The manifold is complete and there exists a
compact set D ⊂M (diameter bounded by D) so that all the iterates of Algorithm 1 and the
optimal points are contained in D . The sectional curvature is bounded in [κmin,κmax]. Moreover,
we denote the following key geometrical constant that captures the impact of manifold:

ζ =


√
|κmin|D

tanh
(√
|κmin|D

) , if κmin < 0,

1, if κmin ≥ 0.
(4.2)

Notice that this assumption holds when the manifold is a sphere or a Stiefel manifold (since
they are compact). Now we are ready to give the convergence rate result of Algorithm 1 with
τi > 1 and k = 1, the proof of which is inspired by [29].

Theorem 4.2 (Nonconvex, Algorithm 1 with τi > 1 and k = 1). Suppose the problem (1.2)
satisfies Assumptions 4.1 and 4.2. If we run Algorithm 1 with Option 2 in Line 8, k = 1,
τi = τ > 1, η(i) = η ≤O( 1

nLζ 2 ), then the Option 2 of the output of Algorithm 1 satisfies:

E‖grad f (x̃)‖2 ≤ O

(
ρ( f (x0)− f (x∗))

τT

)
,

where ρ is an absolute constant specified in the proof and the expectation is taken with respect
to the random index i, as well as the randomness introduced by the Option 2.

Finally, we have the convergence result when the objective function of (1.2) is geodesically
convex.

Theorem 4.3 (Geodesic convex). Suppose the problem (1.2) satisfies Assumption 4.1 and 4.2.
Also the functions fi’s are geodesically convex (see Definition 2.5) in D (as in Assumption 4.2).
If we run Algorithm 1 with Option 1 in Line 8, τi = 1, St = [n] (full parallel gradient), and
η = η(1) = · · ·= η(n) ≤ 1

2L , then the Option 1 of the output of Algorithm 1 satisfies:

f (xT )− f ∗ ≤ O

(
Ld2(x0,x∗)

T

)
. (4.3)

5. NUMERICAL EXPERIMENTS

We now demonstrate the performance of RFedSVRG and compare it with two natural ideas
for solving (1.1): Riemannian FedAvg (RFedAvg) and Riemannian FedProx (RFedProx), which
are natural extensions of FedAvg [2] and FedProx [4] to the Riemannian setting. Algorithms
RFedAvg and RFedProx are descried in Algorithm 2 and Algorithm 3 in the supplementary
material. We conducted our experiments on a desktop with Intel Core 9600K CPU, 32GB RAM
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TABLE 1. Comparison of the two consensus methods (3.1) and (3.2). Here
h(x) := 1

k ∑i d2(x(i),x), CPU time is in seconds and the experiments are repeated
and averaged over 10 times.

Dim d h(xt)
Karcher mean (3.1) Tangent space mean (3.2)

d2(xt+1,xt) h(xt+1) Time d2(xt+1,xt) h(xt+1) Time
100 2.478 2.469 2.813 0.706 0.025 2.427 0.004
200 2.472 2.484 2.804 0.641 0.025 2.422 0.004
500 2.469 2.469 2.795 0.725 0.024 2.421 0.005

and NVIDIA GeForce RTX 2070 GPU. For the codes of operations on Riemannian manifolds we
used the ones from the Manopt and PyManopt packages [31, 32]. Since the logarithm mapping
(the inverse of the exponential mapping) on the Stiefel manifold is not easy to compute [33],
we adopted the projection-like retraction [34] and the inverse of it [35] to approximate the
exponential and the logarithm mappings, respectively.

We tested the three algorithms on PCA (1.4), kPCA (1.3), and PSD Karcher mean (1.5)
problems (relayed in appendix). For all problems, we measure the norm of the global Riemannian
gradients. Additionally, we also measure the sum of principal angles [36] for kPCA.2

5.1. Comparison of the two consensus methods (3.1) and (3.2). We first compare the two
consensus methods (3.1) and (3.2). To this end, we randomly generate xt and k = 100 points x(i)

on the unit ball S d−1 with different dimensions d. We then compare the distances 1
k ∑i d2(xt ,x(i)),

1
k ∑i d2(xt+1,x(i)) and d2(xt ,xt+1), as well as the CPU time for computing them. Note that the
smaller these distances are, the better. To calculate the Karcher mean, we run the Riemannian
gradient descent method starting at xt until the norm of the Riemannian gradient is smaller than
ε = 10−6. The results are shown in Table 1. From Table 1 we see that the tangent space mean
(3.2) is indeed better than Karcher mean (3.1) in terms of both quality and CPU time.

5.2. Experiments on synthetic data. In this section, we report the results of the three algo-
rithms for solving PCA (1.4) and kPCA (1.3) on synthetic data. We first generate the data
Xi ∈ Rd×p whose entries are drawn from standard normal distribution. We then set Ai := XiX>i .
Notice that under this experiment setting the data in different agents are homogeneous in distribu-
tion, which provides a mild environment for comparing the behaviour of the proposed algorithms.
We test highly heterogeneous real data later.

Experiments on PCA. We test the three algorithms on the standard PCA problem (1.4). The
data generation process follows Section 5.2. We test our codes with different numbers of agents n
and set k = n/10 as the number of clients we pick up for each round. We terminate the algorithms
if the number of rounds of communication exceeds 600. We sample 10000 data points in R100

and partition them into n agents, each of which contains equal number of data. We test RFedSVRG
with one iteration for each local agents, i.e. τi = 1 and test RFedAvg and RFedProx with τi = 5
iterations in (C.4). We use the constant stepsizes for all three algorithms, and take µ = n/10 for

2For the loss f in (1.3), note that f (X) = f (XQ) for any orthogonal matrix Q ∈ Rr×r. As a result, the optimal
solution of f (X) only represents the eigen-space corresponds to the r-largest eigenvalues. Therefore we need the
principal angles to measure the angles between the subspaces.
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FIGURE 2. Results for PCA (1.4). The y-axis denotes ‖grad f (xt)‖. For each
figure, the experiments are repeated and averaged over 10 times.
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(c) (n,k) = (500,50)
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FIGURE 3. Results for kPCA. The y-axis of the figures in the first row denotes
‖grad f (xt)‖, and the y-axis of the figures in the second row denotes the principal
angle between xt and x∗. The experiments are repeated and averaged over 10
times.

each choice of n. The results are presented in Figure 2, from which we see that only RFedSVRG

can efficiently decrease ‖grad f (xt)‖ to an acceptable level.
Experiments on kPCA.. We now test the three algorithms on the kPCA problem (1.3). In the first
experiment we sample 10000 data points in R200 and partition them into n agents, each of which
contains equal number of data. We test our codes with different number of agents n, and again
set k = n/10. Here we take (d,r) = (200,5). The results are given in Figure 3, where we see
that RFedSVRG can efficiently decrease ‖grad f (xt)‖ and the principal angle in all tested cases.

In the second experiment we test the effect of the number of inner loops τi. We generate 10000
standard Gaussian vectors. We set (d,r) = (200,5), k = 10, and n = 100 so that p = 100. We
choose τ = [1,10,50,100] for the inner steps for all three algorithms. The results are presented
in Figure 4. From this figure we again observe the great performance of RFedSVRG.

5.3. Experiments for kPCA on real data. We now show the numerical results of the three
algorithms on real data. We focus on the kPCA problem (1.3) and three real data sets: the
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FIGURE 4. Results for kPCA (1.3) with different number of inner loops τ =
[1,10,50,100]. The y-axis of the figures in the first row denotes ‖grad f (xt)‖, and
the one in the second row denotes the principal angle between xt and x∗. The
experiments are repeated and averaged over 10 times.

Iris dataset [37], the wine dataset [37] and the MNIST hand-written dataset [38]. For all three
datasets, we calculate the first r principal directions and the true optimal loss value directly. We
can thus compute the principal angles between the iterate and the ground truth. The experiments
are repeated and averaged for 10 random initializations.

For the first two datasets, we randomly partition the datasets into 10 agents and at each iteration
we take k = 5 agents. The Figures 5 and 6 demonstrate that RFedSVRG is able to effectively
decrease the norm of Riemannian gradient and the principal angles while the other two are
not as efficient. We also draw the scatter plots of the dataset toward the principal subspaces
computed by RFedSVRG, which show that the algorithm indeed grasps the principal direction of
the datasets.

For the MNIST hand-written dataset, the (training) dataset contains 60000 hand-written
images of size 28×28, i.e. d = 784. This is a relatively large dataset and we test the proposed
algorithms with different number of clients. The results are shown in Figure 7 where the
efficiency of RFedSVRG is demonstrated again.
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FIGURE 5. Results for kPCA (1.3) on Iris dataset. The data is in R4 (d = 4) and
we take r = 3. The first figure is the norm of Riemannian gradient ‖grad f (xt)‖
and the second is the principal angle between xt and the true solution x∗, whereas
the last figure is the scatter plot of projected data on to the subspace defined by
the output of RFedSVRG.
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FIGURE 6. Results for kPCA (1.3) with wine dataset. The data is in R13 (d = 13)
and we take r = 3. The first figure is the norm of Riemannian gradient ‖grad f (xt)‖
and the second is the principal angle between xt and the true solution x∗, whereas
the last figure is still the scatter plot of projected data on to the subspace defined
by the output of RFedSVRG.

6. CONCLUSIONS

In this paper, we studied the federated optimization over Riemannian manifolds. We proposed
a Riemannian federated SVRG algorithm and analyzed its convergence rate to an ε-stationary
point. To the best of our knowledge, this is the first federated algorithm over Riemannian
manifolds with convergence guarantees. Numerical experiments on federated PCA and federated
kPCA were conducted to demonstrate the efficiency of the proposed method. Developing
algorithms with lower communication cost, better scalability and sparse solutions are some
important topics for future research.
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FIGURE 7. Results for kPCA (1.3) with MNIST dataset. The data is in R784

(d = 784) and we take n = 200 and r = 5. Fig (a) is the norm of Riemannian
gradient grad f (xt) and Fig (b) is the principal angle between xt and the true
solution x∗. We take k = n/10 and τ = 5 for all algorithms.
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APPENDIX A. DETAILED PRELIMINARY RESULTS OF OPTIMIZATION ON RIEMANNIAN

MANIFOLDS

Suppose that M is an m-dimensional differentiable manifold. The tangent space TxM at
x ∈M is a linear subspace that consists of the derivatives of all differentiable curves on M pass-
ing through x: TxM := {γ ′(0) : γ(0) = x,γ([−δ ,δ ]) ⊂M for some δ > 0,γ is differentiable}.
Notice that for every vector γ ′(0) ∈ TxM , it can be defined in a coordinate-free sense via the
operation over smooth functions: ∀ f ∈C∞(M ), γ ′(0)( f ) := d f◦γ(t)

dt |t=0. The Riemannian mani-
fold is a smooth manifold that is equipped with an inner product (called Riemannian metric) on
the tangent space, g(·, ·) = 〈·, ·〉x : TxM ×TxM → R, that varies smoothly on M .

We first review the notion of the differential between manifolds and the Riemannian gradients
here.

Definition A.1 (Differential and Riemannian gradients). Let F : M →N be a C∞ map between
two differential manifolds. At each point x ∈M , the differential of F is a mapping: F∗ :
TxM → TxN such that ∀ξ ∈ TxM , F∗(ξ ) ∈ TxN is given by (F∗(ξ ))( f ) := ξ ( f ◦F) ∈R, f ∈
C∞

F(x)(M ).
If N = R, i.e., f ∈ C∞(M ), the differential f∗ is also denoted as d f . For a Riemannian

manifold with Riemannian metric g, the Riemannian gradient for f ∈ C∞(M ) is the unique
tangent vector grad f (x) ∈ TxM such that d f (ξ ) = g(grad f ,ξ ), ∀ξ ∈ TxM .

For the convergence analysis, we also need the notion of exponential mapping and parallel
transport. To this end, we need to first recall the definition of a geodesic.

Definition A.2 (Geodesic and exponential mapping). Given x ∈M and ξ ∈ TxM , the geodesic
is the curve γ : I→M , 0 ∈ I ⊂ R is an open set, so that γ(0) = x, γ̇(0) = ξ and ∇γ̇ γ̇ = 0 where
∇ : TxM ×TxM → TxM is the Levi-Civita connection defined by metric g. In local coordinates,
γ is the unique solution of the following second-order differential equations:

d2γk

dt2 +Γ
k
i, j

dγ i

dt
dγ j

dt
= 0

under Einstein summation convention, where Γk
i, j are Christoffel symbols defined by metric tensor

g. The exponential mapping Expx is defined as a mapping from TxM to M s.t. Expx(ξ ) := γ(1)
with γ being the geodesic with γ(0) = x, γ̇(0) = ξ . A natural corollary is Expx(tξ ) := γ(t)
for t ∈ [0,1]. Another useful fact is d(x,Expx(ξ )) = ‖ξ‖x since γ ′(0) = ξ which preserves the
speed.

APPENDIX B. PROOFS

In this section, we provide the proofs of lemmas and theorems mentioned in the main results.
We first finish the proof of Lemma 3.1:

Proof of Lemma 3.1. By Cauchy-Schwarz inequality we have

d(xt+1,xt) = ‖Exp−1
xt
(xt+1)‖

= ‖1
k ∑

i∈St

Exp−1
xt
(x(i))‖ ≤ 1

k ∑
i∈St

‖Exp−1
xt
(x(i))‖= 1

k ∑
i∈St

d(xt ,x(i)).

�
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Now we turn to the proof of Theorem 4.1. We would utilize the following lemma:

Lemma B.1. Under the same settings as Theorem 4.1, we have

f (xt+1)− f (xt)≤−η
(i)
t ‖grad f (xt)‖2 +

(η
(i)
t )2L
2
‖grad f (xt)‖2.

Proof of Lemma B.1. From the update we know that

x(i)`+1← Exp
x(i)`

[
−η

(i)
t

(
grad fi(x

(i)
` )−P

xt→x(i)`
(grad fi(xt)−grad f (xt))

)]
i.e.

Exp−1
x(i)`

(x(i)`+1)←−η
(i)
t

(
grad fi(x

(i)
` )−P

xt→x(i)`
(grad fi(xt)−grad f (xt))

)
.

When τi = 1, x(i)0 = xt , we have

Exp−1
xt
(x(i)1 )←−η

(i)
t

(
grad fi(xt)−P

xt→x(i)1
(grad fi(xt)−grad f (xt))

)
=−η

(i)
t grad f (xt)

Using Lipschitz smooth of fi again and the tangent space mean (3.2), we have

f (xt+1)− f (xt)≤〈Exp−1
xt
(xt+1),grad f (xt)〉+

L
2

d2(xt+1,xt)

=〈1
k ∑

i∈St

Exp−1
xt
(x(i)1 ),grad f (xt)〉+

L
2
‖1

k ∑
i∈St

Exp−1
xt
(x(i)1 )‖2

=−η
(i)
t ‖grad f (xt)‖2 +

(η
(i)
t )2L
2
‖grad f (xt)‖2,

where we used the tangent space mean (3.2) for the first equality. �

Now we are ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1. By taking η(i) ≤ 1
L , we find from Lemma B.1 that

f (xt+1)− f (xt)≤−
1

2L
‖grad f (xt)‖2.

Summing this inequality over t = 0,1, . . . ,T , we obtain

1
2L

T

∑
t=0
‖grad f (xt)‖2 ≤ f (x0)− f (xT+1)≤ f (x0)− f (x∗),

which yields (4.1) immediately. �

Before we present the proof of Theorem 4.2, we need the following lemma, which is adopted
from [29].

Lemma B.2 (Lemma 2 in [29]). Consider Algorithm 1 with Option 2. Suppose we run randomly
chosen local agent i at the t-th outer iteration. If we run the local agent i for τi local gradient
steps (3.3) with initial point xt , then it holds:

E‖grad f (x(i)` )‖2 ≤ R`−R`+1

δ`
, `= 0, ...,τi−1, (B.1)
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where the expectation is taken with respect to the randomly selected index i, R` := E[ f (x(i)` )+

c`‖Exp−1
xt
(x(i)` )‖2], c` = c`+1(1+βη +2ζ L2η2)+L3η2 and δ` = η− c`+1η

β
−Lη2−2c`+1ζ η2.

Here β is a free constant to be determined and we take cτi = 0 in the recursive definition.

Now we turn to the proof of Theorem 4.2:

Proof of Theorem 4.2. Since k = 1, without loss of generality, we denote i as the agent that we
choose at the t-th iteration. Moreover, we denote η = η(i) because there is only one agent.

From (B.1), we note that if we set η < 1
L+2c`+1ζ

(1− c`+1
β

), then we have δ (i) :=min`=0,...,τi δ`>

0. In this case, summing (B.1) over `= 0,1, ...,τi−1 yields

1
τi

∑
`=0,...,τi−1

E‖grad f (x(i)` )‖2 ≤ R0−Rτi

τiδ (i)
≤ E

(
f (xt)− f (x(i)τi )

τiδ (i)

)
, (B.2)

since R0 = f (xt) and Rτi = E[ f (x(i)τi ) + c`‖Exp−1
xt
(x(i)τi )‖2] ≥ E[ f (x(i)τi )]. Now we take β =

Lζ 1/2/n1/3 and η = 1/(10Ln2/3ζ 1/2)3. From the recurrence c` = c`+1(1+βη + 2ζ L2η2)+
L3η2 and cτi = 0 we have

c0 =
L

100n4/3ζ

(1+θ)τi−1
θ

,

where

θ = ηβ +2ζ η
2L2 =

1
10n

+
1

50n4/3 ∈
(

1
10n

,
3

10n

)
is a parameter. If we take τi = b10n/3c such that (1+θ)τi < (1+ 3

10n)
τi < e, then

c0 ≤
L

10n1/3ζ
(e−1),

and δ (i) is bounded by

δ
(i) ≥

(
η− c0η

β
−η

2L−2c0ζ η
2
)

≥ η

(
1− e−1

10ζ 3/2 −
1

10n2/3ζ 1/2 −
e−1

50nζ 1/2

)
≥ η

2
=

1
20Ln2/3ζ 1/2 ,

where the last inequality is by ζ ,n≥ 1. Note that this lower bound of δ (i) is independent from
the choice of local agent i.

Now summing (B.2) over t = 0, ...,T −1 with δ (i) ≥ η

2 , we obtain

1
T ∑

t=0,...,T−1

1
τi

∑
`=0,...,τi−1

E‖grad f (x(i)` )‖2 ≤ 2∆

τηT
, (B.3)

where ∆ = f (x0)− f ∗.
Now using the Option 2 of the output of Algorithm 1, we obtain

E‖grad f (x̃)‖2 ≤ ∆ρ

τT
,

3It is straightforward to verify that η < 1
L+2c`+1ζ

(1− c`+1
β

) with this choice of η for `= 0, ...,τi.
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where ρ = η

2 = 1
20Ln2/3ζ 1/2 . �

Before we present the proof of Theorem 4.3, we need the following lemma [11].

Lemma B.3 (Corollary 8 in [11]). Suppose that the sectional curvature of M is lower bounded
by κmin and we update xt+1← Expxt

(−ηtgt). Suppose also that the update sequence {xt} ⊂D
where D is a compact set with diameter D, then for any x ∈M it holds:

〈−gt ,Exp−1
xt
(x)〉 ≤ 1

2ηt
(d2(xt ,x)−d2(xt+1,x))+

ζ ηt

2
‖gt‖2. (B.4)

where ζ is given in (4.2).

We now present the proof of Theorem 4.3.

Proof of Theorem 4.3. From Lemma B.3 we get

〈1
k ∑

i∈St

Exp−1
xt
(x(i)),Exp−1

xt
(x)〉 ≤ 1

2
(d2(xt ,x)−d2(xt+1,x))+

ζ

2
‖1

k ∑
i∈St

Exp−1
xt
(x(i))‖2, (B.5)

which is equivalent to (since we assume St = [n] and η(i) = η):

−η〈1
n ∑

i=1,...,n
grad fi(xt),Exp−1

xt
(x)〉 ≤ 1

2
(d2(xt ,x)−d2(xt+1,x))+

ζ

2
‖1

n ∑
i=1,...,n

Exp−1
xt
(x(i))‖2.

(B.6)
Now use the geodesic convexity of fi and (B.6), we have (denote ∆t := f (xt)− f (x∗) and

∆i
t := fi(xt)− fi(x∗))

∆
i
t ≤−〈grad fi(xt),Exp−1

xt
(x∗)〉.

Summing this inequality over i = 1, ...,n, we have

∆t ≤−〈
1
n ∑

i=1,...,n
grad fi(xt),Exp−1

xt
(x∗)〉

≤ 1
2η

(d2(xt ,x∗)−d2(xt+1,x∗))+
ζ

2η
‖1

n ∑
i=1,...,n

Exp−1
xt
(x(i))‖2

≤ 1
2η

(d2(xt ,x∗)−d2(xt+1,x∗))+
ζ η

2n
‖grad f (xt)‖2.

(B.7)

Again from Lemma B.1, we obtain

∆t+1−∆t ≤ (−η
(i)
t +

(η
(i)
t )2L
2

)‖grad f (xt)‖2. (B.8)

Now multiply (B.8) by ζ and add it to (B.7), we have

ζ ∆t+1− (ζ −1)∆t ≤ ζ

(
η

2n
−η +

η2L
2

)
‖grad f (xt)‖2+

1
2η

(d2(xt ,x∗)−d2(xt+1,x∗)). (B.9)

Now take η ≤ 1
2L , we know that η

2n −η + η2L
2 ≤ 0. Thus

ζ ∆t+1− (ζ −1)∆t ≤
1

2η
(d2(xt ,x∗)−d2(xt+1,x∗)). (B.10)
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Summing this up over t from 0 to T −1, we obtain

ζ ∆T +
T−1

∑
t=0

∆t ≤ (ζ −1)∆1 +
d2(x0,x∗)

2η
. (B.11)

Also by (B.8) we know ∆t+1 ≤ ∆t . Thus

∆T ≤
ζ D2

2η(ζ +T −2)
. (B.12)

�

APPENDIX C. RFedAvg AND RFedProx ALGORITHMS

FedAvg [2] and FedProx [4] are two widely used algorithms for FL problems in Euclidean
space. At each iteration, FedAvg minimizes the local loss fi for fixed steps using gradient
descents:

x(i)`+1← x(i)` −η
(i)

∇ fi(x
(i)
`+1), (C.1)

while FedProx solves a local proximal point subproblem:

x(i)← argminx fi(x)+
µ

2
‖x− xt‖2. (C.2)

For RFedAvg, which is the Riemannian counterpart of FedAvg, (C.1) is replaced by

x(i)`+1← Exp
x(i)`

(
−η

(i)grad fi(x
(i)
` )
)
.

For RFedProx, which is the Riemannian counterpart of FedProx, (C.2) is replaced by

x(i)t+1← argminx∈M fi(x)+
µ

2
d2(x,xt), (C.3)

where d(x,y) is the geodesic distance between x and y. In the implementation of RFedProx,
(C.3) is solved by Riemannian gradient descent:

x(i)`+1← Exp
x(i)`

(−η
(i)gradhi(x

(i)
` )), `= 0, ...,τi−1. (C.4)

RFedAvg and RFedProx are described in Algorithms 2 and 3, respectively.

APPENDIX D. EXPERIMENTS ON PSD KARCHER MEAN

The PSD Karcher mean (1.5) is an example of how Riemannian gradient method with tangent
space steps could be utilized to solve Karcher mean (3.1) type problems directly. In this
experiment we take d = 20, n = 10 and k = 5. We test the proposed RFedSVRG with RFedAvg

and RFedProx, as well as with different τ . The results are in Figure 8. The convergence
curves show a linear rate of convergence, largely due to the fact that (1.5) is geodesic (strongly)
convex [11], which also show great potential for better theoretical convergence analysis.
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Algorithm 2: Riemannian FedAvg algorithm

input :n, k, T , {η(i)}, {τi}
output :xT

1 for t = 0, ...,T −1 do
2 Uniformly sample St ⊂ [n] with |St |= k;
3 for each agent i in St do
4 Receive xt from the central server;
5 for `= 0, ...,τi−1 do
6 x(i)`+1← Exp

x(i)`

(
−η(i)grad fi(x

(i)
` )
)

;

7 end
8 Send the obtained x(i)τi to the central server;
9 end

10 The central server aggregates the points by the tangent space mean (3.2);
11 end

Algorithm 3: Riemannian FedProx Algorithm
input :n, k, T , µ , γ

output :xT
1 for t = 0, ...,T −1 do
2 Uniformly sample St ⊂ [n] with |St |= k;
3 for each agent i in St do
4 Receive xt from the central server;
5 Obtain x(i)← argminx∈M fi(x)+

µ

2 d2(x,xt) upto a γ approximate solution;
6 Send the obtained x(i) to the central server;
7 end
8 The central server aggregates the points by the tangent space mean (3.2);
9 end
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FIGURE 8. Results for PSD Karcher mean problem (1.5). The left figure is the
test of different algorithms, and the right figure is the test of RFedSVRG with
different τ .
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