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Abstract. The paper is devoted to the calmness from below/from above for the optimal value function
ϕ of parametric optimization problems, where we are specifically interested in perturbed semi-infinite
programs. A main intention is to revisit classical results and to derive refinements of them. In particular,
we show in the context of semi-infinite optimization that calmness from below for ϕ holds under quasi-
convexity of the data functions and compactness of the solution set, which extends results on the lower
semicontinuity of ϕ . Illustrative examples are given, which demonstrate the significance of the imposed
assumptions even in the case of linear and quadratic programs.
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1. INTRODUCTION

Given a metric space (T,d(·, ·)), a function f : Rn×T →R, a multifunction M : T ⇒Rn, and
a reference point t̄ ∈ T , our basic model in this paper is the parametric optimization problem

P(t) : f (x, t)→minx s.t. x ∈M(t) , t varies near t̄,
where f is continuous and M is closed.

(1.1)

Recall that the graph and the domain of a multifunction Γ : T ⇒ Rn are defined by gphΓ :=
{(t,x) ∈ T ×Rn | x ∈ Γ(t)} and domΓ := {t ∈ T | Γ(t) 6= /0}, respectively, and Γ is closed if
gphΓ is a closed set.

In particular, we study the case of parametric semi-infinite constraints, where the feasible set
mapping M is given by

M(t) := {x ∈ Rn | gi(x, t)≤ 0, i ∈ I}, t ∈ T,
I is an arbitrary set, gi : Rn×T → R(i ∈ I) are continuous,

(1.2)

which implies that gphM is a closed set. If the feasible set mapping M is defined by (1.2), model
(1.1) becomes a parametric semi-infinite program (SIP), and we will speak of the standard
parametric SIP (1.1)∧(1.2). Later, assumptions like Lipschitz continuity, differentiability or
(quasi-) convexity of the data will be added. Note that for finite I we have a usual parametric
nonlinear program.
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In this note, we intend to revisit classical results and to give various refinements of them. The
main purpose of this paper is to present sufficient conditions for calmness from above and from
below of the optimal value function (also called marginal function)

t ∈ T 7→ ϕ(t) := inf
x∈M(t)

f (x, t) ∈ R := R∪{−∞,+∞},

with respect to the models (1.1) and (1.1)∧(1.2). The related argmin mapping is given by

t ∈ T 7→Ψ(t) = argmin
x∈M(t)

f (x, t) := {x ∈M(t) | f (x, t) = ϕ(t)}.

Following the terminology in [1], we say that a function τ : T → R is calm at t̄ ∈ T from above
[ from below ] with a constant ρ > 0 if τ(t̄) is finite and for some δ > 0,

∀t ∈ B(t̄,δ ) : τ(t)≤ τ(t̄)+ρ d(t, t̄) [τ(t)≥ τ(t̄)−ρ d(t, t̄) ], (1.3)

and τ is said to be calm at t̄ if τ is both calm from above and below: for some δ ,ρ > 0, one has

|τ(t)− τ(t̄)| ≤ ρ d(t, t̄) when t ∈ B(t̄,δ ), (1.4)

B(t,δ ) denotes the closed δ -ball around t ∈ T with respect to d(·, ·). The infimum of all ρ > 0
in (1.3) or (1.4), respectively, is called the modulus of calmness (from above/below).

The concept of calmness from below for the optimal value function was originally intro-
duced in [2] under the name ”calm”, while calmness from above is also known as ”quiet”, see
[3]. Calmness of the optimal value function ϕ is often a hidden subject in the stability anal-
ysis of optimization problems, because it is related to other properties of ϕ (e.g. convexity,
differentiability, local Lipschitz continuity) as well as to constraint qualifications, duality the-
ory, embedding theorems, and more. For many classes of optimization problems, there is a
well-developed theory of that type, we refer e.g. to the standard monographs [1, 4, 5, 6, 7, 8, 9].

For references which are explicitly concerned with calmness of ϕ , cf. e.g. [2, 3, 6, 10] (for
general models) and [11, 12, 13, 14] (for linear and quadratic optimization problems). One
inspiration to write this paper comes from the interesting paper [11], where calmness of ϕ from
above and below as well as the computation/estimation of their moduli are thoroughly studied
in the framework of (finite) linear programs under so-called canonical perturbation. Though we
will not consider moduli in what follows, the question arises, which conditions ensure calmness
from below/above in nonlinear settings, and this particularly in the case of infinitely many
constraints. Another impulse comes from the study of q-order calmness of the optimal set
mapping in the framework (1.1)∧(1.2), where calmness of ϕ is used in the proofs, see both
classical references as [5, 15, 16] and more recent papers as [10, 17, 18].

The paper is organized as follows. After introducing our terminology and discussing some
preliminaries in Section 2, we present our main results in Section 3. It turns out that calmness
from above and/or below of ϕ (or some restriction of ϕ to a subset) is ensured if f and M satisfy
appropriate Lipschitz properties. For the calmness from below, compactness assumptions play
a crucial role. We will show that these results have similarities to classical characterizations of
upper or lower semicontinuity of ϕ for the models (1.1) and (1.1)∧(1.2), as given in the theory
of point-to-set maps in optimization, cf. e.g. [4, 19, 20]. As a main result we show that under
quasi-convexity of the data functions and compactness of Ψ(t̄), the optimal value function ϕ is
calm from below provided that M is calm. The needed assumptions on the feasible set mapping
M for parametric SIPs will be discussed, too. Section 4 gives some concluding remarks.
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2. TERMINOLOGY AND PRELIMINARIES

We start with some notation. ‖ · ‖ denotes any norm in Rn, B◦ is the open unit ball in Rn in
this norm, B is the closed unit ball, X +Y denotes the Minkowski sum of X ,Y ⊂Rn, and we put
B(x,ε) := {x}+ εB for ε > 0. For X ⊂ Rn, intX and bdX are the interior and the boundary of
X , respectively, convX denotes the convex hull of X , and dist(x,X) := infy∈X ‖y−x‖ for x∈Rn.
The parameter space (T,d(·, ·)) of our parametric models is a metric space, the product space
Z = Rn×T is equipped with a metric defined by dZ((x, t),(x′, t ′)) = ‖x− x′‖+ d(t, t ′). Given
a compact subset I of a metric space, C(I) denotes the linear space of continuous functions
i ∈ I 7→ bi ∈ R equipped with the norm ‖b‖= maxi∈I bi. By h ∈C1 we abbreviate the property
that h is a continuously differentiable function. Let R+ be the set of nonnegative real numbers,
and R− =−R+.

Next we recall (Lipschitz) continuity concepts for functions and multifunctions, assuming
(T,d(·, ·)) is a metric space.

A function τ : T → R is called upper [lower ] semicontinuous (u.s.c. [l.s.c. ]) at t̄ ∈ T if

limsup
t→t̄

τ(t)≤ τ(t̄) [ liminf
t→t̄

τ(t)≥ τ(t̄) ].

By definition, one has that τ is u.s.c. at t̄ if τ is calm at t̄ from above, while τ is l.s.c. at t̄ if τ is
calm at t̄ from below.

A function F : T → R is called Lipschitz on V ⊂ T with a constant ρ > 0 if

|F(t ′′)−F(t ′)| ≤ ρ d(t ′′, t ′) for all t ′′, t ′ ∈V, (2.1)

and is called Lipschitz around t̄ if V is a neighborhood of t̄. F is said to be locally Lipschitz if
for each t ∈ T there are a neighborhood V of t and some ρ > 0 satisfying (2.1).

Let Γ : T ⇒ Rn be a given multifunction, and let (t̄, x̄) in gphΓ be fixed. Γ is said to be
Lipschitz lower semicontinuous (Lipschitz l.s.c.) at (t̄, x̄) if, for some δ ,L > 0,

dist(x̄,Γ(t))≤ Ld(t, t̄) ∀t ∈ B(t̄,δ ),

which includes Γ(t) 6= /0 for all t ∈ B(t̄,δ ). Γ is called calm at (t̄, x̄) (equivalently, Γ−1 is
metrically subregular at (x̄, t̄)) if there are constants ε,δ ,L > 0 such that

Γ(t)∩B(x̄,ε)⊂ Γ(t̄)+Ld(t, t̄)B ∀t ∈ B(t̄,δ ), (2.2)

where Γ(t)∩B(x̄,ε) = /0 for t 6= t̄ is possible. Γ has the Aubin property at (t̄, x̄) (equivalently, Γ is
pseudo-Lipschitz at (t̄, x̄), or Γ−1 is metrically regular at (x̄, t̄)) if there are constants ε,δ ,L > 0
such that

Γ(t)∩B(x̄,ε)⊂ Γ(t ′)+L‖t− t ′‖B ∀t, t ′ ∈ B(t̄,δ ).

Given a nonempty set Ω⊂ gphΓ, we say that Γ is calm on Ω if there are ε,δ ,L > 0 (uniformly
on Ω) such that (2.2) holds for all (t̄, x̄) ∈ Ω. Obviously, if Γ has the Aubin property at some
point, then Γ calm and Lipschitz l.s.c. there.

Some of our results concern a restricted optimal value function for the model (1.1) or the
setting (1.1)∧(1.2), respectively, defined for Q⊂ Rn by

t ∈ T 7→ ϕQ(t) := inf
x∈MQ(t)

f (x, t), where MQ(t) := M(t)∩Q.

The corresponding optimal solution set is ΨQ(t) := {x ∈MQ(t) | f (x, t) = ϕQ(t)}, t ∈ T.
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We finish this section by recalling classical results on upper and lower semicontinuity of
the optimal value function ϕ for the the basic model (1.1) and the standard parametric SIP
(1.1)∧(1.2). The first lemma concerns the basic model (1.1), and applies, of course, to the
parametric SIP (1.1)∧(1.2). It goes back to classical parametric optimization and set-valued
analysis, as given, e.g., in [4, 19, 20]. Recall that, by the assumptions in (1.1), the objective
function f is continuous, and the feasible set mapping M is closed.

Lemma 2.1. Consider the basic model (1.1) and assume Ψ(t̄) 6= /0.

(i) [4, Thm. 4.2.2 (1)’] If M is l.s.c. at (t̄, x̄) for some x̄ ∈Ψ(t̄), then ϕ is u.s.c. at t̄.
(ii) [4, Cor. 4.2.2 (2)] If Q∩Ψ(t̄) 6= /0 for some compact set Q ⊂ Rn, then the restricted

optimal value function ϕQ is l.s.c. at t̄.

The assumptions of Lemma 2.1 (ii) do not guarantee that the function ϕ itself is l.s.c. at t̄, see
e.g. [4, Example 1.1], or the Examples 3.1 and 3.2 below, where in Example 3.2 the set Ψ(t̄)
is even a singleton. However, an obvious consequence of (ii) is that ϕ is l.s.c. at t̄, provided
Ψ(t)⊂ Q (with compact Q) holds for all t in a neighborhood of t̄.

With respect to the l.s.c. property for ϕ , we remind of the next result which holds in the
framework of perturbed (quasi-)convex semi-infinite optimization problems.

Lemma 2.2. [4, Thm. 4.3.4], [21] Consider the standard parametric SIP (1.1)∧(1.2). Suppose
that for each t ∈ T , the functions f (·, t), gi(·, t), i ∈ I, are quasiconvex. If Ψ(t̄) is nonempty and
bounded, then ϕ is l.s.c. at t̄.

3. CALMNESS OF THE OPTIMAL VALUE FUNCTION

In this section, we study conditions which guarantee calmness of ϕ from above or below, by
additionally assuming that objective function f is locally Lipschitz. First we present a counter-
part to Lemma 2.1 concerning calmness from above/below of the (possibly restricted) optimal
value function of model (1.1). Similar results have appeared in different frameworks already in
the past, see e.g. [2, 3, 10, 22]. Our method of proof goes back to the idea of proving Lipschitz
continuity of a (restricted) optimal value function under the Aubin property of the feasible set
mapping M at some point in gphΨ, see e.g. [15, 16].

Theorem 3.1. Consider the basic model (1.1) and suppose that Ψ(t̄) 6= /0.

(i) Let x̄ ∈Ψ(t̄). If f is Lipschitz on some neighborhood V of (x̄, t̄) and M is Lipschitz l.s.c.
at (t̄, x̄), then ϕ is calm at t̄ from above.

(ii) Let S⊂Ψ(t̄) be nonempty and compact. If f is Lipschitz on some open set V ⊃ S×{t̄}
and M is calm on {t̄}× S, then there is some ε > 0 such that, for Q := S+ εB, the
restricted optimal value function ϕQ is calm at t̄ from below.

Proof. (i) Let ρ f > 0 be a Lipschitz constant for f on V . Since M is Lipschitz l.s.c. at
(t̄, x̄) ∈ gphΨ, there are δM,ρM > 0 such that, for each t ∈ B(t̄,δM),

∃zt ∈M(t) : ‖zt− x̄‖= dist(x̄,M(t))≤ ρMd(t, t̄). (3.1)

Choose a positive δ ≤ δM small enough such that, with ε := ρMδ , also Q×U ⊂V is satisfied,
where Q := B(x̄,ε) and U := B(t̄,δ ). Let t ∈U . Then, with some zt satisfying (3.1), one has
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zt ∈ Q and

ϕ(t)≤ ϕQ(t)≤ f (zt , t) ≤ f (x̄, t̄)+ | f (zt , t)− f (x̄, t̄)|
≤ f (x̄, t̄)+ρ f (‖zt− x̄‖+d(t, t̄))
≤ ϕ(t̄) + ρ f (ρM +1)d(t, t̄),

(3.2)

since ϕ(t̄) = f (x̄, t̄). So, ϕ is calm from above at t̄ with a constant ρ = ρ f (ρM +1).

(ii) Let ρ f > 0 be a Lipschitz constant for f on V . As assumed, S ⊂ Ψ(t̄) is nonempty and
compact, and M is calm on {t̄}×S. Hence, there are δM,εM,ρM > 0 such that

M(t)∩ (S+ εMB)⊂M(t̄)+ρM d(t, t̄)B ∀t ∈ B(t̄,δM). (3.3)

Choose positive constants ε ≤ εM and δ ≤ min{δM,ε/ρM} such that (S+ 2εB)×B(t̄,δ ) is a
subset of V . Put Q := S+ εB and U := B(t̄,δ ). Note that ϕ(t̄) = ϕQ(t̄). We will show that

∃ρ > 0 ∀t ∈U : ϕQ(t)≥ ϕQ(t̄)−ρd(t, t̄), (3.4)

which means that ϕQ is calm at t̄ from below. Let t ∈U . (3.4) automatically holds if MQ(t) = /0
because ϕQ(t) =+∞ in this case. Let MQ(t) 6= /0 which is a compact set as the set M(t) is closed
and Q is compact. By Weierstrass’ Theorem, it follows ΨQ(t) 6= /0. Given any y ∈ΨQ(t), there
is some ȳ ∈M(t̄) satisfying ‖y− ȳ‖ ≤ ρMd(t, t̄) by (3.3). This entails ‖y− ȳ‖ ≤ ρMδ ≤ ε and
dist(ȳ,S)≤ ‖ȳ− y‖+dist(y,S)≤ 2ε . Hence (ȳ, t̄),(y, t) ∈V . Therefore,

ϕQ(t̄) = ϕ(t̄)≤ f (ȳ, t̄) ≤ f (y, t)+ | f (y, t)− f (ȳ, t̄)|
≤ f (y, t)+ρ f (‖y− ȳ‖+d(t, t̄))
≤ ϕQ(t) + ρ f (ρM +1)d(t, t̄),

so ρ = ρ f (ρM +1) yields (3.4). �

Remark 3.1. Theorem 3.1 implies a known result (cf. e.g. [10, Lemma 1]), which follows
immediately by putting S = {x̄} in (ii) and using the estimate (3.2) together with ϕ(t̄) = ϕQ(t̄):
Let x̄ ∈Ψ(t̄), and suppose that f is Lipschitz around (x̄, t̄). If M is calm and Lipschitz l.s.c. at
(t̄, x̄), then, for some ε > 0, ϕB(x̄,ε) is calm at t̄. �

The following counterpart to Lemma 2.2 is new. It holds in the framework of the semi-infinite
model (1.1)∧(1.2) under quasiconvexity of f and gi, i ∈ I, with respect to x.

Theorem 3.2. Consider the standard parametric SIP (1.1)∧(1.2), let S = Ψ(t̄). Suppose that f
is Lipschitz on some open set V ⊃ S×{t̄}, and for each t ∈ T , the functions f (·, t), gi(·, t), i ∈ I,
are quasiconvex. If S is bounded and M is calm on {t̄}×S, then ϕ is calm at t̄ from below.

Proof. By assumption, S = Ψ(t̄) is convex and compact. Since all assumptions of assertion (ii)
in Theorem 3.1 are fulfilled, we know by this theorem that there are positive constants ε,δ ,ρ
such that, with Q := S+ εB,

ϕQ(t̄)−ϕQ(t)
d(t, t̄)

≤ ρ ∀t ∈ B(t̄,δ )\{t̄}, (3.5)
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since ϕQ is calm at t̄ from below. Note that Q is convex and compact, and ϕ(t̄) = ϕQ(t̄). To
prove by contradiction that ϕ is calm from below at t̄, we assume

there is some sequence tk→ t̄, tk 6= t̄, such that for each k ≥ 1,

ϕ(t̄)−ϕ(tk)

d(tk, t̄)
> k, and therefore, in particular, ϕ(tk)< ϕ(t̄).

Hence, limsupk→∞ ϕ(tk)≤ ϕ(t̄).
On the other hand, ϕ is l.s.c. at t̄ according to Lemma 2.2, so liminfk→∞ ϕ(tk)≥ ϕ(t̄). Thus,

ϕ(t̄) = lim
k→∞

ϕ(tk), and ϕ(tk) is finite for sufficiently large k.

Therefore, we may choose some k′ and points xk ∈M(tk) satisfying for k ≥ k′,

ϕ(tk)≤ f (xk, tk)≤ ϕ(tk)+d(tk, t̄), (3.6)

by definition of an infimum. Let k′ ≥ ρ +1.
Next we prove that xk 6∈Q for all k≥ k′. Indeed, if xk ∈M(tk)∩Q for some k≥ k′, then (3.5)

- (3.6) as well as ϕQ(tk)≤ f (xk, tk) and ϕ(t̄) = ϕQ(t̄) would imply that

k′ ≤ k <
ϕ(t̄)−ϕ(tk)

d(tk, t̄)
≤ ϕ(t̄)− f (xk, tk)+d(tk, t̄)

d(tk, t̄)

≤
ϕQ(t̄)−ϕQ(tk)

d(tk, t̄)
+1 ≤ ρ +1,

a contradiction. So, given any k ≥ k′, we have

xk ∈M(tk)\Q.

Now we consider the segment σ k := conv{xk, x̄}, where x̄ ∈ S = Ψ(t̄) is fixed. By definition,
x̄ belongs to the interior of the convex, compact set Q = S + εB. Thus the intersection of
σ k with the boundary bdQ of Q is a singleton {zk} such that dist(zk,S) = ε > 0. Using the
quasiconvexity of f (·, tk) and (3.6), one has

f (zk, tk) ≤ max{ f (xk, tk), f (x̄, tk)}
≤ max{ϕ(tk)+d(tk, t̄), f (x̄, tk)}.

(3.7)

Since bdQ is compact, we may assume with no loss of generality that zk converges to some point
z̄∈ bdQ. It follows dist(z̄,S) = ε > 0. Moreover, recall that limϕ(tk) = ϕ(t̄) and f (x̄, t̄) = ϕ(t̄).
By passing to the limits in (3.7), we therefore have

f (z̄, t̄)≤max{ϕ(t̄), f (x̄, t̄)}, i.e., f (z̄, t̄)≤ ϕ(t̄).

We finish the proof by demonstrating z̄∈M(t̄), which implies z̄∈ S, contradicting dist(z̄,S)> 0.
Indeed, the functions gi(·, tk), i ∈ I, are quasiconvex, and so, by taking xk ∈M(tk) into account,

gi(zk, tk)≤max{gi(xk, tk),gi(x̄, tk)} ≤max{0,gi(x̄, tk)} for all i ∈ I.

So, by passing to the limits and using x̄ ∈M(t̄),

gi(z̄, t̄) = limgi(zk, tk)≤max{0,gi(x̄, t̄)}= 0 for all i ∈ I,

hence z̄ ∈M(t̄), which completes the proof. �
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Now we give two examples which illustrate the relevance of the assumptions in Theorem 3.1(ii)
and Theorem 3.2 (similarly, for Lemma 2.1(ii), Lemma 2.2).

The first example demonstrates that the restriction of ϕ to a compact set Q in Lemma 2.1(ii)
and Theorem 3.1(ii) as well as the boundedness assumption on S = Ψ(t̄) in Lemma 2.2 and
Theorem 3.2 are essential even in the case of a parametric linear program with an unperturbed
feasible set.

Example 3.1. (ϕ is not l.s.c., unperturbed constraints, parametric LP) Consider the parametric
linear program with fixed constraint set,

minx t · x s.t. x≤ 0, where t varies near 0,

which is a special realization of the standard SIP model (1.1)∧(1.2), and the constraint system
fits into the class of continuous constraint models (3.8) below. One has

M(t)≡ R− , Ψ(t) =


{0} if t < 0,
R− if t = 0,

/0 if t > 0.
ϕ(t) =

{
0 if t ≤ 0,
−∞ if t > 0,

i.e., M is a constant multifunction (hence in particular calm and Lipschitz l.s.c. on {0}×Ψ(0)),
but Ψ(0) is unbounded. ϕ is at t̄ = 0 u.s.c., but not l.s.c., and calm from above, but not from
below.

However, if we consider a nonempty compact set S ⊂Ψ(0) (in accordance with (ii) in The-
orem 3.1), say with minS = −α , α ≥ 0, then, after putting Q := S + εB (ε > 0), one has
ϕQ(t) =−(α +ε)t if t ≥ 0, and ϕ(t) = 0 else, so ϕQ is at t̄ = 0 calm from below and above. �

By the second example, which is taken from [4], we mainly intend to demonstrate that the
(quasi-)convexity assumption in Lemma 2.2 and Theorem 3.2 cannot be avoided, even in the
case of a parametric quadratic program with fixed constraint set.

Example 3.2. [4, Example 4.2.1] (ϕ is not l.s.c., parametric QP, non-convex objective func-
tion, fixed linear constraints) Consider the parametric program with (non-convex) quadratic
objective function and fixed constraint polyhedron M◦ := {(x1,x2) ∈ R2 | 0≤ x1 ≤ 1, x2 ≥ 0},

min
x=(x1,x2)

f (x, t) :=−x1 + x1x2 +2t2x2
2−4t(1− t)x2 s.t. x = (x1,x2) ∈M◦,

where t ∈ R is assumed to vary in the open interval (−1,1); it is a simple special case of the
parametric model (1.1)∧(1.2). Obviously, Ψ(t) = {(1,0)} and ϕ(t) = −1 if t ≤ 0. Now let
0 < t < 1. When defining x(t) := (0, 1−t

t ) (∈M◦), we obtain

ϕ(t)≤ f (x(t), t) =−2(1− t)2, from which liminf
t→+0

ϕ(t)≤−2 < ϕ(0),

i.e., ϕ is at t̄ = 0 not l.s.c., let alone calm from below. Of course, ϕ is at t̄ = 0 calm from above
and u.s.c., in accordance with Theorem 3.1 (i).

It is worth to observe that the optimal set mapping Ψ has interesting properties. As noticed
above, Ψ(t) is a singleton for t ≤ 0. Given 0 < t < 1, it is easy to verify that x2(t) = 1−t

t is the
unique solution of the (convex) quadratic program

min
x2

t2x2
2−2t(1− t)x2 s.t. x2 ≥ 0,
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with minimum value v(t) = −(1− t)2. Therefore, since x ∈ M◦ implies −x1 + x1x2 ≥ −1, it
follows f (x, t) ≥ −1− 2(1− t)2 > −3, for all x ∈ M◦ whenever t ∈ (0,1). Hence, the sets
Ψ(t) are also nonempty for all t ∈ (0,1), by the Frank-Wolfe existence theorem of quadratic
optimization; it is not difficult to see that these sets are compact. However, there is no compact
set Q such that Ψ(t) ⊂ Q for all t near 0. Indeed, assuming there is such a Q, we take any
sequences tk ↓ 0 and xk ∈ Ψ(tk) ⊂ M◦ ∩Q. Then, without loss of generality, there is some
x̂ ∈M◦∩Q such that xk → x̂, by compactness of M◦∩Q. We have seen above that f (xk, tk) =
ϕ(tk) ≤ −2(1− tk)2. Then, by passing to the limit, we obtain f (x̂,0) ≤ −2 which contradicts
ϕ(0) =−1. �

In the remainder of this section, let us discuss the above assumptions imposed on the feasible
set mapping M. There is a broad literature on Lipschitz stability analysis of M for various types
of constraint systems, where in the abstract basis model (1.1) the sets M(t) themselves could be
also solution sets of optimization problems or variational inequalities. For this abstract setting,
we refer exemplarily to the standard books [1, 5, 9, 23, 24] and the references therein.

In the context of (finite or semi-infinite) inequality constraints, Lipschitz properties of M are
usually considered in the continuous setting of model (1.2), which means that I is a compact
metric space, and (i,x, t) 7→ gi(x, t) is continuous. For a discussion of the literature in this case,
we restrict ourselves to the continuous model under right-hand-side (RHS) perturbations,

M̃(b) := {x ∈ Rn | gi(x)≤ bi, i ∈ I}, b ∈ T =C(I) varies near 0,
I is a compact metric space, (i,x) ∈ I×Rn 7→ gi(x) ∈ R is continuous,

(3.8)

i.e., a finite set I is not excluded. If the functions gi, i ∈ I, are convex, we will speak of the
convex setting of (3.8). If all gi are C1 functions and (i,x) 7→ Dgi(x) is continuous, this will be
called the C1 setting of (3.8). It is known that in these settings, under suitable assumptions on the
perturbations, properties like metric regularity or calmness carry over from M̃ to the mapping M
in the continuous setting of model (1.2); see, e.g., [5, 25, 26, 27, 28] and the references therein.

The inequality system in (3.8) can be rewritten as a cone constraint g(x)− b ∈ C−, where
g(x)(i) := gi(x), i∈ I, and C− := {φ ∈C(I) | φ(i)≤ 0 ∀i∈ I}, or as a single inequality h(x,b)≤ 0
via the max-function h(x,b) := maxi∈I(gi(x)− bi). In the convex setting of (3.8), g is convex
w.r. to the cone C−, cf. [5, Prop. 2.174], and, obviously, h is convex, too. Further, in the C1

setting of (3.8), g is also a C1 function (cf. again [5, Prop. 2.174]), and h is locally Lipschitz (cf.
[6]). So it is standard in the literature to use these reformulations for characterizing calmness
and other properties of M̃.

Let us first discuss calmness of M̃ (3.8). A comprehensive study in the case of C1 data can
be found in [27], where sufficient conditions for detecting calmness are given, which are in the
case of standard nonlinear programs stronger than Abadie’s constraint qualification, but weaker
than the Mangasarian-Fromovitz constraint qualification (MFCQ). Similar characterizations are
proved in [29, 30], where also solution procedures are presented which converge (locally and of
linear order) exactly if the mapping M̃ is calm. For a general approach to calmness of mappings
defined by cone constraints we refer to [31].

Calmness of M̃ is closely related to the property that h admits a local (linear) error bound at x̄,
which means that there are positive numbers ρ and δ such that ρ dist(x, [h≤ 0])≤max{h(x,0),0}
∀x ∈ B(x̄,δ ), where [h≤ 0] := {ξ |h(ξ ,0)≤ 0}. So, the well-developed theory of error bounds
applies to (3.8), which has been used for convex and linear constraint functions e.g. in [18, 32,
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33]. For these and more general situations, we refer the interested reader also to surveys on
error bounds in [34, 35] and to the references therein.

Characterizations of the Aubin property for the mapping M̃ in terms of the problem data are
known for long time. In the convex setting of (3.8), M̃ has the Aubin property at (0, x̄) ∈ gphM̃
if and only if the Slater constraint qualification (SCQ) holds for M̃(0), i.e., there is some x̃ such
that gi(x̃) < 0 for all i ∈ I, cf. e.g. [36]. In the C1 setting of (3.8), the extended Mangasarian-
Fromovitz constraint qualification (EMFCQ) [37, 38] is said to hold at x̄ ∈ M̃(0) if

∃d ∈ Rn : Dgi(x̄)d < 0 for all i ∈ I0(x̄) := { j ∈ I |g j(x̄) = 0}, (3.9)

which reduces to the usual MFCQ if I is finite. In the cone constraint formulation, we recall
that Robinson’s constraint qualification (RCQ) [28] is said to be satisfied at x̄ ∈ M̃(0) if

0 ∈ int{g(x̄)+Dg(x̄)Rn−C−}.

It is well-known that the following holds true (cf. [5, 37, 39]): Given (0, x̄) ∈ gphM̃,

M̃ has the Aubin property at (0, x̄)⇔ EMFCQ holds at x̄⇔ RCQ is satisfied at x̄. (3.10)

We finish this section by discussing the close relations and differences between the Aubin
property and the Lipschitz lower semicontinuity for solution sets of inequality systems. For
the standard model (1.1)∧(1.2), the Aubin property of M in general does not follow when M is
Lipschitz l.s.c., we refer to the simple example (cf. [40])

M(t) = {x ∈ R | tx≤ 0}, where t ∈ R varies near 0.

Obviously, M is Lipschitz l.s.c. and calm at (0,0), but the Aubin property is violated at this
point. In the case that only right-hand side perturbations of the constraints are allowed, there is a
more involved example of that type [10]: Defining M(t) := {x ∈ R2 | x2(x2− x2

1)≥ 0, x2 = t},
M is calm and Lipschitz l.s.c. at the origin, but has not the Aubin property there, see [10,
Example 3.2] for details.

Let us go back to the multifunction M̃ in the continuous model (3.8) with right-hand-side
perturbations of the constraints. As shown in the next remark, Lipschitz lower semicontinuity
and Aubin property coincide in special settings, but in general - even in the case of piecewise
linear, quasiconvex functions - both properties may differ.

Remark 3.2. Consider the continuous model of a parametric semi-infinite inequality system
(3.8). We discuss three different settings, let (0, x̄) ∈ gphM̃. Note that in the cases 1. and 2., the
perturbation of all parameters in the system (3.8) is crucial to get the equivalence.

1. Convex setting. If M̃ is l.s.c. at (0, x̄) then, in particular, M̃(b) 6= /0 for bi ≡ −θ (∀i)
and small θ > 0, by definition of lower semicontinuity. This immediately implies SCQ, thus,
by taking the above discussion into account, the statements (i) - (v) are equivalent: (i) M̃ is
Lipschitz l.s.c. at (0, x̄), (ii) M̃ is l.s.c. at (0, x̄), (iii) SCQ holds for M̃(0), (iv) M̃ has the Aubin
property at (0, x̄), (v) M̃ is Lipschitz l.s.c. and calm at (0, x̄). See e.g. [36, Lemma 3] for these
and more equivalent properties.

2. C1 setting. Following the methods of proof in [29, Lemma 1] or in [37, Thm. 2], which
were given in other contexts, one gets

(i) M̃ is Lipschitz l.s.c. at (0, x̄) ∈ gphM̃ ⇒ (ii)’ EMFCQ holds at x̄ ∈ M̃(0).
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Indeed, take any sequence θk ↓ 0 and define bk ∈ C(I) by bk
i := −θk for all i ∈ I. Then (i)

implies that there are some ρ > 0 and points xk ∈ M̃(bk) such that ‖xk− x̄‖ ≤ ρ θk for large k.
If gi(x̄) = 0 then −ρ−1‖xk− x̄‖ ≥ −θk ≥ gi(xk) = Dgi(x̄)(xk− x̄)+ o(‖xk− x̄‖), if k is large
enough. Division by ‖xk − x̄‖ and passage to a cluster point d of ‖xk − x̄‖−1(xk − x̄) yields
(3.9) (i.e. (ii)’) which finishes the proof. So, by taking (3.10) into account, EMFCQ, RCQ,
Aubin property and Lipschitz lower semicontinuity of M̃ at the point under consideration are
equivalent.

3. Suppose in (3.8): gi, i∈ I, are quasiconvex and (locally) Lipschitz functions. In general, the
Aubin property and the Lipschitz lower semicontinuity of M̃ differ in this framework. Consider
the simple example of a single inequality defined by a concave, piecewise linear real function:
M̃ is defined by

M̃(b) := {x ∈ R | min{x,0} ≤ b}, b near 0.

Obviously, M̃(b) = R if b≥ 0, and M̃(b) = (−∞,b] if b < 0, i.e., M̃ is calm and Lipschitz l.s.c.
at (0,0), but the Aubin property fails at this point. �

4. CONCLUDING REMARKS

Our paper has presented sufficient conditions for calmness from above and calmness from be-
low for the optimal value function ϕ of parametric optimization problems with locally Lipschitz
objective function, including semi-infinite programs and standard (non-)linear programs under
perturbations. This has been related to classical results on upper and lower semicontinuity of ϕ .
While calmness from above is a direct consequence of the Lipschitz lower semicontinuity of the
feasible set mapping M, calmness from below is implied by the calmness of M, together with
compactness and convexity requirements. It has been illustrated by examples that the assump-
tions imposed in the statements are essential even in the case of standard linear and quadratic
programs. The question of computing calmness moduli for the optimal value function of the
models under consideration has been outside the scope of this paper, however, we think that the
knowledge of calmness conditions for ϕ can help to extend the known results (as e.g. in [11])
to more general settings.
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