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Abstract. In this paper, we examine how can one achieve equilibrium when two related non-cooperative
strategic games are being played. We propose a split generalized Nash equilibrium problem for two
non-cooperative strategic games and also define an equivalent split quasi-variational inequality problem.
Further, by using the techniques of proving existence of quasi-variational inequality problems, we estab-
lish the existence of equilibria. Moreover, as an application, we investigate our split generalized Nash
equilibrium problem in the terms of river basin pollution problem.
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problem.
2020 Mathematics Subject Classification. 90C33, 49J40, 49J50.

1. INTRODUCTION

The study of equilibrium problems was started by Cournot [1], who studied an oligopolistic
economy. However, it was Nash [2, 3] who introduced this concept formally. Subsequently,
Arrow and Debreu [4] extended it to the generalized Nash equilibrium problem (GNEP), which
is useful in mathematical modeling, for instance, routing problems in communication networks
[5], and in engineering applications [6]. For an overview of the methods for solving GNEPs,
we refer the reader to the survey paper [7] and the references therein. We emphasize here that
GNEPs are connected to quasi-variational inequality problems, a fact which was first observed
by Bensoussan [8]. Thereafter, Harker [9] investigated these problems in Euclidean spaces.
Quasi-variational inequality problems have been proven an efficient tool to study the GNEPs.
Very recently, Bueno and Cotrina [10] studied the projected solutions of GNEP with the help
of quasi-variational inequality problems. For more recent relevant works, we refer to [11, 12]
and the references therein. Moreover, we would also like to mention the very recent interesting
relevant articles [13, 14] which studied the GNEP, its reformulation in terms of variational
inequality problems, and applications to the COVID-19 pandemic.

On the other hand, a split inverse problem concerns a model in which two vector spaces,
connected by a bounded linear operator, are given. In addition, two inverse problems are also
involved. The first instance of a split inverse problem is the split convex feasibility problem
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(SCFP), introduced by Censor and Elfving [15], where each inverse problem is a convex feasi-
bility problem in its corresponding space. Censor et al. [16] used this reformulation successfully
in the field of intensity-modulated radiation therapy (IMRT) treatment planning. Since then,
SCFP was generalized in various ways to split minimization, split common fixed points, split
variational inequality problems and many more. In addition, extensions to infinite dimensional
Hilbert and Banach spaces continue to attract a lot of interest. With regards to applications,
the split modelling approach is very flexible and allows different choices of inverse problems.
It also prevents the need to “translate” everything into one of the two spaces for further pro-
cessing of the solution. Treatment planning is one of the most known applications of split
inverse problem, but many other real-world problems can also successfully be solved by a split
reformulation.

In some situations, it is possible to shift the economic constraints from one space to another.
Unfortunately, the resulting constraints often turn out to be more complicated than the original
ones. Therefore, it is more advantageous to leave the constraints in their respective spaces and
build a framework for merging them. At this point, we would like to mention that Li [17, 18]
proposed such a mathematical framework for the extended Bertrant duopoly model of price
competition in terms of the split Nash equilibrium problem. Some more works on split equilib-
rium problems are well documented in [19, 20, 21] and the references therein. It is evident that
this area needs deeper and more detailed studies. We emphasize that the split generalized Nash
equilibrium problem has not been investigated so far, neither from the perspective of forging
appropriate variational inequality tools for solving it, nor from the perspective of constructing a
unified mathematical model for tackling several economic world related problems, such as pol-
lution control, traffic equilibrium, and oligopolistic market equilibrium problems. Therefore,
to pursue further explorations and present novel results for split modeling approaches to equi-
librium problems, particularly in non-cooperative strategic games, we introduce a split gener-
alized Nash equilibrium problem and also propose a split quasi-variational inequality problem.
We build an equivalent relationship between both problems. Then, we establish the existence
result of equilibria as well. To provide an application of the formulated split generalized Nash
equilibrium problems in pollution control problems, we interpret a river basin pollution model
in terms of such an equilibrium problem.

The outline of our paper is as follows. Preliminaries and formulations of the problem are
presented in Section 2. The equivalence of the split generalized Nash equilibrium problem
with the split quasi-variational inequality problem is established in Section 3. The existence of
equilibria is obtained in Section 4. A motivational example of the river basin pollution problem
is given in Section 5. Finally, Section 6 concludes our paper.

2. PRELIMINARIES AND PROBLEM FORMULATIONS

In game theory and microeconomics theory, it is vital to study the behavior of two related
strategic games when these are played for achieving equilibrium in the both games. In these
two related games, players of one game choose the strategies that come from the linear trans-
formation of the strategy of other game. In order to study the behavior of this kind of game,
we intend to formulate a split generalized Nash equilibrium problem (SGNEP), which com-
prises two related non-cooperative strategic games, denoted by K1(N) and K2(M), with N and
M players, respectively. Let xµ ∈ Rnµ and yν ∈ Rmν be the vectors of strategies of the players
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µ = 1,2, . . . ,N of the game K1(N) and players ν = 1,2, . . . ,M of the game K2(M), respectively.
Let x−µ ∈Rn−nµ and y−ν ∈Rm−mν be the vectors of strategies of all the players’ decision vari-
ables except those of the players µ and ν , respectively, and let x ∈Rn and y ∈Rm be the vectors
of strategies of all the players in their respective games. Here n = ∑

N
µ=1 nµ and m = ∑

M
ν=1 mν .

We think of x−µ and y−ν as the strategies of the rival players to xµ and yν , respectively. In
order to emphasize the strategy vectors of the players µ and ν , we rewrite the strategy vectors
x = (x1,x2, . . . ,xµ−1,xµ ,xµ+1, . . . ,xN) ∈ Rn and y = (y1,y2, . . . ,yν−1,yν ,yν+1, . . . ,yM) ∈ Rm of
all the players as x = (xµ ,x−µ) ∈ Rn and y = (yν ,y−ν) ∈ Rm. For the given vectors x−µ and
y−ν of the rival players of their respective games, the nonempty, closed, and convex feasible
sets (strategy sets) of the players µ and ν are denoted by Kµ(x−µ)⊂ Rnµ and Lν(y−ν)⊂ Rmν ,
respectively. Each player µ = 1,2, . . . ,N and ν = 1,2, . . . ,M has an objective function f µ :
Rn → R and gν : Rm → R, respectively. These functions are continuously differentiable and
known as the cost/loss functions. We assume that both of the objective functions are defined on
the full vector of strategies, which includes the strategies of the rival players too. We consider
the nonempty, closed and convex subsets K ⊂ Rn and L⊂ Rm and we are also given a bounded
linear operator T : Rn→ Rm such that T (K) ⊂ L. This operator allows us to say that the both
games K1(N) and K2(M) are related. Now, we define the split generalized Nash equilibrium
problem as follows:

(SGNEP) to find a strategy vector x∈K such that, for all µ = 1,2, . . . ,N, we have xµ ∈Kµ(x−µ)
and

f µ(xµ ,x−µ)≤ f µ(pµ ,x−µ), ∀ pµ ∈ Kµ(x−µ),

while the strategy vector y = T x ∈ L is such that, for all ν = 1,2, . . . ,M, we have yν ∈ Lν(y−ν)
and

gν(yν ,y−ν)≤ gν(qν ,y−ν), ∀ qν ∈ Lν(y−ν).

To formulate the split quasi-variational inequality problem, we define the two set-valued
maps Γ1 : K→ 2K and Γ2 : L→ 2L as

Γ1(x) =
N

∏
µ=1

Kµ(x−µ) ∀x ∈ K and Γ2(y) =
M

∏
ν=1

Lν(y−ν) ∀y ∈ L, respectively.

We also consider two functions F : K → Rn and G : L → Rm. Now, split quasi-variational
inequality problem is defined as follow:

(SQVIP) to find a vector x ∈ K such that x ∈ Γ1(x) and

〈F(x),z− x〉 ≥ 0, ∀z ∈ Γ1(x),

while the vector y = T x ∈ L is such that y ∈ Γ2(y), and

〈G(y),w− y〉 ≥ 0, ∀w ∈ Γ2(y).

Definition 2.1. A subset D of K is said to be compactly open (respectively, compactly closed)
in K if, for any nonempty compact subset L of K, the intersection D∩L is open (respectively,
closed) in L.

Remark 2.1. (a) It is evident from the definition above that every open (respectively, closed)
set is compactly open (respectively, compactly closed).
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(b) The union or intersection of a finite number of compactly open (respectively, compactly
closed) sets is compactly open (respectively, compactly closed).

(c) If A⊂K1 and B⊂K2 are compactly open (respectively, compactly closed) in K1 and K2,
respectively, then A×B ⊂ K1×K2 is compactly open (respectively, compactly closed)
in K1×K2.

Definition 2.2. A family {gµ}N
µ=1 of maps gµ : K → Rn is called hemicontinuous if, for all

x,y ∈ K and λ ∈ [0,1], the mapping λ →
N
∑

µ=1
〈gµ(x+λ z),zµ〉 with zµ = yµ − xµ is continuous,

where zµ is the µ th component of z.

Theorem 2.1. [22] Assume that S,T : K → 2K are set-valued maps and that the following
hypotheses are satisfied:

(1) ∀ x ∈ K, S(x)⊂ T (x),
(2) ∀ x ∈ K, S(x) 6= /0,
(3) ∀ x ∈ K, T (x) is convex,
(4) ∀ y ∈ K, S−1({y}) = {x ∈ K : y ∈ S(x)} is compactly open,
(5) there exists a nonempty, closed and compact subset D of K and y ∈D such that K \D⊂

S−1({y}).
Then there exists x ∈ K such that x ∈ T (x).

3. EQUIVALENCE OF SPLIT GENERALIZED NASH EQUILIBRIUM PROBLEM

Theorem 3.1. Assume that F(x) = (∇ f µ(x))N
µ=1, G(y) = (∇gν(y))M

ν=1, for each x ∈ K, y ∈ L,
and that for each µ ∈ {1,2, . . . ,N}, ν ∈ {1,2, . . . ,M}, x−µ , y−ν the functions f µ and gν are
convex on K and L in the arguments xµ and yν , respectively. Then x ∈ K is a split generalized
Nash equilibrium if and only if it is the solution of (SQVIP).

Proof. Let x ∈ K be a split generalized Nash equilibrium. It follows that, for all µ = 1,2, . . . ,N,
we have xµ ∈ Kµ(x−µ) and

f µ(xµ ,x−µ)≤ f µ(pµ ,x−µ), ∀ pµ ∈ Kµ(x−µ),

and y = T x ∈ L is such that, for all ν = 1,2, . . . ,M, yν ∈ Lν(y−ν) and

gν(yν ,y−ν)≤ gν(qν ,y−ν), ∀ qν ∈ Lν(y−ν).

Since Kµ(x−µ) and Lν(y−ν) are convex sets, λ pµ + (1− λ )xµ ∈ Kµ(x−µ) and λqν + (1−
λ )yν ∈ Lν(y−ν) for all pµ ∈ Kµ(x−µ) and qν ∈ Lν(y−ν), and λ ∈ [0,1]. Then the above in-
equality can be rewritten as

f µ(xµ +λ (pµ − xµ),x−µ)− f µ(xµ ,x−µ)≥ 0, ∀ pµ ∈ Kµ(x−µ),

and y = T x ∈ L is such that, for all ν = 1,2, . . . ,M, yν ∈ Lν(y−ν) and

gν(yν +λ (qν − yν),y−ν)−gν(yν ,y−ν)≥ 0, ∀ qν ∈ Lν(y−ν).

Dividing the above inequalities by λ , taking the limit λ → 0, and using Taylor’s series, we
obtain

〈∇ f µ(xµ ,x−µ), pµ − xµ〉 ≥ 0, ∀ pµ ∈ Kµ(x−µ)
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and y = T x ∈ L is such that, for all ν = 1,2, . . . ,M, yν ∈ Lν(y−ν) and

〈∇gν(yν ,y−ν),qν − yν〉 ≥ 0, ∀ qν ∈ Lν(y−ν).

By the hypotheses, F(x) = (∇ f µ(x))N
µ=1 and G(y) = (∇gν(y))M

ν=1, we have

〈F(x), p− x〉=
N

∑
µ=1
〈∇ f µ(xµ ,x−µ), pµ − xµ〉 ≥ 0, ∀ p ∈ Γ1(x),

and for y = T x ∈ L, we have y ∈ Γ2(y) and

〈G(y),q− y〉=
M

∑
ν=1
〈∇gν(yν ,y−ν),qν − yν〉 ≥ 0, ∀ q ∈ Γ2(y).

Since we already have x ∈ Γ1(x), it follows that x is the solution of (SQVIP).
Conversely, let x∈K be the solution to (SQVIP). First, we prove that, for each µ = 1,2, . . . ,N,

xµ ∈ Kµ(x−µ) satisfies the following

〈∇ f µ(x), pµ − xµ〉 ≥ 0, ∀ pµ ∈ Kµ(x−µ)

and y = T x ∈ L is such that for all ν = 1,2, . . . ,M,we have yν ∈ Lν(y−ν) and

〈∇gν(y),qν − yν〉 ≥ 0, ∀ qν ∈ Lν(y−ν).

(3.1)

To this end, suppose to the contrary. Then, we have following three cases:
(1) there exist µ ∈ {1,2, . . . ,N}, and a strategy vector pµ ∈ Kµ(x−µ) such that for xµ ∈

Kµ(x−µ) the following hold

〈∇ f µ(x), pµ − xµ〉< 0,

and y = T x ∈ L is such that there exists ν ∈ {1,2, . . . ,M}, and a strategy vector

qν ∈ Lν(y
−ν) such that, for yν ∈ Lν(y

−ν),〈∇gν(y),qν − yν〉< 0.

(3.2)

(2) there exist µ ∈ {1,2, . . . ,N}, and a strategy vector pµ ∈ Kµ(x−µ) such that, for xµ ∈
Kµ(x−µ), 〈∇ f µ(x), pµ−xµ〉< 0 and y=T x∈L is such that there exists ν ∈{1,2, . . . ,M},
and a strategy vector qν ∈ Lν(y−ν) such that for yν ∈ Lν(y−ν), 〈∇gν(y),qν − yν〉 ≥ 0.

(3) there exist µ ∈ {1,2, . . . ,N}, and a strategy vector pµ ∈ Kµ(x−µ) such that, for xµ ∈
Kµ(x−µ), 〈∇ f µ(x), pµ−xµ〉≥ 0 and y=T x∈L is such that there exists ν ∈{1,2, . . . ,M},
and a strategy vector qν ∈ Lν(y−ν) such that, for yν ∈ Lν(y−ν),〈∇gν(y),qν − yν〉< 0.

For Case 1, we consider the strategy vectors h ∈ Rn and h ∈ Rm as

h :=

{
hµ = pµ , µ = µ,

hµ = xµ , µ 6= µ,
and h :=

{
h

ν
= qν , ν = ν ,

h
ν
= yν , ν 6= ν .

Then h ∈ Γ1(x) and h ∈ Γ2(y). Now, we have

〈F(x),h− x〉=
N

∑
µ=1
〈∇ f µ(x),hµ − xµ〉= 〈∇ f µ(x), pµ − xµ〉

and y = T x ∈ L such that

〈G(y),h− y〉=
M

∑
ν=1
〈∇gν(y),h

ν − yν〉= 〈∇gν(y),qν − yν〉.

(3.3)
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The corresponding inequalities of (3.2) and (3.3) imply

〈F(x),h− x〉< 0 and y = T x ∈ L satisfies 〈G(y),h− y〉< 0. (3.4)

By using same techniques, we can find the following inequalities for the cases 2 and 3, respec-
tively,

〈F(x),h− x〉< 0 and y = T x ∈ L satisfies 〈G(y),h− y〉 ≥ 0, (3.5)

〈F(x),h− x〉 ≥ 0 and y = T x ∈ L satisfies 〈G(y),h− y〉< 0. (3.6)
Inequalities (3.4), (3.5), and (3.6) contradict the fact that x ∈ K is the solution to (SQVIP). Thus
inequality (3.1) is validated. Further, for each µ and ν , the convexities of the functions f µ and
gν in the arguments xµ and yν , respectively give the following

f µ(pµ ,x−µ)− f µ(xµ ,x−µ)≥ 〈∇ f µ(x), pµ − xµ〉 ∀ pµ ∈ Kµ(x−µ), (3.7)

gν(qν ,y−ν)−gν(yν ,y−ν)≥ 〈∇gν(y),qν − yν〉 ∀ qν ∈ Lν(y−ν). (3.8)
By combining (3.1), (3.7), and (3.8), we obtain that, for each µ = 1,2, . . . ,N, xµ ∈ Kµ(x−µ)
satisfies f µ(pµ ,x−µ)− f µ(xµ ,x−µ)≥ 0 for all pµ ∈ Kµ(x−µ) and y = T x ∈ L is such that, for
all ν = 1,2, . . . ,M, yν ∈ Lν(y−ν) and gν(qν ,y−ν)−gν(yν ,y−ν)≥ 0 for all qν ∈ Lν(y−ν), which
implies that x is the split generalized Nash equilibrium. �

4. EXISTENCE OF EQUILIBRIUM

In this section, we prove the existence of (SGNEP) by using the techniques of [22, 23] for
proving existence results of quasi-variational inequality problems. Throughout this section, for
better understanding of the strategy vectors xµ for each player µ = 1,2, . . . ,N and yν for each
player ν = 1,2, . . . ,M, the subsets K ⊂Rn and L⊂Rm are, respectively, given as K = ∏

N
µ=1 Xµ ,

X−µ = ∏
N
µ̂=1, (µ̂ 6=µ)Xµ̂ , and L = ∏

M
ν=1Yν , Y−ν = ∏

M
ν̂=1, (ν̂ 6=ν)Yν̂ , where {Xµ}N

µ=1 and {Yν}M
ν=1

are a family of nonempty, closed, and convex subsets with each Xµ ⊂ Rnµ and Yν ⊂ Rmν .
With this notation, the strategy vectors of all N and M players x ∈ K and y ∈ L can be written
as x = (xµ ,x−µ) ∈ Xµ × X−µ and y = (yν ,y−ν) ∈ Yν ×Y−ν , respectively. Moreover, for all
x−µ ∈ X−µ and y−ν ∈Y−ν , Kµ(x−µ)⊂ Xµ , and Lν(y−ν)⊂Yν , and for each x̂µ ∈ Xµ and ŷν ∈Yν ,
K−1

µ ({x̂µ}) ⊂ X−µ , and L−1
ν ({ŷν}) ⊂ Y−ν . By using these mathematical framework, it is easy

to see that

Γ
−1
1 ({x̂}) =

N⋂
µ=1

[Xµ ×K−1
µ ({x̂µ})] ∀ x̂ ∈ K and Γ

−1
2 ({ŷ}) =

M⋂
ν=1

[Yν ×L−1
ν ({ŷν})] ∀ ŷ ∈ L.

We consider that for each µ = 1,2, . . . ,N, ν = 1,2, . . . ,N, Xµ , Yν are compactly open and for
all x̂µ ∈ Xµ , ŷν ∈ Yµ , the sets K−1

µ ({x̂µ}) and L−1
ν ({ŷν}) are compactly open in X−µ and Y−ν .

Therefore, Remark (2.1) (b) and (c) imply that Γ
−1
1 ({x̂}) and Γ

−1
2 ({ŷ}) are compactly open

for all x̂ ∈ K and ŷ ∈ L. Further, we also assume that the sets A = {x ∈ K : x ∈ Γ1(x)} and
Â = {y ∈ L : y ∈ Γ2(y)} are compactly closed.

Theorem 4.1. Let x ∈ K and y ∈ L be arbitrary strategy vectors, F(x) = (∇ f µ(x))N
µ=1, G(y) =

(∇gν(y))M
ν=1, and, for each µ ∈ {1,2, . . . ,N}, ν ∈ {1,2, . . . ,M}, and given x−µ and y−ν , the

functions f µ and gν be convex on the set K and L in the arguments xµ and yν , respectively.
Assume that there exists a nonempty, closed, and compact subset D ⊂ K and x̂ ∈ D such that
〈∇ f µ(x̂), x̂−z〉< 0 ∀ z∈K\D with x̂∈Γ1(x̂), and there exists a nonempty, closed, and compact
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subset D̂ ⊂ L and ŷ ∈ D̂ such that 〈∇gν(ŷ), ŷ− ẑ〉 < 0 for all ẑ ∈ L \ D̂ with ŷ ∈ Γ2(ŷ). Then
(SQVIP) has a solution.

Proof. First, we define two set-valued maps ϒ1,ϒ2 : K→ 2K as follows: for each x ∈ K,

ϒ1(x) = {x̂ ∈ K :
N

∑
µ=1
〈∇ f µ(x̂), x̂µ − xµ〉< 0}

and

ϒ2(x) = {x̂ ∈ K :
N

∑
µ=1
〈∇ f µ(x), x̂µ − xµ〉< 0}.

We also define two set-valued maps Ω1,Ω2 : L→ 2L as follows: for each y ∈ L,

Ω1(y) = {ŷ ∈ L :
M

∑
ν=1
〈∇gν(ŷ), ŷν − yν〉< 0}

and

Ω2(y) = {ŷ ∈ L :
M

∑
ν=1
〈∇gν(y), ŷν − yν〉< 0}.

By using the convexity of each function f µ on the set K in the argument of Xµ , we obtain, for
all x1 and x2 ∈ K,

f µ(x1)− f µ(x2)≥ 〈∇ f µ(x2),x
µ

1 − xµ

2 〉. (4.1)

By changing the variables x1 and x2 in the inequality (4.1), we have

f µ(x2)− f µ(x1)≥ 〈∇ f µ(x1),x
µ

2 − xµ

1 〉. (4.2)

By adding inequalities (4.1) and (4.2), we see that

〈∇ f µ(x1),x
µ

2 − xµ

1 〉 ≤ 〈∇ f µ(x2),x
µ

2 − xµ

1 〉,

which also yields the following
N

∑
µ=1
〈∇ f µ(x1),x

µ

2 − xµ

1 〉 ≤
N

∑
µ=1
〈∇ f µ(x2),x

µ

2 − xµ

1 〉. (4.3)

Similarly, by using the convexity of each function gν on the set L in the argument of Yν , we
obtain, for all y1 = T x1 ∈ L and y2 = T x2 ∈ L,

M

∑
ν=1
〈∇gν(y1),yν

2 − yν
1 〉 ≤

M

∑
ν=1
〈∇gν(y2),yν

2 − yν
1 〉. (4.4)

Inequalities (4.3) and (4.4) imply that ϒ1(x) ⊂ ϒ2(x) for all x ∈ K and Ω1(y) ⊂ Ω2(y) for all
y ∈ L. Further, we define four more set-valued maps S1,T1 : K → 2K and S2,T2 : L→ 2L as
follows:

S1(x) :=

{
Γ1(x)∩ϒ1(x), if x ∈ A,
Γ1(x), if x ∈ K \A,

T1(x) :=

{
Γ1(x)∩ϒ2(x), if x ∈ A,
Γ1(x), if x ∈ K \A,

and

S2(y) :=

{
Γ2(y)∩Ω1(y), if y ∈ Â,
Γ2(y), if y ∈ L\ Â,

T2(y) :=

{
Γ2(y)∩Ω2(y), if y ∈ Â,
Γ2(y), if y ∈ L\ Â.

.
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Evidently, the point images of the set-valued maps Γ1 and ϒ2, that is, Γ1(x) and ϒ2(x) are
convex for all x ∈ K, and the point images of the set-valued maps Γ2 and Ω2, that is, Γ2(y) and
Ω2(y) are convex for all y ∈ L. Therefore, the point images of the set-valued map T1, that is,
T1(x), and T2, that is, T2(y) are also convex for all x ∈ K and y ∈ L. Moreover, S1(x)⊂ T1(x) for
all x ∈ K, and S2(y)⊂ T2(y) for all y ∈ L. Now, for all x̂ ∈ K, we have

S−1
1 ({x̂}) = {x ∈ K : x̂ ∈ S1(x)}

= {x ∈ A : x̂ ∈ Γ1(x)∩ϒ1(x)}∪{x ∈ K \A : x̂ ∈ Γ1(x)}

= [A∩ (Γ−1
1 ({x̂})∩ϒ

−1
1 ({x̂}))]∪ [K \A∩Γ

−1
1 ({x̂})]

= [(A∩ (Γ−1
1 ({x̂})∩ϒ

−1
1 ({x̂})))∪K \A]

∩ [(A∩ (Γ−1
1 ({x̂})∩ϒ

−1
1 ({x̂})))∪Γ

−1
1 ({x̂})]

= [K∩ ((Γ−1
1 ({x̂})∩ϒ

−1
1 ({x̂}))∪K \A)]

∩ [(A∪Γ
−1
1 ({x̂}))∩ (Γ−1

1 ({x̂})∩ϒ
−1
1 ({x̂}))]

= [(Γ−1
1 ({x̂})∩ϒ

−1
1 ({x̂}))∪K \A]∩Γ−1−1({x̂})

= (Γ−1
1 ({x̂})∩ϒ

−1
1 ({x̂}))∪ (K \A∩Γ

−1
1 ({x̂})).

In the same way, we can prove that

S−1
2 ({ŷ}) = (Γ−1

2 ({ŷ})∩Ω
−1
1 ({ŷ}))∪ (L\ Â∩Γ

−1
2 ({ŷ})), ∀ ŷ ∈ L.

Further, for each x̂ ∈ K and ŷ ∈ L, the complement of ϒ
−1
1 ({x̂}) in K and Ω

−1
1 ({ŷ}) in L can be

written as in following respective ways:

[ϒ−1
1 ({x̂})]c = {x ∈ K :

N

∑
µ=1
〈∇ f µ(x̂), x̂µ − xµ〉 ≥ 0}

and

[Ω−1
1 ({ŷ})]c = {y ∈ L :

M

∑
ν=1
〈∇gν(ŷ), ŷν − yν〉 ≥ 0}.

It is evident that [ϒ−1
1 ({x̂})]c is closed in K, and [Ω−1

1 ({ŷ})]c is closed in L. Consequently, set
ϒ
−1
1 ({x̂}) is open in K, and set Ω

−1
1 ({ŷ}) is open in L. Remark 2.1(a) implies that ϒ

−1
1 ({x̂}) is

compactly open for all x̂ ∈ K, and Ω
−1
1 ({ŷ}) is compactly open for all ŷ ∈ L. We also note that,

for all x̂ ∈ K, the sets Γ
−1
1 ({x̂}) and K \A are compactly open, and for all ŷ ∈ L, sets Γ

−1
2 ({ŷ})

and L \ Â are compactly open. Hence the sets S−1
1 ({x̂}) and S−1

2 ({ŷ}) are now seen to also be
compactly open for each x̂ ∈ K and for each ŷ ∈ L, respectively.

Now, we claim that there exists a point x∗ ∈ A such that Γ1(x∗)∩ϒ1(x∗) = φ , and, for the
point y∗ = T x∗ ∈ Â, Γ2(y∗)∩Ω1(y∗) = φ . To this end, we assume to the contrary. Thus we have
following three cases

(1) for all x∗ ∈ A, Γ1(x∗)∩ϒ1(x∗) 6= φ and for all y∗ = T x∗ ∈ Â, Γ2(y∗)∩Ω1(y∗) 6= φ ;
(2) for all x∗ ∈ A, Γ1(x∗)∩ϒ1(x∗) 6= φ and for all y∗ = T x∗ ∈ Â, Γ2(y∗)∩Ω1(y∗) = φ ;
(3) for all x∗ ∈ A, Γ1(x∗)∩ϒ1(x∗) = φ and for all y∗ = T x∗ ∈ Â, Γ2(y∗)∩Ω1(y∗) 6= φ .

For the Case 1, the sets Γ1(x) and Γ2(y) are, respectively, nonempty and convex for all x ∈ K
and y ∈ L, S1(x) 6= φ for each x ∈ K and S2(y) 6= φ for each y ∈ L. The hypotheses imply
that there exist a nonempty, closed, and compact subset D ⊂ K and a point x̂ ⊂ D such that



SPLIT MODELING APPROACH TO NON-COOPERATIVE STRATEGIC GAMES 397

K \D ⊂ S−1
1 ({x̂}), and there exist a nonempty, closed, and compact subset D̂ ⊂ L and a point

ŷ ⊂ D̂ such that L \ D̂ ⊂ S−1
2 ({ŷ}). Thus, all the conditions of Theorem (2.1) are satisfied, so

we conclude that there exists a point z ∈ K such that z ∈ T1(z), and there exists a point ẑ ∈ L
such that ẑ ∈ T2(ẑ). The definitions of the sets A and Â, and the set-valued maps T1 and T2 yield
that {x ∈ K : x ∈ T1(x)} ⊂ A and {y ∈ L : y ∈ T2(y)} ⊂ Â. Hence z ∈ Γ1(z)∩ϒ2(z) and z ∈ A,
and ẑ ∈ Γ2(ẑ)∩Ω2(ẑ) and ẑ ∈ Â. Consequently, z ∈ ϒ2(z) and ẑ ∈ Ω2(ẑ) give the following
inequalities

N

∑
µ=1
〈∇ f µ(z),zµ − zµ〉< 0 and

M

∑
ν=1
〈∇gν(ẑ), ẑν − ẑν〉< 0, respectively.

which are impossible. By using the same techniques, we can find the contradiction ∑
N
µ=1〈∇ f µ(z),zµ−

zµ〉 < 0 for Case 2, and ∑
M
ν=1〈∇gν(ẑ), ẑν − ẑν〉 < 0 for Case 3. The contradiction proves our

claim, i.e., there exists x∗ ∈ A such that
N

∑
µ=1
〈∇ f µ(x),xµ − x∗µ〉 ≥ 0,∀x ∈ Γ1(x∗),

and for y∗ = T x∗ ∈ Â,
M

∑
ν=1
〈∇gν(y),yν − y∗ν〉 ≥ 0, ∀ y ∈ Γ2(y∗).

By using the convexity of Kµ(x−∗µ), Γ1(x∗), and Lν(y−∗ν), Γ2(y∗), we can rewrite the above
inequality as follows:

N

∑
µ=1
〈∇ f µ(x∗+λ (x− x∗)),xµ − x∗µ〉 ≥ 0, ∀ x ∈ Γ1(x∗) and λ ∈ [0,1]

and for y∗ = T x∗ ∈ Â,
M

∑
ν=1
〈∇gν(y∗+λ (y− y∗),yν − y∗ν〉 ≥ 0, ∀ y ∈ Γ2(y∗) and λ ∈ [0,1].

Since ∇ f µ(.) and ∇gν(.) are hemicontinuous, by taking the limit λ → 0+ in the above inequal-
ity, we obtain

N

∑
µ=1
〈∇ f µ(x∗),xµ − x∗µ〉 ≥ 0, ∀ x ∈ Γ1(x∗)

and for y∗ = T x∗ ∈ Â,
M

∑
ν=1
〈∇gν(y∗),yν − y∗ν〉 ≥ 0, ∀ y ∈ Γ2(y∗).

By using the hypotheses, the above inequality can be rewritten as

x∗ ∈ A such that x∗ ∈ Γ1(x∗) and 〈F(x∗),x− x∗〉 ≥ 0, ∀ x ∈ Γ1(x∗),

and y∗ = T x∗ ∈ Γ2(y∗) satisfies 〈g(y∗),y− y∗〉 ≥ 0, ∀ y ∈ Γ2(y∗).

Therefore, x∗ is a solution to (SQVIP). �
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5. A MOTIVATIONAL EXAMPLE

In this section, we demonstrate that how (SGNEP) can be applied to a river basin pollu-
tion problem [24]. For the investigations of the river basin pollution problem, we refer to
[25, 26, 27]. We assume that a city is situated along the two sides of a river, and N and M
industrial factories (paper mills, chemical factories, pharmaceutical manufacturing companies,
and so on) are located along each side of the river, respectively. In the sequel, we call them
industrial agents. Nowadays, it is a very common scenario that industrial factories often dump
waste garbage, such as dirty water, used chemicals and oils, sewage, and cafeteria waste, di-
rectly into a community water source (river, lake or stream). Waste dumped contains several
contaminants which mix and create pollution concentration along the river. We assume that m
basin authorities (monitoring stations) are located along the river. Each basin authority is em-
powered to set a maximum pollutant concentration level which we denote by χs ∈ R+, where
s = 1,2, . . . ,m. Further, let eµ , êν ∈ R+ be the pollutant emission coefficient for the indus-
trial agent µ and ν , and xµ ,yν ∈ R+ be the chosen emitted pollutant concentration level by
the industrial agent µ = 1,2, . . . ,N and ν = 1,2, . . . ,M, respectively. Let x−µ ∈ RN−1

+ be the
chosen emitted pollutant concentration level by the all industrial agents of one side of river
except the agent µ , and y−ν ∈ RM−1

+ be the chosen emitted pollutant concentration level by
the all industrial agents of another side of river except the agent ν . Let x = (xµ ,x−µ) ∈ RN

+

be the chosen emitted pollutant concentration level by the all industrial agents of one side and
y = (yν ,y−ν) ∈ RM

+ be the chosen emitted pollutant concentration level by the all industrial
agents of another side. Waste materials, dumped by the industrial agents into the river, spread,
decay and then finally reach the basin authorities. Thus, the amount of pollution received by
the basin authority s = 1,2, . . . ,m by the industrial agents of one side of river is ∑

N
µ=1 δ

µ
s eµxµ ,

where δ
µ
s is the decay-and-transportation coefficient from the agent µ to the monitoring station

s and by the industrial agents of another side of river is ∑
M
ν=1 δ ν

s êνyν , where δ ν
s is the decay-

and-transportation coefficient from the agent ν to the monitoring station s. The basin authorities
impose constraints on the pollution, so that industrial agents control their pollutant emission into
the river. Thus, the pollution constraint imposed by the authority s on the industrial agents of
both sides of river are given by,

N

∑
µ=1

δ
µ
s eµxµ ≤ χs and

M

∑
ν=1

δ
ν
s êνyν ≤ χs, for s = 1,2, . . . ,m, respectively.

The nonempty set of entire feasible pollution concentration levels of industrial agents of both
sides of river are given by

K = {x ∈ RN
+ :

N

∑
µ=1

δ
µ
s eµxµ ≤ χs for s = 1,2, . . . ,m} and

L = {y ∈ RM
+ :

M

∑
ν=1

δ
ν
s êνyν ≤ χs for s = 1,2, . . . ,m}, respectively.

We bear in the mind that the industrial agents of both sides of river are dependent on each other,
at least because of the finiteness of the amount of dumping pollutants into the river. Therefore,
for any given x−µ and y−ν , the nonempty, closed, and convex feasible pollution concentration
level set of each industrial agent µ and ν are denoted by Kµ(x−µ) and Lν(y−ν), respectively,
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and these are defined as Kµ(x−µ) = {xµ ∈ R+ : (xµ ,x−µ) ∈ K} and Lν(y−ν) = {yν ∈ R+ :
(yν ,y−ν) ∈ L}. Each agent of both sides of river wishes to maximize its profit, where the profit

of industrial agent µ is defined by the difference between the revenue [p1− p2
N
∑

µ=1
xµ ]xµ and

the cost [aµ +bµxµ ]xµ . The profit of industrial agent ν is defined by the difference between the

revenue [q1−q2
M
∑

ν=1
yν ]yν and the cost [cν +dνyν ]yν , where p1, p2,q1, and q2 are the economic

constants which follow the inverse demand law and aµ ,bµ ,cν ,dν ∈ R+ are the cost coefficient
functions. Now, for given x−µ and y−ν , the aim of the industrial agents µ and ν of each side of
river is to choose an emitted pollutant concentration level xµ ∈ Kµ(x−µ) and yν ∈ Lν(y−ν) such
that it solves the following split optimization problem

max
xµ

[{(
p1− p2

N

∑
µ=1

xµ

)
xµ

}
−{aµ +bµxµ}xµ

]
and the vector y = T x ∈ L solves

max
yν

[{(
q1−q2

M

∑
ν=1

yν

)
yν

}
−{cν +dνyν}yν

]
.

An equilibrium of the above defined split optimization problem is a split generalized Nash
equilibrium in the sense of our (SGNEP), where

f µ(xµ ,x−µ) =

[
{aµ +bµxµ}xµ −

{(
p1− p2

N

∑
µ=1

xµ

)
xµ

}]
,

and gν(yν ,y−ν) =

[
{cν +dνyν}yν −

{(
q1−q2

M

∑
ν=1

yν

)
yν

}]
.

6. CONCLUSION

This paper is concerned with the areas of non-cooperative strategic games and split inverse
problems. We formulated a split generalized Nash equilibrium problem and a split quasi-
variational inequality problem. We proved an equivalence between these two problems as well
as the existence of equilibria. Furthermore, as an application of our split generalized Nash
equilibrium problem, we reformulated a river basin pollution problem in the terms of such a
problem. The model developed in this paper provides a foundation for our future studies that
attempt to test the numerical experiments of the above mentioned motivational example.
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