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Abstract. We study a certain class of split inverse problems which includes many other split-type prob-
lems. We propose a new inertial Mann-type Tseng’s extragradient method to approximate the solution
of this problem in real Hilbert spaces. Strong convergence of the proposed scheme to a minimum-norm
solution of the problem is established when the associated single-valued operators are monotone and
uniformly continuous with self-adaptive step size strategy. Moreover, we also study some classes of split
inverse problems and provide some numerical implementations to illustrate our method and compare
with a non-inertial version and a recently related method.
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1. INTRODUCTION

Several problems arising in many real-world applications, such as intensity-modulated radi-
ation therapy, phase retrieval, image recovery, signal processing, data compression, and many
more, can be mathematically modeled as the Split Inverse Problem (SIP), (see, e.g., [1, 2, 3, 4]).
The SIP is defined as follows:

Find x∗ ∈ H1 that solves IP1

such that

ŷ := T x∗ ∈ H2 solves IP2,

where H1 and H2 are real Hilbert spaces, IP1 represents an inverse problem formulated in H1 and
IP2 represents an inverse problem defined in H2, and T : H1→ H2 is a bounded linear operator.

The Split Convex Feasibility Problem (SCFP) which was first studied by Censor and Elfv-
ing [1] is the first instance of the SIP. This has been practically applied for modelling inverse
problems that arise from medical image reconstruction. The SCFP finds numerous application
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in approximation theory, control theory, biomedical engineering, signal processing, geophysics,
communications, and so on; see, e.g., [2, 5, 6, 7, 8, 9, 10]. The SCFP is defined as follows:

Find x∗ ∈C such that ŷ = T x∗ ∈ Q,

where C and Q are nonempty, closed, and convex subsets of Hilbert spaces H1 and H2, respec-
tively, and T : H1→ H2 is a bounded linear operator.

Since the introduction of the SCFP, various SIPs that are more general than the SCFP have
been introduced and studied. One of these important generalizations is the Split Common Null
Point Problem (SCNPP), which is defined as follows:

Find x∗ ∈ H1 that solves 0 ∈ F1(x∗) (1.1)

such that
ŷ = T x∗ ∈ H2 solves 0 ∈ F2(ŷ), (1.2)

where F1 : H1→ 2H1,F2 : H2→ 2H2 are two monotone operators, and T : H1→H2 is a bounded
linear operator. The Split Monotone Variational Inclusion Problem (SMVIP) is another impor-
tant SIP introduced by Moudafi in [11]. The SMVIP is defined as follows:

Find x∗ ∈ H1 that solves 0 ∈ f1(x∗)+F1(x∗) (1.3)

such that
ŷ = T x∗ ∈ H2 solves 0 ∈ f2(ŷ)+F2(ŷ), (1.4)

where f1 : H1→H1, f2 : H2→H2 are single-valued operators, F1 : H1→ 2H1,F2 : H2→ 2H2 are
multivalued operators, and T : H1→ H2 is a bounded linear operator.

The SMVIP (1.3)-(1.4) is quite general. It includes several other optimization problems
as special cases, such as the split saddle-point problems, split minimization problems, split
equilibrium problems, split variational inequality problems, SCNPP (1.1)-(1.2), etc; see, e.g.,
[12, 13, 14, 15, 16, 17, 18].

In order to solve the SMVIP (1.3)-(1.4), Moudafi [11] introduced the following iterative
method: For x1 ∈ H1, the sequence {xn} is generated as follows:

xn+1 = JF1
λ
(IH1−λ f1)(xn +ηT ∗(JF2

λ
(IH2−λ f2)− IH2)T xn), n≥ 1, (1.5)

where η ∈
(

0, 2
‖T‖

)
, IH1 and IH2 denote the identity operators on H1 and H2, respectively, and

JF1
λ

and JF2
λ

are the resolvents of F1 and F2, respectively. He established the weak convergence
of the sequence of iterates generated by Algorithm (1.5) under the conditions that the solution
set of the SMVIP (1.3)-(1.4) is nonempty, F1,F2 are maximal monotone, f1, f2 are L1-, L2-
co-coercive (also known as inverse strongly monotone), respectively and λ ∈ (0,2α), where
α := min{L1,L2}.

Recently, researchers proposed efficient iterative methods for approximating the solutions of
the SMVIP (1.3)-(1.4) (see, e.g., [19] and the references therein). However, like the result of
Moudafi [11], they require that the associated single-valued operators f1 and f2 are co-coercive,
which stringent condition limits the scope of applications of these results (see Remark 2.1).

To remedy the above drawback, Izuchukwu et al. [20] recently introduced two new iter-
ative methods for approximating the solution of the SMVIP (1.3)-(1.4) in the framework of
Hilbert spaces. Their proposed methods only require that the single-valued operators f1 and f2
be Lipschitz continuous, and employ the inertial and relaxation techniques with the proximal
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contraction method. The first algorithm proposed by the authors requires the knowledge of the
Lipschitz constant of the single-valued operator for its implementation while the second algo-
rithm employs self-adaptive step size techniques, so that its execution does not depend on the
Lipschitz constant of the single-valued operators f1 and f2 or the operator norm ‖T‖. However,
the convergence results in Izuchukwu et al. [20] were only weakly convergent, just like the
result of Moudafi [11]. For optimization problems, strong convergence results are preferable
because they are more applicable than the weak convergence results. Motivated by this, Wang
et al. [21] made an attempt to improve on the results of Izuchukwu et al. [20] by proposing
two new projection and contraction methods for finding the solutions of the SMVIP (1.3)-(1.4)
in the framework of Hilbert spaces. Their proposed methods employ the inertial techniques
with self adaptive step sizes. Under certain conditions on the control parameters, they obtained
strong convergence results for the proposed algorithms.

Remark 1.1. All the results above on SMVIP (1.3)-(1.4) are not applicable when the associated
single-valued operators f1 and f2 are non-Lipschitz. To the best of our knowledge, there are no
existing results in the literature for solving the SMVIP (1.3)-(1.4) when the associated single-
valued operators f1 and f2 are non-Lipschitz.

Recently, Reich and Tuyen [22] introduced and investigated a new class of split inverse prob-
lem named the Split Common Null Point Problem with Multiple Output Sets (SCNPPMOS).
This problem is formulated as follows: Find a point x† ∈ H such that

x† ∈Ψ1 := F−1(0)∩ (∩N
i=1T−1

i (F−1
i (0))) 6= /0. (1.6)

where Ti : H → Hi, i = 1,2, ...,N, are bounded linear operators, and F : H → H, Fi : Hi →
2Hi, i= 1,2, ...,N are maximal monotone operators, and H,Hi, i= 1,2, . . . ,N are Hilbert spaces.
Moreover, they proposed two self-adaptive algorithms for approximating the solution of the
SCNPPMOS (1.6) in the framework of Hilbert spaces. Under certain conditions on the con-
trol sequences, they proved that the sequences generated by the proposed algorithms converge
strongly to the solution of the SCNPPMOS (1.6).

In addition, Alakoya and Mewomo [23] studied the Split Variational Inequality Problem
with Multiple Output Sets (SVIPMOS). Let H,Hi, i = 1,2, ...,N, be real Hilbert spaces, and let
C,Ci be nonempty, closed, and convex subsets of real Hilbert spaces H and Hi, i = 1,2, ...,N,
respectively. Let Ti : H → Hi, i = 1,2, ...,N, be bounded and linear operators, and let A : H →
H,Ai : Hi → Hi, i = 1,2, ...,N, be mappings. The SVIPMOS is formulated as finding a point
x∗ ∈C such that

x∗ ∈Ψ2 :=V I(C,A)∩ (∩N
i=1T−1

i V I(Ci,Ai)) 6= /0. (1.7)

They proposed a relaxed inertial Tseng’s extragradient method for solving the SVIPMOS (1.7).
Under some mild conditions, they proved that the sequence generated by the proposed algo-
rithm converges strongly to a minimum-norm solution of the problem. Uzor et al. [24] recently
introduced and studied the concept of Split Monotone Variational Inclusion Problem with Mul-
tiple Output Sets (SMVIPMOS). Let H,Hi, i= 1,2, ...,N, be real Hilbert spaces, and let Ti : H→
Hi, i = 1,2, ...,N, be bounded and linear operators. Let F : H→ 2H ,Fi : Hi→ 2Hi, i = 1,2, ...,N,
be multivalued operators, and f : H→H, fi : Hi→Hi, i = 1,2, ...,N, be single-valued operators.
The SMVIPMOS is formulated as finding a point x∗ ∈ H such that

x∗ ∈Ψ3 := ( f +F)−1(0)∩ (∩N
i=1T−1

i ( fi +Fi)
−1(0)) 6= /0. (1.8)
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Observe that the SMVIPMOS (1.8) is quite general. It includes as special cases all the above
optimization problems discussed so far in this paper. In particular, if we set f = 0H , fi = 0Hi, i =
1,2, ...,N, we obtain the SCNPPMOS (1.6), where 0H and 0Hi are the zero mappings on Hilbert
spaces H and Hi, i = 1,2, ...,N, respectively. Moreover, Uzor et al. [24] proposed the following
inertial viscosity method for approximating the solution of SMVIPMOS (1.8) with the fixed
point constraint of nonexpansive maps in the framework of Hilbert spaces:

Algorithm 1
1: Select initial data x0,x1 ∈ H, let H0 = H, T0 = IH , F0 = F, f0 = f . Set n := 0.
2: Given the (n−1)th and nth iterates, choose θn such that 0≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ , εn
||xn−xn−1||

}
, if xn 6= xn−1,

θ , otherwise.

3: Compute
wn = xn +θn(xn− xn−1).

4: Compute

un =
N

∑
i=0

δn,i[wn− τn,iT ∗i (I
Hi−Kλn,i)Tiwn],

where

τn,i =
ψn,i||(IHi−Kλn,i)Tiwn||2

||T ∗i (IHi−Kλn,i)Tiwn||2 +Θn,i
.

5: Compute {
yn = ξnwn +(1−ξn)Sun;
xn+1 = αnγg(wn)+(I−αnD)yn.

6: Set n← n+1, and go to 2.

Here, Kλn,i = JFi
λn,i

(IHi−λn,i fi), 0 < k1 ≤ λn,i ≤ k2 < 2ϕ, ϕ := min{σ ,σi : i = 1,2 . . . ,N} and

IHi is the identity map on Hi,F : H → 2H ,Fi : Hi→ 2Hi, i = 1,2, ...,N, are maximal monotone
operators, and f : H→H, fi : Hi→Hi, i = 1,2, ...,N, are σ -inverse strongly monotone operator
and σi-inverse strongly monotone operators, respectively, S : H → H is a nonexpansive map-
ping, D : H→H is a strongly positively bounded linear operator and g : H→H is a contraction.
Under some conditions on the control parameters, the authors proved that the sequence gener-
ated by Algorithm 1 converges strongly to the common solution of the SMVIPMOS (1.8) and
the fixed point problem of nonexpansive mappings.

Remark 1.2. We point out that one of the limitations of the proposed Algorithm 1 by Uzor et
al. [24] is that the method is not applicable to the SMVIPMOS (1.8) when the associated single-
valued operators fi, i = 0,1,2, . . . ,N are monotone and/or non-Lipschitz. Moreover, the step
sizes λn,i depend on the inverse strongly monotonicity (co-coercive) constants of the operators
fi, i = 0,1,2, . . . ,N, which could deteriorate the speed of the proposed algorithm.

Polyak in [25] first introduced an inertial extrapolation as an acceleration process to solve the
smooth convex minimization problem. Recently, many authors constructed efficient iterative
algorithms by using inertial the extrapolation technique; see, e.g., [26, 27, 28, 29, 30, 31, 32].
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In this study, we propose a new inertial Mann-type Tseng’s extragradient method with self-
adaptive step sizes for approximating the solution of the SMVIPMOS (1.8) in Hilbert spaces.
Our proposed method does not require the stringent co-coercive and/or Lipschitz continuity
conditions assumed in the result of Uzor et al. [24] and often assumed by authors when solving
monotone inclusion problems. Instead, our method only requires the associated single-valued
operators to be monotone and uniformly continuous, which are more relaxed conditions than the
co-coercive and Lipschitz continuity assumptions. Moreover, the proposed algorithm does not
require knowledge of the operators’ norm for its execution. Under mild conditions on the con-
trol parameters, we prove that the sequence generated by our proposed algorithm converges to
a minimum-norm solution of the SMVIPMOS (1.8). Finally, we apply our strong convergence
theorem to some classes of split inverse problems and we present several numerical experiments
to demonstrate the usefulness of our result.

The remaining sections of this paper are organized as follows. We present in Section 2 some
definitions and lemmas required in analyzing the convergence of the proposed algorithm and
the proposed algorithm is presented in Section 3. In Section 4, we analyze the convergence of
the proposed method while in Section 5 we apply our result to certain classes of split inverse
problems. We present in Section 6 several numerical experiments with graphical illustrations.
Finally, we give a final remark in Section 7 summarizing the results of the paper.

2. PRELIMINARIES

Some known and useful results and definitions are reviewed in this section. For the rest of the
paper, we denote H,Hi, i= 1,2, ...,N, as real Hilbert spaces with inner product 〈., .〉 and induced
norm ‖.‖. For any sequence {xn} ⊂H, xn ⇀ x and xn→ x denote weak and strong convergence
of {xn} to a point x ∈ H respectively, and wω(xn) = {x ∈ H : ∃{xnk} ⊂ {xn} such that xnk ⇀ x}
denotes the weak ω-limit set of {xn}.

Definition 2.1. An operator A : H→H is L-Lipschitz continuous if there exists a constant L > 0
such that ||Ax−Ay|| ≤ L||x− y|| for all x,y ∈ H. Here L is called the Lipschitz constant.

Definition 2.2. An operator A : H → H is α-strongly monotone if there exists α > 0 such that
〈x− y,Ax−Ay〉 ≥ α‖x− y‖2 for all x,y ∈ H.

Definition 2.3. An operator A : H→H is said to be α-inverse strongly monotone (also known as
α-co-coercive) if there exists a positive real number α such that 〈x−y,Ax−Ay〉 ≥ α||Ax−Ay||2
for all x,y ∈ H.

Definition 2.4. An operator A : H → H is monotone if the following inequality is satisfied
〈x− y,Ax−Ay〉 ≥ 0 for all x,y ∈ H.

Definition 2.5. An operator A : H→ H is uniformly continuous if, for every ε > 0, there exists
δ = δ (ε)> 0 such that ‖Ax−Ay‖< ε whenever ‖x− y‖< δ for all x,y ∈ H.

Remark 2.1. The following relationships should be noted:
(1) if A is α-strongly monotone and L-Lipschitz continuous, then A is α

L2 -inverse strongly
monotone.

(2) if A is α-inverse strongly monotone operator, then it is 1
α

-Lipschitz continuous and
monotone but the converse statement is false.
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(3) uniform continuity is a weaker notion than Lipschitz continuity.

The notion of almost Lipschitz continuity is presented next and the proof is given for com-
pleteness. For more details, one refers to [33].

Lemma 2.1. Let D⊂H be convex. An operator A : D→ H is uniformly continuous if and only
if, for every ε > 0, there exists L∗ <+∞ such that ||Ax−Ay|| ≤ L∗||x−y||+ε for all x,y∈D.An
operator A : D→H satisfying the inequality above for every ε > 0 is said to be almost Lipschitz
continuous.

Proof. Assume that A is almost Lipschitz continuous on a convex domain D in the sense defined
above. Let ε > 0 be fixed. Choose L∗ such that ||Ax−Ay|| ≤ L∗||x− y||+ ε

2 for all x,y ∈ D. If
we take δ = ε

2L∗ , then

‖Ax−Ay‖< ε whenever ‖x− y‖< δ , ∀x,y ∈ D.

Hence, A is uniformly continuous. We next assume that A is uniformly continuous on a convex
domain D, which implies that, for a fix ε > 0, there exists δ > 0 such that

‖Ax−Ay‖< ε whenever ‖x− y‖< δ , ∀x,y ∈ D.

Let x,y ∈ D and σ = δ

2 . Define

rn = nσ
(x− y)
||x− y||

+ y, n = 0,1,2, · · · ,
⌊
||x− y||

σ

⌋
.

Clearly r0 = y and rn ∈D for n = 0,1,2, · · · ,
⌊
||x−y||

σ

⌋
since D is convex. Furthermore, we obtain

the following estimate

||rn− rn−1|| =

∥∥∥∥(nσ
(x− y)
||x− y||

+ y
)
−
(
(n−1)σ

(x− y)
||x− y||

+ y
)∥∥∥∥ (2.1)

=

∥∥∥∥σ
(x− y)
||x− y||

∥∥∥∥= σ .

Similarly, we have

‖x− rN‖ ≤ σ , (2.2)

where

N =

⌊
||x− y||

σ

⌋
.

So, we obtain the following estimate by using the fact that Ar0 = Ay

‖Ax−Ay‖ ≤ ‖(Ar1−Ar0)+(Ar2−Ar1)+(Ar3−Ar2)+ · · ·+(ArN−ArN−1)‖
+‖Ax−ArN‖

≤
N

∑
k=1
‖Ari−Ari−1‖+‖Ax−ArN‖. (2.3)

Using the uniform continuity of A together with (2.1) and (2.2), we have from (2.3) that

‖Ax−Ay‖ ≤
N

∑
k=1

ε + ε < Nε + ε ≤ ||x− y||
σ

ε + ε = L∗||x− y||+ ε,

where L∗ = 2ε

δ
. Hence, A is almost Lipschitz continuous. �
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Definition 2.6. A function c : H → R∪{+∞} is said to be weakly lower semi-continuous (w-
lsc) at x ∈ H if c(x)≤ liminfn→∞ c(xn) holds for every sequence {xn} in H satisfying xn ⇀ x.

Definition 2.7. A convex map c : H → R is said to be subdifferentiable at a point x ∈ H if the
set ∂c(x) = {ζ ∈ H | c(y) ≥ c(x)+ 〈ζ ,y− x〉, ∀y ∈ H} is nonempty. Each element in ∂c(x)
is called a subgradient of c at x. If c is subdifferentiable at each x ∈ H, then c is said to be
subdifferentiable on H.

Definition 2.8. Let λ > 0 and B : H→ 2H be a multivalued operator. The effective domain of B
denoted by dom(B) is given by dom(B) = {x ∈H : Bx 6= /0}. The operator B : H→ 2H is called

• monotone if 〈u− v,x− y〉 ≥ 0 for all u ∈ B(x),v ∈ B(y).
• maximal monotone if the graph Gr(B) of B, Gr(B) := {(x,u) ∈ H×H|u ∈ B(x)}, is not

properly contained in the graph of any other monotone mapping. In other words, B is
maximal if and only if for x ∈ dom(B) and u ∈ Bx such that 〈u− v,x− y〉 ≥ 0 implies
(y,v) ∈ Gr(B).

The resolvent of B with parameter λ > 0 denoted by JB
λ

is given by JB
λ

:= (IH +λB)−1, where
IH is the identity operator of Hilbert space H. It is known that if B is maximal monotone, then JB

r
is single-valued, firmly nonexpansive and dom(JB

r ) = H. A fundamental example of a maximal
monotone mapping is the subdifferential of a convex proper lower semicontinuous function.

Lemma 2.2. [34] Let F : H → 2H be a maximal monotone mapping, and let f : H → H be
a hemicontinuous, monotone and bounded operator. Then the mapping f +F is a maximal
monotone mapping.

Lemma 2.3. [35] Suppose that {an} is a sequence of nonnegative real numbers, {αn} is a
sequence in (0,1) with ∑

∞
n=1 αn = +∞, and {zn} is a sequence of real numbers. Assume that

an+1 ≤ (1−αn)an +αnzn for all n ≥ 1. If limsupk→∞ znk ≤ 0 for every subsequence {ank} of
{an} satisfying liminfk→∞(ank+1−ank)≥ 0, then limn→∞ an = 0.

Lemma 2.4. [36] Suppose that {λn} and {θn} are two nonnegative real sequences such that
λn+1 ≤ λn +ϕn for all n≥ 1. If ∑

∞
n=1 ϕn <+∞, then limn→∞ λn exists.

The last lemma is trivial.

Lemma 2.5. Let H be a real Hilbert space. Then the following results hold for all x,y ∈H and
δ ∈ (0,1) :

(i) ||x+ y||2 = ||x||2 +2〈x,y〉+ ||y||2;
(ii) ||x+ y||2 ≤ ||x||2 +2〈y,x+ y〉;

(iii) ||δx+(1−δ )y||2 = δ ||x||2 +(1−δ )||y||2−δ (1−δ )||x− y||2.

3. PROPOSED METHOD

In this section, we introduce a new Tseng’s extragradient algorithm involving Mann-Type
iteration with inertial technique and self-adaptive stepsize for solving the SMVIPMOS (1.8).
For proving the algorithm’s strong convergence, we assume the following.

Let H,Hi, i = 1,2, ...,N, be real Hilbert spaces.

Assumption 3.1. (a) The feasible set Ω is nonempty subset of H.
(b) Ti : H→ Hi, i = 1,2, ...,N, are bounded linear operators with adjoints T ∗i .
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(c) F : H→ 2H , Fi : Hi→ 2Hi, i = 1,2, ...,N, be maximal monotone operators.
(d) f : H→ H, fi : Hi→ Hi, i = 1,2, ...,N, be uniformly continuous monotone operators.

In addition, we require that the control sequences satisfy the following conditions:

Assumption 3.2.

(a) {αn} ⊂ (0,1), lim
n→∞

αn = 0,
∞

∑
n=1

αn =+∞, lim
n→∞

εn

αn
= 0,{βn} ⊂ [a,b]⊂ (0,1−αn),θ > 0;

(b) 0 < ci < c′i < 1,0 < ϕi < ϕ
′
i < 1, lim

n→∞
cn,i = lim

n→∞
ϕn,i = 0,λ1,i > 0, ∀ i = 0,1,2, . . . ,N;

(c) {ρn,i} ⊂ R+,
∞

∑
n=1

ρn,i <+∞,0 < ai ≤ δn,i ≤ bi < 1,
N

∑
i=0

δn,i = 1 for each n≥ 1.

Subsequently, we give the convergence analysis of the sequence {xn} generated by our proposed
method, Algorithm 2. The proposed algorithm is stated below:

Algorithm 2
1: Select initial data x0,x1 ∈ H. Let H0 = H, T0 = IH , F0 = F, and f0 = f . Set n := 0.
2: Given the (n−1)th and nth iterates, choose θn such that 0≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ , εn
||xn−xn−1||

}
, if xn 6= xn−1,

θ , otherwise.

3: Compute wn = xn +θn(xn− xn−1).

4: Compute yn,i = JFi
λn,i

(Tiwn−λn,i fiTiwn).

5: Compute un,i = yn,i−λn,i( fiyn,i− fiTiwn), where

λn+1,i =

{
min

{
(cn,i+ci)‖Tiwn−yn,i‖
‖ fiTiwn− fiyn,i‖ , λn,i +ρn,i

}
, if fiTiwn− fiyn,i 6= 0,

λn,i +ρn,i, otherwise.

6: Compute zn = ∑
N
i=0 δn,i

(
wn +ηn,iT ∗i (un,i−Tiwn)

)
, where

ηn,i =


(ϕn,i+ϕi)‖Tiwn−un,i‖2

‖T ∗i (Tiwn−un,i)‖2 , if ‖T ∗i (Tiwn−un,i)‖ 6= 0,

0, otherwise.
(3.1)

7: Compute
xn+1 = (1−αn−βn)wn +βnzn.

8: Set n← n+1, and go to 2.

Remark 3.1. From Assumption 3.2 (a) and (b), it follows that

lim
n→∞

θn||xn− xn−1||= 0 and lim
n→∞

θn

αn
||xn− xn−1||= 0.

Remark 3.2. When the single-valued operators fi, i= 0,1,2, . . . ,N are non-Lipschitz, our method
does not require any linesearch procedure, which could be computationally too expensive to im-
plement. Instead, we employ self-adaptive step size techniques that only require simple com-
putations with known parameters per iteration. Moreover, some of the parameters are relaxed
to accommodate larger range of step sizes.
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4. CONVERGENCE RESULTS

In this section, we establish the strong convergence result of our proposed Algorithm 2 under
the Assumptions 3.1 and 3.2. We begin by proving some Lemmas needed for the main result.

Lemma 4.1. Under Assumptions 3.1 and 3.2, the sequence {λn,i} generated by Algorithm 2 is
well defined for each i = 0,1,2, . . . ,N. In addition,

lim
n→∞

λn,i = λ1,i ∈
[

min
{

ci

Pi
,λ1,i

}
,λ1,i +Φi

]
,

where

Φi =
∞

∑
n=1

ρn,i.

Proof. We have from Assumption 3.1(d) that fi is uniformly continuous for each i= 0,1,2, . . . ,N.
Given εi > 0, there exists L∗i <+∞ such that

‖ fiTiwn− fiyn,i‖ ≤ L∗i ‖Tiwn− yn,i‖+ εi.

Let fiTiwn− fiyn,i 6= 0 for all n≥ 1. Then

(cn,i + ci)‖Tiwn− yn,i‖
‖ fiTiwn− fiyn,i‖

≥
(cn,i + ci)‖Tiwn− yn,i‖

L∗i ‖Tiwn− yn,i‖+ εi

=
(cn,i + ci)‖Tiwn− yn,i‖
(L∗i +ξi)‖Tiwn− yn,i‖

=
(cn,i + ci)

Pi
≥ ci

Pi
,

where εi = ξi‖Tiwn−yn,i‖ for some ξi ∈ (0,1) and Pi = L∗i +ξi. Thus, by the definition of λn+1,i,
sequence {λn,i} has lower bound min{ ci

Pi
,λ1,i} and has upper bound λ1,i +Φi. By Lemma 2.4,

the limit lim
n→∞

λn,i exists and we denote by λi = lim
n→∞

λn,i. It is obvious that λi ∈
[

min{ ci
Pi
,λ1,i},λ1,i+

Φi
]

for each i = 0,1,2 . . . ,N. �

Lemma 4.2. Let Assumptions 3.1 and 3.2 of Algorithm 2 hold. Then, there exists a positive
integer N such that

ϕi +ϕn,i ∈ (0,1), and
λn,i(cn,i + ci)

λn+1,i
∈ (0,1),

for all n≥ N.

Proof. For each i = 0,1,2, . . . ,N,, we know that lim
n→∞

ϕn,i = 0 and 0 < ϕi < ϕ ′i < 1. So, there

exists a positive integer N1,i such that 0 < ϕi +ϕn,i ≤ ϕ ′i < 1 for all n≥ N1,i. We also know that
for each i = 0,1,2, . . . ,N, limn→∞ λn,i = λi and 0 < ci < c′i < 1. From these, we have

lim
n→∞

(
1−

λn,i(cn,i + ci)

λn+1,i

)
= 1− ci > 1− c′i > 0.

Hence, there exists a positive integer N2,i, i = 0,1,2, . . . ,N, such that

1−
λn,i(cn,i + ci)

λn+1,i
> 0, ∀n≥ N2,i.

If we set N = max{N1,i, N2,i : i = 0,1,2, . . . ,N}, then the required result follows. �
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Lemma 4.3. If ‖T ∗i (Tiwn− un,i)‖ 6= 0, then the sequence {ηn,i} defined by (3.1) is bounded
below by a positive real number for each i = 0,1,2, . . . ,N.

Proof. If ‖T ∗i (Tiwn−un,i)‖ 6= 0, then for each i = 0,1,2, . . . ,N, then

ηn,i =
(ϕn,i +ϕi)‖Tiwn−un,i‖2

‖T ∗i (Tiwn−un,i)‖2 .

We use the boundedness of Ti and the fact that limn→∞ ϕn,i = 0 for each i = 0,1,2, . . . ,N to
obtain the estimate

(ϕn,i +ϕi)‖Tiwn−un,i‖2

‖T ∗i (Tiwn−un,i)‖2 ≥
(ϕn,i +ϕi)‖Tiwn−un,i‖2

‖Ti‖2‖Tiwn−un,i‖‖2 ≥ ϕi

‖Ti‖2 .

Hence, we obtain a lower bound ϕi
‖Ti‖2 for {ηn,i} for each i = 0,1,2, . . . ,N. �

Lemma 4.4. Suppose that {xn} is a sequence generated by Algorithm 2 such that Assumptions
3.1 and 3.2 hold. Then the following inequality holds for all p ∈Ω :

‖un,i−Ti p‖2 ≤ ‖Tiwn−Ti p‖2−
(

1−
λ 2

n,i

λ 2
n+1,i

(cn,i + ci)
2
)
‖Tiwn− yn,i‖2.

Proof. From the definition of λn+1,i, we have

‖ fiTiwn− fiyn,i‖ ≤
(cn,i + ci)

λn+1,i
‖Tiwn− yn,i‖, ∀n ∈ N, i = 0,1, . . . ,N. (4.1)

Clearly for the cases where fiTiwn− fiyn,i = 0 and fiTiwn− fiyn,i 6= 0, inequality (4.1) holds.
Let p ∈ Ω. It follows that Ti p ∈ Ω, i = 0,1,2, . . . ,N. By the definition of un,i and the Lemma
2.5 together with (4.1), we obtain

‖un,i−Ti p‖2

= ‖yn,i−Ti p‖2 +λ
2
n,i‖ fiyn,i− fiTiwn‖2−2λn,i〈yn,i−Ti p, fiyn,i− fiTiwn〉

= ‖Tiwn−Ti p‖2 +‖yn,i−Tiwn‖2 +2〈yn,i−Tiwn,Tiwn−Ti p〉+λ
2
n,i‖ fiyn,i− fiTiwn‖2

−2λn,i〈yn,i−Ti p, fiyn,i− fiTiwn〉

= ‖Tiwn−Ti p‖2−‖yn,i−Tiwn‖2 +2〈yn,i−Tiwn,yn,i−Ti p〉+λ
2
n,i‖ fiyn,i− fiTiwn‖2

−2λn,i〈yn,i−Ti p, fiyn,i− fiTiwn〉

= ‖Tiwn−Ti p‖2−‖yn,i−Tiwn‖2−2〈Tiwn− yn,i−λn,i( fiTiwn− fiyn,i),yn,i−Ti p〉

+λ
2
n,i‖ fiyn,i− fiTiwn‖2

≤ ‖Tiwn−Ti p‖2−
(

1−
λ 2

n,i

λ 2
n+1,i

(cn,i + ci)
2
)
‖Tiwn− yn,i‖2

−2〈Tiwn− yn,i−λn,i( fiTiwn− fiyn,i),yn,i−Ti p〉.

(4.2)

Next, we show that

〈Tiwn− yn,i−λn,i( fiTiwn− fiyn,i),yn,i−Ti p〉 ≥ 0, i = 0,1,2, . . . ,N. (4.3)
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From yn,i = JFi
λn,i

(Tiwn−λn,i fiTiwn), we have (IHi−λn,i fi)Tiwn ∈ (IHi +λn,iFi)yn,i. By the max-

imal monotonicity of Fi , i = 0,1,2, . . . ,N, there exists tn,i ∈ Fiyn,i such that (IHi−λn,i fi)Tiwn =
yn,i +λn,itn,i, which implies that

tn,i =
1

λn,i
(Tiwn− yn,i−λn,i fiTiwn). (4.4)

Moreover, observe that 0 ∈ ( fi +Fi)Ti p and fiyn,i + tn,i ∈ ( fi +Fi)yn,i. Since fi +Fi is maximal
monotone for each i = 0,1,2, . . . ,N, we have

〈 fiyn,i + tn,i,yn,i−Ti p〉 ≥ 0. (4.5)

Substituting (4.4) into (4.5), we obtain
1

λn,i
〈Tiwn− yn,i−λn,i fiTiwn +λn,i fiyn,i,yn,i−Ti p〉 ≥ 0.

Hence, 〈Tiwn− yn,i− λn,i( fiTiwn− fiyn,i),yn,i− Ti p〉 ≥ 0, i = 0,1,2, . . . ,N. Consequently, by
applying (4.3) in (4.2) we obtain

‖un,i−Ti p‖2 ≤ ‖Tiwn−Ti p‖2−
(

1−
λ 2

n,i

λ 2
n+1,i

(cn,i + ci)
2
)
‖Tiwn− yn,i‖2, (4.6)

which is the required result. �

Lemma 4.5. Let {xn} be a sequence generated by Algorithm 2 such that Assumptions 3.1 and
3.2 hold. Then {xn} is bounded.

Proof. Let p ∈Ω. Using the definition of wn and applying the triangular inequality, we have

‖wn− p‖ ≤ ‖xn− p‖+θn‖xn− xn−1‖= ‖xn− p‖+αn
θn

αn
‖xn− xn−1‖. (4.7)

By Remark (3.1), there exists M1 > 0 such that
θn

αn
‖xn− xn−1‖ ≤M1, ∀ n≥ 1.

Then, it follows from (4.7) that ‖wn− p‖ ≤ ‖xn− p‖+αnM1 for all n≥ 1. By Lemma 4.2, there
exists a positive integer N such that

1−
λnk,i

λnk+1,i
(cnk,i + ci)> 0, ∀n≥ N, i = 0,1,2, . . . ,N.

Therefore, it follows from (4.6) that, for all n≥ N and i = 0,1,2, . . . ,N,

‖un,i−Ti p‖2 ≤ ‖Tiwn−Ti p‖2. (4.8)

We have from Lemma 4.2 that there exists a positive integer N such that 0 < ϕn,i +ϕi < 1, i =
0,1,2, . . . ,N for all n≥ N. So, using Lemma 2.5 together with (4.8), we have from (4.11) that

‖wn +ηn,iT ∗i (un,i−Tiwn)− p‖2

= ‖wn− p‖2 +η
2
n,i‖T ∗i (un,i−Tiwn)‖2 +2ηn,i〈Tiwn−Ti p,un,i−Tiwn〉

= ‖wn− p‖2 +η
2
n,i‖T ∗i (un,i−Tiwn)‖2

+ηn,i[‖un,i−Ti p‖2−‖Tiwn−Ti p‖2−‖un,i−Tiwn‖2]

≤ ‖wn− p‖2−ηn,i
[
‖un,i−Tiwn‖2−ηn,i‖T ∗i (un,i−Tiwn)‖2] .

(4.9)



462 O. OGUNLEYE, O.T. MEWOMO, T.O. ALAKOYA, O.S. IYIOLA

In the case where ‖T ∗i (un,i−Tiwn)‖ 6= 0, we have from the definition of ηn,i that

‖un,i−Tiwn‖2−ηn,i‖T ∗i (un,i−Tiwn)‖2 = [1− (ϕn,i +ϕi)]‖Tiwn−un,i‖2 ≥ 0. (4.10)

Using convexity of norm square (‖ · ‖2) and (4.10), we have

‖zn− p‖2 =

∥∥∥∥∥ N

∑
i=0

δn,i
(
wn +ηn,iT ∗i (un,i−Tiwn)

)
− p

∥∥∥∥∥
2

≤
N

∑
i=0

δn,i‖wn +ηn,iT ∗i (un,i−Tiwn)− p‖2

≤
N

∑
i=0

δn,i
[
‖wn− p‖2−ηn,i[1− (ϕn,i +ϕi)]‖Tiwn−un,i‖2]

= ‖wn− p‖2−
N

∑
i=0

δn,iηn,i
[
1− (ϕn,i +ϕi)]‖Tiwn−un,i‖2]

= ‖wn− p‖2. (4.11)

Clearly from (4.9), inequality (4.11) still holds when ‖T ∗i (un,i− Tiwn)‖ = 0. Using Lemma
2.5(ii) and the inequality obtain in (4.11), we have the following estimate

‖(1−αn−βn)(wn− p)+βn(zn− p)‖2

≤ (1−αn−βn)
2‖wn− p‖2 +2(1−αn−βn)βn‖wn− p‖‖zn− p‖+β

2
n ‖zn− p‖2

≤ (1−αn−βn)
2‖wn− p‖2 +(1−αn−βn)βn

[
‖wn− p‖2 +‖zn− p‖2]+β

2
n ‖zn− p‖2

≤ (1−αn−βn)(1−αn)‖wn− p‖2 +βn(1−αn)‖wn− p‖2

= (1−αn)
2‖wn− p‖2.

Hence, we have that

‖(1−αn−βn)(wn− p)+βn(zn− p)‖ ≤ (1−αn)‖wn− p‖. (4.12)

Using (4.12), we therefore have, for all n≥ N, that

‖xn+1− p‖ ≤ ‖(1−αn−βn)(wn− p)+βn(zn− p)‖+αn‖p‖
≤ (1−αn)‖wn− p‖+αn‖p‖
≤ (1−αn)

[
‖xn− p‖+αnM1

]
+αn‖p‖

≤ (1−αn)‖xn− p‖+αn
[
‖p‖+M1

]
≤ max

{
‖xn− p‖,‖p‖+M1

}
...

≤ max
{
‖xN− p‖,‖p‖+M1

}
.

This establishes the boundedness of {xn}. Consequently, {wn},{yn,i},{un,i}, and {zn} are all
bounded. �

Lemma 4.6. Let {wnk} and {znk} be subsequences of {wn} and {zn} generated by the proposed
Algorithm 2 respectively. Suppose these subsequences satisfies lim

k→∞
‖wnk − znk‖ = 0. If wnk ⇀

z ∈ H, then z ∈Ω.
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Proof. Using the estimates in (4.11) for the subsequences {wnk} and {znk}, we obtain

N

∑
i=0

δnk,iηnk,i[1− (ϕnk,i +ϕi)]‖Tiwnk−unk,i‖
2 ≤ ‖wnk− p‖2−‖znk− p‖2

≤ ‖wnk− znk‖
2 +2‖wnk− znk‖‖znk− p‖

Hence, using the fact that lim
k→∞
‖wnk− znk‖= 0, we have

N

∑
i=0

δnk,iηnk,i[1− (ϕnk,i +ϕi)]‖Tiwnk−unk,i‖
2→ 0, k→ ∞,

which implies that by using the definition of ηn,i

δnk,i(ϕnk,i +ϕi)[1− (ϕnk,i +ϕi)]
‖Tiwnk−unk,i‖4

‖T ∗i (Tiwnk−unk,i)‖2 → 0, k→ ∞, ∀i = 0,1,2, . . . ,N,

So, we have
‖Tiwnk−unk,i‖2

‖T ∗i (Tiwnk−unk,i)‖
→ 0, k→ ∞, ∀i = 0,1,2, . . . ,N.

Using the boundedness of {‖T ∗i (Tiwnk−unk,i)‖}, it follows that

‖Tiwnk−unk,i‖→ 0, k→ ∞, ∀i = 0,1,2, . . . ,N. (4.13)

Thus

‖T ∗i (Tiwnk−unk,i)‖ = ‖Ti‖‖(Tiwnk−unk,i)‖→ 0, k→ ∞, ∀i = 0,1,2, . . . ,N.

From (4.6), we obtain(
1−

λ 2
nk,i

λ 2
nk+1,i

(cnk,i + ci)
2
)
‖Tiwnk− ynk,i‖

2 ≤ ‖Tiwnk−Ti p‖2−‖unk,i−Ti p‖2

≤ ‖Tiwnk−unk,i‖
(
‖Tiwnk−Ti p‖+‖unk,i−Ti p‖

)
. (4.14)

By applying (4.13) in (4.14), it follows that(
1−

λ 2
nk,i

λ 2
nk+1,i

(cnk,i + ci)
2

)
‖Tiwnk− ynk,i‖

2→ 0, k→ ∞, i = 0,1, . . . ,N.

Therefore, we have
‖Tiwnk− ynk,i‖→ 0, k→ ∞, i = 0,1, . . . ,N. (4.15)

For (ui,vi)∈Gr(Fi+ fi), i= 0,1,2, . . . ,N, we have that vi− fiui ∈Fiui. Since ynk,i = JFi
λnk ,i

(Tiwnk−
λnk,i fiTiwnk), we have

1
λnk,i

(Tiwnk−λnk,i fiTiwnk− ynk,i) ∈ Fiynk,i.

Consequently, by the maximal monotonicity of Fi, we obtain〈
vi− fiui−

1
λnk,i

(Tiwnk−λnk,i fiTiwnk− ynk,i),ui− ynk,i

〉
≥ 0, ∀i = 0,1,2, . . . ,N. (4.16)
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By applying the monotonicity of fi, we have from (4.16) that

〈vi,ui− ynk,i〉

≥ 〈 fiui +
1

λnk,i
(Tiwnk−λnk,i fiTiwnk− ynk,i),ui− ynk,i〉

=
1

λnk,i
〈Tiwnk− ynk,i,ui− ynk,i〉+ 〈 fiui− fiynk,i,ui− ynk,i〉+ 〈 fiynk,i− fiTiwnk ,ui− ynk,i〉

≥ 1
λnk,i
〈Tiwnk− ynk,i,ui− ynk,i〉+ 〈 fiynk,i− fiTiwnk ,ui− ynk,i〉.

(4.17)
By the continuity of fi, from (4.15) we obtain

‖ fiTiwnk− fiynk,i‖→ 0, k→ ∞, ∀i = 0,1,2, . . . ,N. (4.18)

Since wnk ⇀ z and Ti is a bounded linear operator for each i = 0,1,2, . . . ,N, we have Tiwnk ⇀
Tiz for all i = 0,1,2, . . . ,N. Thus, from (4.15), we obtain ynk,i ⇀ Tiz for all i = 0,1,2, . . . ,N.
Therefore, by letting k→ ∞ and applying (4.15) and (4.18), we obtain from (4.17) that

〈vi,ui−Tiz〉 ≥ 0, ∀(ui,vi) ∈ Gr( fi +Fi), ∀i = 0,1,2, . . . ,N. (4.19)

Since fi +Fi is maximal monotone for each i = 0,1,2, . . . ,N, it follows from Lemma 2.2 and
(4.19) that Tiz ∈ ( fi + Fi)

−1(0) for all i = 0,1,2, . . . ,N, which implies that z ∈ T−1
i

(
( fi +

Fi)
−1(0)

)
for all i = 0,1,2, . . . ,N. Thus, we have z ∈

⋂N
i=0 T−1

i

(
( fi +Fi)

−1(0)
)
. Hence, z ∈Ω

as required. �

Lemma 4.7. Let {xn} be a sequence generated by Algorithm 2 under Assumptions 3.1 and 3.2.
Then, the following inequality holds, for all p ∈Ω,

‖xn+1− p‖2 ≤ (1−αn)||xn− p||2 +αn

[
3M2(1−αn)

2 θn

αn
‖xn− xn−1‖+2〈p, p− xn+1〉

]
−βn(1−αn)

N

∑
i=0

δn,iηn,i[1− (ϕn,i +ϕi)]‖Tiwn−un,i‖2.

Proof. Let p∈Ω. Using the Cauchy-Schwarz inequality and Lemma 2.5, we have the following
estimate

‖wn− p‖2 = ‖xn− p‖2 +θ
2
n ‖xn− xn−1‖2 +2θn〈xn− p,xn− xn−1〉

≤ ‖xn− p‖2 +θn‖xn− xn−1‖(θn‖xn− xn−1‖+2‖xn− p‖)

≤ ‖xn− p‖2 +3M2αn
θn

αn
‖xn− xn−1‖, (4.20)
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where M2 := supn∈N{‖xn− p‖,θn‖xn−xn−1‖}> 0. In view of Lemma 2.5 and (4.20), we have

‖xn+1− p‖2 ≤ ‖(1−αn−βn)(wn− p)+βn(zn− p)‖2−2αn〈p,xn+1− p〉

≤ (1−αn−βn)
2‖wn− p‖2 +β

2
n ‖zn− p‖2 +2βn(1−αn−βn)‖wn− p‖‖zn− p‖

+2αn〈p, p− xn+1〉

≤ (1−αn−βn)(1−αn)‖wn− p‖2 +βn(1−αn)‖zn− p‖2 +2αn〈p, p− xn+1〉

≤ (1−αn)
2‖wn− p‖2−βn(1−αn)

N

∑
i=0

δn,iηn,i[1− (ϕn,i +ϕi)]‖Tiwn−un,i‖2

+2αn〈p, p− xn+1〉

≤ (1−αn)
2||xn− p||2 +3M2αn(1−αn)

2 θn

αn
‖xn− xn−1‖+2αn〈p, p− xn+1〉

−βn(1−αn)
N

∑
i=0

δn,iηn,i[1− (ϕn,i +ϕi)]‖Tiwn−un,i‖2

≤ (1−αn)||xn− p||2 +αn

[
3M2(1−αn)

2 θn

αn
‖xn− xn−1‖+2〈p, p− xn+1〉

]
−βn(1−αn)

N

∑
i=0

δn,iηn,i[1− (ϕn,i +ϕi)]‖Tiwn−un,i‖2.

�

Theorem 4.1. Suppose that Assumptions 3.1 and 3.2 are satisfied and that the sequence {xn}
is generated by Algorithm 2. Then, the sequence {xn} converges strongly to x∗ ∈ Ω, where
‖x∗‖= min{‖p‖ : p ∈Ω}.

Proof. Let ‖x∗‖= min{‖p‖ : p ∈Ω}, that is, x∗ = PΩ(0). Then, from Lemma 4.7, we obtain

‖xn+1− x∗‖2 ≤ (1−αn)||xn− x∗||2 +αn

[
3M2(1−αn)

2 θn

αn
‖xn− xn−1‖+2〈x∗,x∗− xn+1〉

]
= (1−αn)‖xn− x∗‖2 +αndn, (4.21)

where

dn = 3M2(1−αn)
2 θn

αn
‖xn− xn−1‖+2〈x∗,x∗− xn+1〉.

Suppose that {‖xnk− x∗‖} is a subsequence of {‖xn− x∗‖} satisfying

liminf
k→∞

(
‖xnk+1− x∗‖−‖xnk− x∗‖

)
≥ 0. (4.22)

Applying Lemma 4.7, we obtain

βnk(1−αnk)
N

∑
i=0

δnk,iηnk,i[1− (ϕnk,i +ϕi)]‖Tiwnk−unk,i‖
2

≤ (1−αnk)‖xnk− x∗‖2−‖xnk+1− x∗‖2

+αnk

[
3M2(1−αnk)

2 θnk

αnk

‖xnk− xnk−1‖+2〈x∗,x∗− xnk+1〉
]
.
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Using the fact that lim
k→∞

αnk = 0, Remark 3.1, and assumption (4.22), we obtain

βnk(1−αnk)
N

∑
i=0

δnk,iηnk,i[1− (ϕnk,i +ϕi)]‖Tiwnk−unk,i‖
2→ 0, k→ ∞,

which then gives lim
k→∞
‖Tiwnk−unk,i‖= 0 for all i = 0,1,2, . . . ,N. Moreover, we have

‖T ∗i (unk,i−Tiwnk)‖ ≤ ‖T
∗

i ‖‖unk,i−Tiwnk‖→ 0, k→ ∞ ∀i = 0,1,2, . . . ,N. (4.23)

By the definition of zn and by applying (4.23), we obtain

‖znk−wnk‖ ≤
N

∑
i=0

δnk,iηnk,i‖T
∗

i (unk,i−Tiwnk)‖→ 0, k→ ∞. (4.24)

By the definition of wn and applying Remark 3.1, we see that ‖wnk−xnk‖= θnk‖xnk−xnk−1‖→ 0
as k→∞. Next, we obtain from (4.24) that ‖xnk−znk‖≤‖xnk−wnk‖+‖wnk−znk‖→ 0 as k→∞.
Now, from the fact that limk→∞ αnk = 0, we obtain

‖xnk+1− xnk‖= ‖(1−αnk−βnk)(wnk− xnk)+βnk(znk− xnk)−αnxnk‖
≤ (1−αnk−βnk)‖wnk− xnk‖+βnk‖znk− xnk‖+αnk‖xnk‖→ 0, k→ ∞.

(4.25)

Let x∗ ∈ wω(xn) be selected arbitrarily. Using the boundedness of sequence {xn} and the fact
that wω(xn) 6= /0, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x∗. Hence, Lemma
4.6 and (4.24) give x∗ ∈ Ω. Also, wω(xn) ⊂ Ω using the fact that x∗ ∈ wω(xn) was chosen
arbitrarily. Moreover, we have that there exists a subsequence {xnk j

} of {xnk} such that xnk j
⇀ q

since {xnk} is bounded. In addition, limsupk→∞〈x∗,x∗− xnk〉 = lim j→∞〈x∗,x∗− xnk j
〉. It then

clearly follows, by using x∗ = PΩ(0), that

limsup
k→∞

〈x∗,x∗− xnk〉= lim
j→∞
〈x∗,x∗− xnk j

〉= 〈x∗,x∗−q〉 ≤ 0. (4.26)

Combining (4.25) and (4.26), we obtain that limsupk→∞〈x∗,x∗− xnk+1〉 ≤ 0. Hence, we have
that limsupk→∞ dnk ≤ 0 by Remark 3.1. Lemma 2.3 and (4.21) then imply that {‖xn− x∗‖}
converges to zero which completes the proof. �

5. APPLICATIONS

This section is focused on some applications of the proposed algorithm to many classes of
split inverse problems.

5.1. Split variational inequality problem with multiple output sets. Let H be a Hilbert
space and A : C → H be a nonlinear mapping, where C is a nonempty, closed, and convex
subset of H. The variational inequality problem is formulated as follows: Find x∗ ∈C such that
〈y− x∗,Ax∗〉 ≥ 0 for all y ∈C. We denote its solution set by VI(C,A), see [37]. Now, we recall
the indicator function of C defined by

iC(x) =

{
0, if x ∈C,

∞, if x /∈C.

It is known that iC is a proper, lower semicontinuous, and convex function, and its subdifferential
∂ iC is maximal monotone (see [38]). Moreover, it is known that ∂ iC(v) = NC(v) = {u ∈ H :
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〈y− v,u〉 ≤ 0,∀y ∈C}, where NC is the normal cone of C at a point v. Hence, the resolvent of
∂ iC can be defined for λ > 0 by J∂ iC

λ
(x) = (I + λ∂ iC)−1x for all x ∈ H. It was demonstrated

in [39] that, for any x ∈ H and z ∈ C, z = J∂ iC
λ

(x) ⇐⇒ z = PC(x), where PC is the metric
projection map from H onto C.

The following lemma is required to establish our next result.

Lemma 5.1. [40] Let C be a nonempty, closed, and convex subset of a Banach space E. Suppose
that A : C→ E∗ is a monotone and hemicontinuous operator and F : E → 2E∗ is an operator
defined by

F(v) =

{
Av+NC(v), if v ∈C,

/0, if v /∈C.

Then F is maximal monotone and F−10 =V I(C,A).

Here, we are interested in applying our result to the SVIPMOS (1.7). By setting Fi = ∂iCi
and

fi = Ai, i = 0,1,2, . . . ,N in Theorem 4.1, we have the following strong convergence theorem
for finding the solution of the SVIPMOS (1.7) in the framework of Hilbert spaces.

Theorem 5.1. Let H,Hi, i = 1,2, ...,N, be real Hilbert spaces, and let C,Ci be nonempty,
closed, and convex subsets of real Hilbert spaces H and Hi, i = 1,2, ...,N, respectively. Let
Ti : H → Hi, i = 1,2, ...,N, be bounded and linear operators, and let A : H → H,Ai : Hi →
Hi, i = 1,2, ...,N, be uniformly continuous monotone operators. Suppose that the solution set
Ψ2 6= /0 and that Assumption A of Theorem 4.1 holds. Then, the sequence {xn} generated by
Algorithm 3 converges strongly to x∗ ∈Ψ2, where ‖x∗‖= min{‖p‖ : p ∈Ψ2}.

Algorithm 3
1: Select initial points x0,x1 ∈ H. Let C0 =C, T0 = IH , A0 = A. Set n := 0.
2: Given the (n−1)th and nth iterates, choose θn such that 0≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ , εn
||xn−xn−1||

}
, if xn 6= xn−1,

θ , otherwise.

3: Compute wn = xn +θn(xn− xn−1).
4: Compute yn,i = PCi(Tiwn−λn,iAiTiwn).
5: Compute un,i = yn,i−λn,i(Aiyn,i−AiTiwn), where

λn+1,i =

{
min

{
(cn,i+ci)‖Tiwn−yn,i‖
‖AiTiwn−Aiyn,i‖ , λn,i +ρn,i

}
, if AiTiwn−Aiyn,i 6= 0,

λn,i +ρn,i, otherwise.

6: Compute zn = ∑
N
i=0 δn,i

(
wn +ηn,iT ∗i (un,i−Tiwn)

)
, where

ηn,i =


(ϕn,i+ϕi)‖Tiwn−un,i‖2

‖T ∗i (Tiwn−un,i)‖2 , if ‖T ∗i (Tiwn−un,i)‖ 6= 0,

0, otherwise.

7: Compute xn+1 = (1−αn−βn)wn +βnzn.
8: Set n← n+1, and go to 2.
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5.2. Split convex minimization problem with multiple output sets. Suppose that g : H→R
is a convex and differentiable function, and G : H → (−∞,+∞] is a proper convex and lower
semi-continuous function. It is known that if Og is 1

µ
-Lipschitz continuous, then it is µ-inverse

strongly monotone (and hence monotone), where Og is the gradient of g. Moreover, the subdif-
ferential ∂G of G is maximal monotone (see [40]). In addition,

g(x∗)+G(x∗) = min
x∈H
{g(x)+G(x)} ⇐⇒ 0 ∈ Og(x∗)+∂G(x∗).

Let H,Hi, i = 1,2, . . . ,N be real Hilbert spaces, and let Ti : H → Hi be bounded linear oper-
ators. Let g : H → R,gi : Hi → R be convex and differentiable functions, and let G : H →
(−∞,+∞],Gi : Hi→ (−∞,+∞] be proper convex and lower semi-continuous functions. In this
subsection, we are interested in applying our result to split convex minimization problem with
multiple output sets (SCMPMOS), which is formulated as follows: Find x∗ ∈ H such that

x∗ ∈ Γ2 := argmin
H

{
g(x)+G(x)

}
∩
(
∩N

i=1 T−1
i

(
argmin

Hi

{
gi(x)+Gi(x)

}))
6= /0, (5.1)

For each i = 1,2, . . . ,N, if we set F = ∂G,Fi = ∂Gi, f = Og, fi = Ogi in Theorem 4.1, then we
obtain the following result for approximating the solution of SCMPMOS (5.1).

Theorem 5.2. Let H,Hi, i = 1,2, ...,N, be real Hilbert spaces and Ti : H→Hi, i = 1,2, ...,N, be
bounded linear operators with adjoints T ∗i . Let G,Gi,g,gi be as defined in (5.1) above and such
that Og,Ogi are 1

µ
-Lipschitz continuous and 1

µi
-Lipschitz continuous, respectively. Suppose

that Assumption A of Theorem 4.1 holds and the solution set Γ2 6= /0. Then, the sequence {xn}
generated by Algorithm 4 below converges strongly to x∗ ∈ Γ, where x∗ = min{‖p‖ : p ∈ Γ2}.

Algorithm 4
1: Select initial data x0,x1 ∈H. Let H0 = H, T0 = IH , ∂G0 = ∂G, and Og0 =Og. Set n := 0.
2: Given the (n−1)th and nth iterates, choose θn such that 0≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ , εn
||xn−xn−1||

}
, if xn 6= xn−1,

θ , otherwise.

3: Compute wn = xn +θn(xn− xn−1).

4: Compute yn,i = J∂Gi
λn,i

(Tiwn−λn,iOgiTiwn).

5: Compute un,i = yn,i−λn,i(Ogiyn,i−OgiTiwn), where

λn+1,i =

{
min

{
(cn,i+ci)‖Tiwn−yn,i‖
‖OgiTiwn−Ogiyn,i‖ , λn,i +ρn,i

}
, if OgiTiwn−Ogiyn,i 6= 0,

λn,i +ρn,i, otherwise.

6: Compute zn = ∑
N
i=0 δn,i

(
wn +ηn,iT ∗i (un,i−Tiwn)

)
, where

ηn,i =


(ϕn,i+ϕi)‖Tiwn−un,i‖2

‖T ∗i (Tiwn−un,i)‖2 , if ‖T ∗i (Tiwn−un,i)‖ 6= 0,

0, otherwise.

7: Compute
xn+1 = (1−αn−βn)wn +βnzn.

8: Set n← n+1, and go to 2.
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5.3. Generalized split monotone variational inclusion problem. In this subsection, we apply
our result to generalized split monotone variational inclusion problem. Let Hi, i = 1,2, ...,N, be
real Hilbert spaces and let Si : Hi→ Hi+1, i = 1,2, ...,N−1, be bounded linear operators, such
that Si 6= 0. Let Gi : Hi → 2Hi, i = 1,2, ...,N, be multivalued operators, and gi : Hi → Hi, i =
1,2, ...,N, be single-valued operators. The generalized split monotone variational inclusion
problem (GSMVIP) is formulated as follows: Find an element x∗ ∈ H1 such that

x∗ ∈Γ3 :=(g1+G1)
−1(0)∩S−1

1 ((g2+G2)
−1(0))∩. . .S−1

1 (S−1
2 . . .(S−1

N−1((gN+GN)
−1(0)))) 6= /0.

(5.2)
That is, x∗ ∈ H1 such that

0 ∈ (g1 +G1)(x∗),0 ∈ ( f2 +F2)(S1x∗), . . . ,0 ∈ (gN +GN)(SN−1(SN−2 . . .S1x∗)).

We note that if we set H = H1, f = g1,F = G1, fi = gi+1,Fi = Gi+1, 1≤ i≤N−1,T1 = S1,T2 =
S2S1, . . . , and TN−1 = SN−1SN−2 . . .S1, then the SMVIPMOS (1.8) becomes the GSMVIP
(5.2). Therefore, we have the following strong convergence theorem for finding the solution of
GSMVIP (5.2).

Theorem 5.3. Let Hi, i= 1,2, ...,N, be real Hilbert spaces and let Si : Hi→Hi+1, i= 1,2, ...,N−
1, be bounded and linear operators with adjoints S∗i such that Si 6= 0. Let gi,Gi, 1,2, ...,N be
as defined above in (5.2), and suppose Assumption A of Theorem 4.1 holds and the solution set
Γ3 6= /0. Then, the sequence {xn} generated by Algorithm 4 below converges strongly to x∗ ∈ Γ3,
where x∗ = min{‖p‖ : p ∈ Γ3}.

Algorithm 5

1: Select initial data x0,x1 ∈ H1. Let S0 = IH1, ŜN−1 = SN−1SN−2 . . .S0, Ŝ∗N−1 =
S∗0S∗1 . . .S

∗
N−1, i = 1,2, . . . ,N. Set n := 0.

2: Given the (n−1)th and nth iterates, choose θn such that 0≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ , εn
||xn−xn−1||

}
, if xn 6= xn−1,

θ , otherwise.

3: Compute wn = xn +θn(xn− xn−1).

4: Compute yn,i = JGi
λn,i

(Ŝi−1wn−λn,igiŜi−1wn).

5: Compute un,i = yn,i−λn,i(giyn,i−giŜi−1wn), where

λn+1,i =

min
{

(cn,i+ci)‖Ŝi−1wn−yn,i‖
‖giŜi−1wn−giyn,i‖

, λn,i +ρn,i

}
, if giŜi−1wn−giyn,i 6= 0,

λn,i +ρn,i, otherwise.

6: Compute zn = ∑
N
i=1 δn,i

(
wn +ηn,iŜ∗i−1(un,i− Ŝi−1wn)

)
, where

ηn,i =


(ϕn,i+ϕi)‖Ŝi−1wn−un,i‖2

‖Ŝ∗i−1(Ŝi−1wn−un,i)‖2 , if ‖Ŝ∗i−1(Ŝi−1wn−un,i)‖ 6= 0,

0, otherwise.

7: Compute xn+1 = (1−αn−βn)wn +βnzn.
8: Set n← n+1, and go to 2.
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6. NUMERICAL ILLUSTRATIONS

In this section, we provide some numerical experiments and demonstrate the efficiency and
accuracy of our proposed algorithm to solve the SMVIPMOS (1.8). We compare the perfor-
mance of our proposed method, Algorithm 2 (Proposed Alg.) with the non-inertial version
(Non-inertial Alg.) and Algorithm 1 proposed by Uzor et al. (Uzor et al. Alg.). All the numer-
ical computations and codes were carried out using Matlab version R2021(b).

In all the experiments, we use ‖En‖ = ‖xn+1− xn‖ < ε , where ε = 10−6 as the stopping
criterion. Parameters used in all the experiments for all the algorithms involved are presented
in Table 1.

TABLE 1. Methods Parameters for Examples 6.1 and 6.2

Proposed Alg. 2 λ1,i = i+1.25 θ = 0.99 αn =
1

2n+3
βn = 0.999(1−αn)

ci = 0.89 cn,i =
1

(1+n)2 εn =
7

(2n+3)3 ρn,i =
100
n2

δn,i =
1

n+1
φi = 0.02 φn,i =

1
(5+n)3

Non-inertial Alg. λ1,i = i+1.25 θ = 0 αn =
1

2n+3
βn = 0.999(1−αn)

ci = 0.89 cn,i =
1

(1+n)2 εn =
7

(2n+3)3 ρn,i =
100
n2

δn,i =
1

n+1
φi = 0.02 φn,i =

1
(5+n)3

Uzor et al. Alg. λ1,i = i+1.25 λn,i = 0.12 θ = 0.99 αn =
1

2n+3
εn =

7
(2n+3)3 ξn = 0.9 Θn,i = 1.5 γ =

2
5

δn,i =
1

n+1
ψn,i = 0.65 D(x) =

x
5

S(x) = g(x) =
x
3

Example 6.1. Let Hi = Rk, i = 0,1, . . . ,5 and for i = 0,1, . . . ,5. Define the mappings Ti, fi,Fi :
Rk→ Rk by

Ti(x) =
4

i+4
x, fi(x) = (i+1)(x+ sinx), Fi(x) = 7(i+1)x, ∀x ∈ Rk.

Then, T ∗i (y) =
4

i+4y, ∀y ∈ Rk. For a fixed N = 5, we generate starting points x0,x1 of different
length k populated with random real entries. The numerical results are reported in Figures 1-4
and Table 2.
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TABLE 2. Numerical Results for Example 6.1

Proposed Alg. 2 Non-inertial Alg. Uzor et al. Alg.

k Iter. CPU Time Iter. CPU Time Iter. CPU Time

5 56 0.0060 64 0.0069 219 0.0062

50 68 0.0016 73 0.0015 246 0.0034

100 71 0.0017 75 0.0019 250 0.0045

500 75 0.0074 79 0.0086 259 0.0134
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FIGURE 1. Example 6.1 with k = 5
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FIGURE 2. Example 6.1 with k = 50
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FIGURE 3. Example 6.1 with k=100
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FIGURE 4. Example 6.1 with k=500
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Example 6.2. Let Hi = (`2(R),‖ · ‖2), i = 0,1, . . . ,5, where

`2(R) :=

{
x = (x1,x2, . . . ,x j, . . .),x j ∈ R :

∞

∑
j=1
|x j|2 <+∞

}
, ||x||2 =

(
∞

∑
j=1
|x j|2

) 1
2

for all x ∈ `2(R). For each i = 0,1, . . . ,5, we define the mappings Ti, fi,Fi : `2(R)→ `2(R) by

Ti(x) =
3

i+3
x, ∀x ∈ `2(R),

fi(x) = 5(i+1)x, ∀x ∈ `2(R),

and

Fi(x) = 3(i+1)x, ∀x ∈ `2(R).

Then,

T ∗i (y) =
3

i+3
y, ∀y ∈ `2(R).

We choose different starting points as follows for a fixed N = 6:
Case I: x0 = (4,1, 1

4 , · · ·); x1 = (−2,1,−1
2 , · · ·);

Case II: x0 = (5,1, 1
5 , · · ·); x1 = (−1

2 ,
1
4 ,−

1
8 , · · ·).

Case III: x0 = (4,1, 1
4 , · · ·); x1 = (0.1,−0.01,0.001, · · ·);

Case IV: x0 = (6,1, 1
6 , · · ·); x1 = (1

3 ,
1
9 ,

1
27 , · · ·).

The numerical results are reported in Figures 5-8 and Table 3.

TABLE 3. Numerical Results for Example 6.1

Proposed Alg. 2 Non-inertial Alg. Uzor et al. Alg.

Case Iter. CPU Time Iter. CPU Time Iter. CPU Time

I 76 0.6539 80 0.6764 198 1.0915

II 65 0.5286 72 0.5957 175 0.9057

III 36 0.3001 61 0.5611 103 0.5513

IV 58 0.5082 69 0.6538 159 0.9558
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6.2: Case I
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6.2: Case II
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6.2: Case III
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FIGURE 8. Example
6.2: Case IV

Remark 6.1.
The following observations are presented from the above numerical Examples 6.1 - 6.2 in the
following remarks.

(1). From Figures 1 - 8 and Tables 2 and 3, our proposed Algorithm 2 is easy to implement,
efficient, and accurate in handling applications in both finite and infinite dimensional
spaces.

(2). We compared our proposed Algorithm 2 to its Non-inertial case and the state-of-the-art
algorithms proposed by Uzor et al. [24]. The results in 1 - 8 and Tables 2 and 3 indicate
that our proposed algorithm outperformed all methods compared for these examples
with respect to the number of iterations and CPU time.

7. CONCLUDING REMARK

We studied the split monotone variational inclusion problem with multiple output sets. We
proposed an inertial Mann-type Tseng’s extragradient algorithm with self-adaptive step sizes
for finding the solution of the problem in real Hilbert spaces. Our proposed method does not
require the co-coercive condition or the Lipschitz continuity of the associated single-valued op-
erators, which are often assumed in the literature when solving monotone inclusion problems.
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Moreover, under some mild conditions on the control sequences and without prior knowledge
of the operator norms, we proved that the sequence generated by our proposed method con-
verges strongly to the minimum-norm solution of the problem. Finally, we applied our result
to certain classes of split inverse problems and we carried out several numerical experiments to
demonstrate the efficiency of the proposed algorithm.
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