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1. INTRODUCTION

First of all, let us explain the somewhat cryptic title. Suppose that we are given two fixed
point theorems A and B, with the property that B is more general than A in the sense that,
whenever it is possible to apply A, it is also possible to apply B. Clearly, the new theorem B is
only more general if one can find maps which satisfy the hypotheses of B, but not of A. On the
other hand, sometimes one may reduce the more general theorem to the more special theorem
by proving B by means of A. Of course, this does not contradict the fact that B has a wider
range of applications than A.

The aim of this simple minded short note (which is actually more “didactical” than “scien-
tific”) is to illustrate this phenomenon for several fixed point theorems, with a particular empha-
sis on examples and counterexamples. A famous example is Sadovskij’s fixed point theorem for
weakly condensing maps which may be reduced to Darbo’s fixed point theorem for condensing
maps, as we will show below. This is in contrast to weak contractions which, as we will see,
cannot be reduced to classical contractions on compact sets.

2. METRIC FIXED POINT THEORY

During every first year calculus course, the students become acquainted with the following
classical fixed point principle:

∗Corresponding author.
E-mail address: jurgen@dmuw.de (J. Appell), nmerucv@gmail.com (N. Merentes), simon.reinwand@tngtech.

com (S. Reinwand), gianluca.vinti@unipg.it (G. Vinti).
Received 15 October 2022; Accepted 25 October 2022; Published online 21 December 2023

c©2024 Applied Set-Valued Analysis and Optimization

1



2 J. APPELL, N. MERENTES, S. REINWAND, G. VINTI

Theorem 2.1 (Banach-Caccioppoli). Let (X ,d) be a complete metric space and F : X → X a
contraction which means that

d(F(x),F(y))≤ qd(x,y) (x,y ∈ X) (2.1)

for some q < 1. Then f has a unique fixed point in X.

This theorem has the advantage that there are plenty of metric spaces, but the drawback
that the contraction condition (2.1) is quite restrictive. Theorem 2.1 has been generalized in
many directions over the decades, and in particular there is a wealth of literature on weaker
forms of (2.1). An overview of the state of the art of such generalizations by 1976 may be
found in the survey [34]. Not all such results seem to be useful, but some generalizations
of contraction conditions due to Simeon Reich have turned out to be important in view of
applications. In a series of papers published about 50 years ago [13]-[33], Reich has studied
generalized contractions, pointwise convergence of their iterations, existence and uniqueness of
fixed points, and even some results for multivalued maps which apply to various problems in
nonsmooth optimization, complementarity theory, and economic equilibria.

As a sample result, let us only mention the first paper [13] in the series, where the author
proves the following

Theorem 2.2 (Reich). Let (X ,d) be a complete metric space and F : X → X a map satisfying

d(F(x),F(y))≤ ad(x,F(x))+bd(y,F(y))+ cd(x,y), (x,y ∈ X) (2.2)

where q := a+b+ c < 1. Then f has a unique fixed point in X.

A still more general condition due to Hardy and Rogers [10] reads

d(F(x),F(y))≤ ad(x,F(x))+bd(y,F(y))+ cd(x,y)+ ed(y,F(x))+ f d(x,F(y)), (2.3)

where q := a+ b+ c+ e+ f < 1. The authors of [10] proved a corresponding existence and
uniqueness theorem for fixed points under condition (2.3) doing some algebraic manipulation
and showing that

min
{

a+ c+ f
1−b− f

,
b+ c+ e
1−a− e

}
< 1.

Since (2.2) reduces to (2.1) for a = b = 0, and (2.3) reduces to (2.2) for e = f = 0, one can
expect that the range of applications of Reich’s result is larger than that of Banach, and that of
Hardy-Rogers is larger than that of Reich. In fact, here are two very simple scalar examples to
illustrate this fact.

Example 2.1. Let F : [0,1]→ [0,1] be defined by F(x) := x/3 for 0≤ x < 1 and F(1) := 1/6.
This map has the unique fixed point x∗ = 0 in [0,1] and satisfies (2.2) with a = b := 1/5 and
c := 1/3, but of course not (2.1) since F is discontinuous.

Example 2.2. Let F : [0,1]→ [0,1] be defined by F(x) := 0 for 0 ≤ x < 1 and F(1) := 1/2.
This map has the unique fixed point x∗ = 0. For 0≤ x < 1 and y := 1, we have

d(F(x),F(y)) =
1
2
, d(x,F(x)) = x, d(y,F(y)) =

1
2
,

d(x,y) = 1− x, d(y,F(x)) = 1, d(x,F(y)) =
∣∣∣∣x− 1

2

∣∣∣∣ .
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Consequently, F satisfies (2.3) with e := 1/2 and a, b, c, f small enough. To show that F does
not satisfy the hypothesis of Theorem 2.2, one supposes that (2.2) holds with a+ b+ c < 1.
Choosing x := 1/2 and y := 1, we obtain

ad(x,F(x))+bd(y,F(y))+ cd(x,y) =
1
2
(a+b+ c)<

1
2
= d(F(x),F(y)),

contradicting (2.2).

A whole group of fixed point theorems which is of interest in this connection is due to R.
Kannan [11]. One of the simplest result in this spirit reads as follows.

Theorem 2.3 (Kannan). Let (X ,d) be a complete metric space, and let F : X → X be a map
satisfying

d(F(x),F(y))≤ q[d(x,F(x))+d(y,F(y))] (x,y ∈ X) (2.4)

for some q < 1/2. Then F has a unique fixed point in X.

Although Kannan’s condition (2.4) is similar to the classical contraction condition (2.1), one
can easily show that Kannan’s and Banach’s fixed point theorems are independent. The follow-
ing example was given in [14].

Example 2.3. Let F : [0,1]→ [0,1] be defined by F(x) := x/8 for 0≤ x≤ 1/2 and F(x) := x/4
for 1/2 < x≤ 1. This map is discontinuous and has the unique fixed point x∗ = 0. For 0≤ x≤
1/2 and y > 1/2, we have

d(F(x),F(y)) =
1
8
(2y− x), d(x,F(x)) =

7
8

x, d(y,F(y)) =
3
4

y.

Consequently, F satisfies Kannan’s condition (2.4) with q := 1/3, but of course not condition
(2.1).

Example 2.4. Let F : [0,1]→ [0,1] be defined by F(x) := x/3. This map is a contraction and
has the unique fixed point x∗ = 0. On the other hand, Kannan’s theorem does not apply since
(2.4) fails for x := 1/3 and y := 0.

Observe that choosing a = b and c = 0 in Reich’s fixed point theorem yields Kannan’s Theo-
rem 2.3. Interestingly, as was observed by Reich himself [14], the map F in Example 2.1 does
not satisfy the hypotheses of Kannan’s fixed point theorem because (2.4) fails for x := 1/3 and
y := 0.

The following remarkable theorem given by Subrahmanyam [37] illustrates the importance of
Kannan maps because it shows that Theorem 2.3 characterizes completeness of the underlying
space. We include the short proof here since it provides interesting insight into fixed point
theory.

Theorem 2.4. The following two properties of a metric space (X ,d) are equivalent
(a) (X ,d) is complete.
(b) Every map F : X → X satisfying (2.4) has a fixed point.

Proof. We only have to prove that (b) implies (a). Assume that we find a Cauchy sequence
(xn)n in X which does not converge. Since any Cauchy sequence which contains a convergent
subsequence, must converge itself, we conclude that no element xn occurs infinitely often in the
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sequence. Passing, if necessary, to a subsequence, we may therefore assume that all terms in
the sequence are pairwise distinct and A := {xn : n ∈ N} is closed.

For q ∈ (0,1/2) and x ∈ X \A, we find an index n(x) ∈ N such that

d(xm,xn)< qdist(x,A)≤ qd(x,xk) (m,n≥ n(x),k ∈ N),

since (xn)n is Cauchy. In particular,

d(xm,xn(x))< qd(x,xk) (m≥ n(x),k ∈ N).

For fixed n ∈ N, the infimum

m := inf{d(xn,xk) : k ∈ N}

is positive since otherwise a subsequence of (xk)k would converge to xn. We may choose an
index n̂ = n̂(n)> n such that

d(xm,xp)< qm≤ qd(xn,xn̂) (m, p≥ n̂).

In particular,

d(xm,xn̂)< qd(xn,xn̂) (m≥ n̂).

Clearly, the map F : X → X defined by

F(x) :=

{
xn̂ for x = xn,

xn(x) for x ∈ X \A

has no fixed point. Now, writing F(x) = xm and F(y) = xn, we first assume m ≥ n. In case
y ∈ X \A, we have xn = xn(y), so by what we have shown above,

d(F(x),F(y)) = d(xm,xn) = d(xm,xn(y))< qd(y,xn) = qd(y,F(y)).

On the other hand, in case y ∈ A, i.e., y = xp for some p ∈N, we have xn = x p̂, so by what we
have shown above,

d(F(x),F(y)) = d(xm,xn) = d(xm,x p̂)< qd(xp,xn) = qd(y,F(y)).

Similarly, for m < n, we obtain d(F(x),F(y))≤ qd(x,F(x)) by interchanging the roles of x and
y. This proves that F satisfies (2.4) and proves the assertion. �

The independence of Banach’s and Kannan’s fixed point theorems is illustrated by the fact
that there exist non-complete metric spaces X with the property that every contraction F : X→X
has a fixed point; an example of such a space has been given by Connell [7]. This is in sharp
contrast to Theorem 2.4. We now prove a parallel result to Theorem 2.4 which shows that,
although we cannot characterize completeness of a metric space X by means of contractions on
X , we may characterize it by means on contractions on its closed subspaces. Since this result
seems to be unknown in the literature, we state it here with proof as follows.

Theorem 2.5. The following two properties of a metric space (X ,d) are equivalent

(a) (X ,d) is complete.
(b) For each closed subset A⊆ X, every contraction F : A→ A has a fixed point.
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Proof. Again, we only have to prove that (b) implies (a). Assume that we find a Cauchy se-
quence (xn)n in X which does not converge. As before, we may assume that all terms in the
sequence are pairwise different. Define an auxiliary function p : X → [0,∞) by

p(x) := inf{d(x,xn) : xn 6= x for all n ∈ N}.

The fact that (xn)n has no convergent subsequences implies that p(x) > 0. Fix q ∈ (0,1) and
let n1 := 1. Choose n2 > n1 in such a way that d(xi,x j) ≤ qp(x1) for all i, j ≥ n2. Having
selected indices n2, . . . ,nk−1 successively for some k ∈ N, we choose nk > nk−1 in such a way
that d(xi,x j)≤ qp(xnk−1) for all i, j≥ nk. The subsequence (xnk)k has then still pairwise distinct
terms and does not contain any convergent subsequence. Consequently, the set A := {xnk : k ∈
N} is closed, and the map F : A→ A defined by F(xnk) := xnk+1 has no fixed point. To finish the
proof, we observe that for i, j ∈ N with i < j,

d(F(xni),F(xn j)) = d(xni+1,xn j+1)≤ qp(xni)≤ qd(xni,xn j),

which shows that F is a contraction on A. �

Although Banach’s and Kannan’s fixed point theorems are independent, it is interesting to
note that Theorem 2.1 can be reduced in a certain sense to Theorem 2.3. To see this, suppose
that X is a metric space, and F : X → X is contracting. We claim that some iterate Fn of F with
sufficiently large n satisfies Kannan’s condition (2.4). In fact, if F satisfies (2.1) with q < 1,
then

d(Fn(x),Fn(y))≤ qnd(x,y)≤ qn [d(x,Fn(x))+d(Fn(x),Fn(y))+d(Fn(y),y)] .

Hence

d(Fn(x),Fn(y))≤ qn

1−qn [d(x,F
n(x))+d(y,Fn(y))] .

Choosing n large enough, we have

qn <
1
3
,

qn

1−qn <
1
2
,

which proves the claim.
Now, if x∗ ∈ X is the unique fixed point of Fn, then Fn(F(x∗)) = Fn+1(x∗) = F(Fn(x∗)) =

F(x∗). The uniqueness implies that F(x∗) = x∗, so x∗ is also the (unique) fixed point of F . For
instance, in Example 2.4, the choice n = 2 does the job. It is a very useful device in fixed point
theory that existence and uniqueness of fixed points for some iterate Fn implies existence and
uniqueness of fixed points for F itself.

One could ask if an analogous reduction of Theorem 2.3 to Theorem 2.1 is possible by con-
sidering appropriate powers of the map. The next example shows that this is not possible.

Example 2.5. Define F : [0,1]→ [0,1] as in Example 2.3. We already know that F is a Kannan
map. On the other hand, all iterates Fn are discontinuous at x = 1/2, so there is no hope to
apply Banach’s theorem to the iterates.

Observe that the map F from Example 2.3 also satisfies the hypotheses of Reich’s fixed point
theorem. So a reduction of Theorem 2.2 to Theorem 2.1 is not possible either.
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3. TOPOLOGICAL FIXED POINT THEORY

The most important topological fixed point principle is without any doubt the following

Theorem 3.1 (Schauder). Let (X ,‖‖) be a Banach space, and let M ⊂ X be a bounded, closed,
and convex subset. Let F : M→M be a continuous compact operator which means that F(M)
is compact. Then F has a fixed point in M.

In contrast to Theorem 2.1, we cannot expect uniqueness of fixed points in Theorem 3.1.
Schauder’s celebrated fixed point principle applies to a large number of nonlinear problems.
However, since many operators occurring in applications are not compact, various attempts
have been made to relax the compactness requirement. Here the notion of a measure of non-
compactnessis crucial. Roughly speaking, a measure of noncompactness associates to every
bounded set M in a Banach space a nonnegative real number which is zero precisely if M is
precompact (i.e., M is compact), which motivates the name. The most important example is the
Kuratowski measure of noncompactness [12]

α(M) = inf{ε > 0 : M may be covered by finitely many sets of diameter ≤ ε}. (3.1)

In some cases, the calculation of the measure of noncompactness (3.1) is easy. For example,
denoting the closed ball around zero of radius r > 0 in a Banach space X by Br(X), we have
α(Br(X)) = 0 if X is finite dimensional, by the classical Heine-Borel theorem. On the other
hand, α(Br(X)) = 2r if X is infinite dimensional, by the well-known Riesz theorem.

Now, we given two Banach spaces X and Y , a set M ⊆ X , and a (linear or nonlinear) operator
F : M→ Y , the characteristic

[F ]α = inf{k > 0 : α(F(N))≤ kα(N) for bounded N ⊆M} (3.2)

is called the α-norm of F . The α-norm (3.2) has the property that [F ]α = 0 if and only if F
is a compact operator; for this reason (3.2) is often called measure of noncompactness of the
operator A. If F : X → Y satisfies a Lipschitz condition on M ⊆ X , i.e.,

Lip(F) := inf{k > 0 : ‖F(x)−F(y)‖ ≤ k‖x− y‖ for all x,y ∈M}< ∞, (3.3)

then it is obvious that
[F ]α ≤ Lip(F). (3.4)

So the crucial condition in Theorem 2.1 is Lip(F) < 1. Clearly, if L : X → Y is a bounded
linear operator, then Lip(L) = ‖L‖. Operators F satisfying [F ]α < 1 are usually called condens-
ing. Compact operators are trivially condensing, and (3.4) shows that contractions in Banach
spaces are also condensing. So the following fixed point principle [8] generalizes both Theorem
3.1 and (a special version of) Theorem 2.1.

Theorem 3.2 (Darbo). Let (X ,‖‖) be a Banach space, M⊂X a bounded, closed, convex subset,
and F : M→M a continuous condensing operator. Then F has a fixed point in M.

In applications of Theorem (3.2), it is important whether one has equality or strict inequality
in (3.4). Darbo’s theorem applies only if [F ]α < 1, but in case [F ]α = Lip(F), one can then
also apply Banach’s theorem, which means that Darbo’s theorem does not provide any more
information than Banach’s theorem. So only the case 0 < [F ]α < 1 ≤ Lip(F) is interesting
because Theorem 2.1 and Theorem 3.1 do not apply, but Theorem 3.2 does. Many examples for
this situation can be found in the survey paper [3].
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In metric fixed point theory, one of the most natural generalizations of the contraction condi-
tion (2.1) is

d(F(x),F(y))< d(x,y) (x 6= y). (3.5)

The operators satisfying (3.5) are called weakly contracting. Recall that a weakly contracting
operator in a complete metric space need not have fixed points (consider F(x) := log(1+ ex)
on X := R). However, the following fixed point result by [9] for weak contractions on a very
restricted class of spaces is true.

Theorem 3.3 (Edelstein). Let (X ,d) be a compact metric space, and let F : X → X be a weak
contraction. Then f has a unique fixed point in X.

Motivated by condition (3.5), Sadovskij [35, 36] calls an operator F on a Banach space X
weakly condensing if

α(F(M))< α(M) (α(M)> 0) (3.6)

and proves the following fixed point theorem for such operators.

Theorem 3.4 (Sadovskij). Let (X ,‖‖) be a Banach space, M ⊂ X a bounded, closed, and
convex subset, and F : M→M a continuous weakly condensing operator. Then F has a fixed
point in M.

We remark that the nonlinear community remained unaware of Theorem 3.2 and Theorem
3.4 for many years, perhaps because the paper [8] was written in Italian and the paper [35] in
Russian. However, after the publication of the monographs [1, 2, 4, 5] measures of noncom-
pactness and condensing operators received much more attention and became an important and
quite fashionable field of nonlinear functional analysis.

To show that Theorem 3.4 covers in fact a wider range of applications than Theorem 3.2,
let us give an example. This example is based on the elementary geometric fact that the scalar
function φ(t) := (1−|t|)t maps [−1,1] into [−1/4,1/4] and has maximal slope φ ′(0) = 1.

Example 3.1. Let X be an infinite dimensional Banach space, and define F on the closed unit
ball B1(X) of X by F(x) := (1−‖x‖)x. We claim that F is weakly condensing on B1(X). To
this end, we use the fact that the measure of noncompactness (3.1) is invariant under passing to
the convex closed hull of a set, i.e., α(coM) = α(M). For any M ⊆ B1(X) with α(M)> 0 and
0 < r < α(M)/2, we have

α(F(M∩Br(X)))≤ α(M∩Br(X))≤ α(Br(X)) = 2r < α(M),

on the one hand, and

α(F(M \Br(X)))≤ α(co [(1− r)M∪{o}]) = (1− r)α(M)< α(M),

on the other. Using the fact that α is subadditive, we obtain

α(F(M)) = max{α(F(M∩Br(X))),α(F(M \Br(X)))}< α(M),

which shows that F satisfies (3.6) as claimed.
On the other hand, F is not condensing on B1(X) because, for the sphere Sr := {x∈ X : ‖x‖=

r} with 0 < r < 1, we have α(Sr) = 2r and α(F(Sr)) = 2(1− r)r. So assumption [F ]α =: q < 1
would lead to r− r2 ≤ qr, a contradiction for r < 1−q.
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We point out that Theorem 3.1 is usually proved by considering projections to a sequence
of finite dimensional subspaces, and Theorem 3.2 may be proved by an iterated application
of a condensing operator until reaching compactness. In this way, Schauder’s theorem may
be reduced to Brouwer’s theorem, and Darbo’s theorem to Schauder’s theorem. However,
Sadovskij’s proof of Theorem 3.4 in [36] uses transfinite induction, without recurring to previ-
ous fixed point theorems. It is therefore interesting to note that Theorem 3.4 can be reduced to
Theorem 3.2.

To show this, we suppose that X , M, and F satisfy the hypotheses of Theorem 3.4, where
without loss of generality M contains the zero vector of X . For 0 < q < 1, the operator qF is
then condensing and maps M into itself since M is convex. By Theorem 3.2, there exists xq such
that xq = qF(xq). Hence,

‖xq−F(xq)‖ ≤ ‖xq−qF(xq)‖+(1−q)‖F(xq)‖= (1−q)‖F(xq)‖,

which implies that inf{‖x−F(x)‖ : x ∈ M} = 0 since q may be taken arbitrarily close to 1.
Choose a sequence (xn)n in M such that xn−F(xn) converges to zero as n→ ∞. Then the
set N := {x1,x2,x3, . . .} is precompact because α(F(N)) = α(N) and F is weakly condensing.
Therefore (xn)n admits a convergent subsequence, and the limit of this subsequence is a fixed
point of F .

It is a tempting idea to consider that the above mentioned fixed point theorem for weakly con-
tracting maps might be directly reduced to Banach’s Theorem 2.1 by a compactness argument,
similarly as we just reduced Theorem 3.4 to Theorem 3.2. However, the following example
shows that a map may be a weak contraction on a compact set without being a contraction.

Example 3.2. Consider the function F : [0,1]→ [0,1] defined by F(x) := x− x2. The unique
fixed point of F is x∗ = 0. It is easy to see that F is not a contraction. However, F is a weak
contraction because

|F(x)−F(y)|= |x− y− (x+ y)(x− y)|= |1− x− y| |x− y|

and the term |1− x− y| ≤ 1 can become equal to 1 only for x = y = 0 or x = y = 1, which is
excluded by condition (3.5).

The reason for Example 3.2 is that the condition |F ′(x)| ≤ q < 1 is sufficient for F to be
contracting, but not necessary, and the condition |F ′(x)| < 1 is sufficient for F to be weakly
contracting, but not necessary. Of course, if F ∈ C1(I) and I is a compact interval, then both
conditions |F ′(x)| ≤ q < 1 and |F ′(x)| < 1 are equivalent, by the continuity of F ′. Here is
another example of a differentiable map F on a compact interval with discontinuous derivative
F ′.

Example 3.3. The function f : [0,1]→ R defined by

f (x) :=

(1− x)sin
1
x

for 0 < x≤ 1,

0 for x = 0

is discontinuous at x = 0, but has the primitive

F(x) := x2 cos
1
x
−2

∫ x

0
t cos

1
t

dt−
∫ x

0
t sin

1
t

dt
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on [0,1] with F(0) = 0, which is the unique fixed point of F in [0,1]. Since

| f (x)|< 1, limsup
x→0+

f (x) = 1,

the map F is a weak contraction, but not a contraction.

Although this is quite elementary, we collect for the reader’s ease the various conditions on a
map F on an interval I which ensure the existence and uniqueness of a fixed point of F .

F ′(x)≤ q < 1 ⇒ F ′(x)< 1

⇓ ⇓

F contraction ⇒ F weak contraction

The upper arrow can be inverted if I is compact and F ∈C1(I). On the other hand, none of
the other arrows can be inverted, even if I is compact, which is shown by our examples.

The estimate (3.4) shows that a contraction is always condensing. One might think that
similarly the weak contraction condition (3.5) implies that (3.6) holds. Surprisingly enough,
this is not true: The following Example 3.4 shows that a weak contraction is not necessarily
weakly condensing, although a contraction is condensing.

Example 3.4. Let X = c0 be the Banach space of all sequences x = (ξn)n converging to zero
with the supremum norm. It is not hard to prove that the map F defined by

F(x) = F(ξ1,ξ2,ξ3, . . . ,ξn, . . .) =
(1

2(1+ ||x||),
3
4ξ1,

7
8ξ2, . . . ,(1−2−n)ξn−1, . . .

)
(3.7)

maps the unit ball B1(c0) into itself and is a continuous weak contraction in the sense of (3.5).
However, F has no fixed point. Indeed, if x̂ = (ξ̂1, ξ̂2, ξ̂3, . . .) were a fixed point of F in B1(c0),
then

ξ̂1 =
1
2(1+ ||x̂||), ξ̂2 =

1
2

3
4
(1+ ||x̂||), . . . , ξ̂n = (1+‖x̂‖)

n

∏
j=1

(
1−2− j) , . . . .

So we have the estimate

ξ̂n ≥ (1+‖x̂‖)
∞

∏
j=1

(
1−2− j) . (3.8)

Since
∞

∑
j=1

log
(
1−2− j)≥−2

∞

∑
j=1

2− j =−2,

the product in (3.8) converges to some value ≥ 1/e2. So the point x̂ cannot belong to X . From
Theorem 3.4, it follows that operator (3.7) cannot be weakly condensing. This may also be
verified directly by observing that F(en)= e1+(1−2−(n+1))en+1 with (en)n being the canonical
basis in X .

The hierarchy Brouwer-Schauder-Darbo-Sadovskij is one of the best known examples in
nonlinear analysis for reducing a result to a simpler one which has been previously proved. In
this connection, we cannot resist citing a fictious funny story invented by the authors of the
beautiful recent Lecture Notes [6] which reads as follows.
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When Brouwer claimed that his fixed point theorem could not be improved, Schauder came
up and told him “Please hold my Goldwasser glass a moment and look at this!”, and showed
him our Theorem 3.1. Afterwards, when Schauder claimed that his fixed point theorem could
not be improved, Darbo came up and told him “Please hold my Wine glass a moment and look
at this!”, and showed him our Theorem 3.2. Finally, when Darbo claimed that his fixed point
theorem could not be improved, Sadovskij came up and told him “Please hold my Vodka glass
a moment and look at this!”, and showed him our Theorem 3.4.
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