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Abstract. The aim of the paper is to re-visit the 1990 Khamsi-Kozlowski-Reich Fixed Point Theorem,
which initiated a flourishing field of fixed point theory in modular function spaces. Our result generalises
this theorem as well as other classical fixed point theorems, including celebrated 1965 result of Kirk.
As the common setting for our investigation, we choose the modulated LT I-spaces defined as modular
spaces equipped with a sequential convergence structure, which allows also to use convergence types not
associated with any topology (like convergence almost everywhere).
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1. INTRODUCTION

The aim of the paper is to re-visit the 1990 Khamsi-Kozlowski-Reich Fixed Point Theorem
([9, Theorem 3.5]), which initiated a flourishing field of fixed point theory in modular function
spaces (see e.g. [10], the literature referenced there, and a multitude of results published since
then), that is, in spaces of measurable functions, where norms are replaced by a more general
construct of modulars. As observed many times, many fixed point results including the cited
Khamsi-Kozlowski-Reich Theorem are analogs of classical Banach space results proven in the
context of modular function spaces. The original Khamsi-Kozlowski-Reich Theorem is a good
example of this phenomenon, as it can be considered a modular function space analog of the
Kirk Theorem.

The reader is referred to the book [14] to learn more about the origins of the theory of mod-
ular function spaces in a more general context. For instance, in the theory introduced there the
function modulars are not assumed to be convex functions, in contrast to a simpler setting of
[10]. In the current paper, we do not generally assume convexity of modulars. The main im-
provement over the 1990 version of the Khamsi-Kozlowski-ReichTheorem is that we consider
the setting of modular spaces equipped with a sequential convergence structure, that generalise
both normed and modular function spaces. Hence, the version produced in this paper, Theorem
3.2 is a common generalisation of both the 1965 result by Kirk, and the 1990 result by Khamsi,
Kozlowski and Reich.
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As the common setting for our investigation, we choose the modulated LT I-spaces defined
as modular spaces equipped with a sequential convergence structure, and introduced by the
author in the recently published paper [17], where a problem of existence and uniqueness of
approximants in such spaces is being analysed. The framework of convergence spaces was
originally introduced by Kisyński in [13] (see also [3]), following much earlier ideas of Fréchet
[4] and Urysohn [20]. The choice of this setting allows using convergence types not associated
with a topology. An important example of this case is convergence almost everywhere.

2. MODULATED CONVERGENCE SPACES

Let X be a real vector space. Let us recall the definition of modular on X , [18], and associated
terminology.

Definition 2.1. A functional ρ : X → [0,∞] is called a modular if

(1) ρ(x) = 0 if and only if x = 0
(2) ρ(−x) = ρ(x)
(3) ρ(αx+βy)≤ ρ(x)+ρ(y) for any x,y ∈ X , and α,β ≥ 0 with α +β = 1

and convex modular if instead of (3) the following holds

(3’) ρ(αx+βy)≤ αρ(x)+βρ(y) for any x,y ∈ X , and α,β ≥ 0 with α +β = 1

The vector space Xρ = {x ∈ X : ρ(λx)→ 0, as λ → 0} is called a modular space.

The notions shown in Definition 2.2 below were introduced in [15] for general modular
spaces. They follow the same pattern as their equivalents in modular function spaces (see e.g
[14, 10]).

Definition 2.2. Let ρ be a modular defined on a vector spaces X .

(a) We say that {xn}, a sequence of elements of Xρ is ρ-convergent to x and write xn
ρ→ x if

ρ(xn− x)→ 0.
(b) A sequence {xn} where xn ∈ Xρ is called ρ-Cauchy if ρ(xn− xm)→ 0 as n,m→ ∞.
(c) Xρ is called ρ-complete if every ρ-Cauchy is ρ-convergent to an x ∈ Xρ .

(d) A set B ⊂ Xρ is called ρ-closed if for any sequence of xn ∈ B, the convergence xn
ρ→ x

implies that x belongs to B.
(e) A set B⊂ Xρ is called ρ-bounded if its ρ-diameter δρ(B) = sup{ρ(x− y) : x ∈ B,y ∈ B} is

finite.
(f) A set K ⊂ Xρ is called ρ-compact if for any {xn} in K, there exists a subsequence {xnk} and

an x ∈ K such that ρ(xnk− x)→ 0.
(g) Let x ∈ Xρ and C ⊂ Xρ . The ρ-distance between x and C is defined as

dρ(x,C) = in f{ρ(x− y) : y ∈C}.

(h) A ρ-ball Bρ(x,r) is defined by Bρ(x,r) = {y ∈ Xρ : ρ(x− y)≤ r}.

Let us recall from [17] basic concepts related to the sequential convergence and modulated
convergence spaces, remembering that the framework of convergence spaces was originally
introduced in [13], see also [3], and recent papers [15, 16].
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Definition 2.3. Let X be any nonempty set. A relation ζ between sequences {xn}∞
n=1 of ele-

ments of X and elements x of X , denoted by xn
ζ→ x, is called a sequential convergence on X

if

(1) if xn = x for all n ∈ N then xn
ζ→ x,

(2) if xn
ζ→ x and {xnk} is a proper subsequence of {xn}, then xnk

ζ→ x.
The pair (X ,ζ ) (or shortly X) is called a convergence space.

Given a sequential convergence ζ on X , we can introduce the notions of closed and sequen-
tially compact sets.

Definition 2.4. Let (X ,ζ ) be a convergence space. A set K ⊂ X is called closed if whenever

xn ∈ K all n ∈ N and xn
ζ→ x, then x ∈ K. Similarly, K is called sequentially compact if from

every sequence {xn} of elements of K we can choose a subsequence {xnk} such that xnk

ζ→ x for
an x ∈ K.

Definition 2.5. A sequential convergence ζ is called an L-convergence on X if

(3) if xn
ζ→ x and xn

ζ→ y, then x = y.
The pair (X ,ζ ) (or shortly X) is called an L-space.

Definition 2.6. An L-convergence ζ on X is called L∗-convergence if, in addition, it satisfies
the following condition

(*) if every subsequence {xnk} of {xn} contains a subsequence {xnkp
} such that xnkp

ζ→ x, then

xn
ζ→ x.

Similarly, X is called an L∗-space.

Let ζ be a sequential convergence on X . Let us denote by T (ζ ) the class of all subsets U

of X such that from x ∈U and xn
ζ→ x it follows that there exists n0 ∈ N such that xn ∈U for

n ≥ n0. We will call them open sets in the sense of T (ζ ). It is easy to see that these open sets
form a topology, as it was already observed by Birkhoff in 1936, [1]. Note also that the same
topology T (ζ ) can be as well determined by closed sets, where F ⊂ X is called a closed set if

x ∈ F , whenever xn ∈ F and xn
ζ→ x. Note that T (ζ ) does not need to be Hausdorff even when

ζ is an L∗-convergence, see [3].
Let now τ be a topology on X . We say that a sequence {xn} of elements of X converges to an

x ∈ X (and write xn
τ→ x) if from x ∈U ∈ τ it follows that xn ∈U for n ∈ N greater than some

n0 ∈ N. It is easy to see that such convergence, denoted by C(τ), is a sequential convergence
which, in addition, satisfies (∗). If τ is Hausdorff then the limit is unique and hence C(τ) is an
L∗-convergence.

The next, fundamental result was attributed by Kisyński to Urysohn [20] and can be formu-
lated as follows.

Proposition 2.1. Let ζ be an L-convergence on X, xn,x∈ X. Then xn
C(T (ζ ))−→ x if and only if from

every subsequence {xnk} of {xn} we can choose a subsequence {xnkp
} such that xnkp

ζ−→ x.
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An interesting and important example is when ζ is an almost everywhere convergence of
equivalence classes of Lebesgue-measurable functions on [0,1] (it is easy to check that this is
an L-convergence). We know that the m -almost everywhere convergence implies but is not
equivalent to the convergence in measure m. As a matter of fact, fn → f in measure if and
only if from every subsequence { fnk} we can choose a subsequence { fnkp

} such that fnkp
→ f

m -almost everywhere. From Proposition 2.1 we conclude immediately that the convergence
almost everywhere cannot be generated from any topology.

Let us define LT I-convergence, LT I-spaces and modulated LT I-spaces.

Definition 2.7. Let X be a real vector space and let ζ be an L-convergence on X . We say that ζ

is an LT I-convergence (translation invariant convergence) if xn
ζ→ x implies that xn− y

ζ→ x− y
for any y ∈ X . In this case, the pair (X ,ζ ) is called an LT I-space.

Definition 2.8. Let ρ be a modular defined on X and let ζ be an L-convergence on Xρ . The
triplet (Xρ ,ρ,ζ ) is called a modulated LT I-space if (Xρ ,ζ ) is an LT I-space and the following
two conditions are satisfied

(i) xn
ζ→ x⇒ ρ(x)≤ liminf

n→∞
ρ(xn),

(ii) if xn
ρ→ x then there exists a sub-sequence {xnk} of {xn} such that xnk

ζ→ x, where x, xn ∈ X .

The assertions of the following Proposition are easy consequences of the appropriate defini-
tions.

Proposition 2.2. Let (Xρ ,ρ,ζ ) be a modulated LT I-space. Then the following assertions are
true.

(i) Every ζ -closed set is also ρ-closed.
(ii) Every ρ-compact set is also sequentially ζ -compact.

(iii) Every ρ-ball Bρ(x,r) is ζ -closed (and hence also ρ-closed).
(iv) Every sequentially ζ -compact set is ζ -closed.
(v) Every ζ -closed subset of a sequentially ζ -compact set is sequentially ζ -compact.

(vi) ρ-convergence is an L∗-convergence.

Remark 2.1. Banach spaces with ρ being a norm and ζ standing for the convergence in weak
topology, and modular function spaces (with the Fatou property), with the ρ−a.e convergence
(including Lebesgue spaces, Orlicz spaces, variable Lebesgue spaces with ζ being convergence
a.e. w.r.t. to measure) are typical examples of ρ-complete modulated LT I- spaces. We refer the
reader to [17] for a more comprehensive list of examples.

3. RESULTS

For the last 30 years, the evolution of fixed point theory has demonstrated the great usefulness
of modular space techniques. Therefore, some fundamental fixed point existence theorems
serve as an excellent example of application of the theory of modulated convergence spaces
introduced in the previous section. Because of the important role played by normal structure
(since the 1965 paper by Kirk [11]) in fixed point theory, we have chosen this property as an
illustration of the power of the theory introduced in the current note.
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Let us recall basic definitions. As in the previous section, X is a vector space and ρ is a
modular defined on X .

Definition 3.1. [15, Def. 3.1]
Let C be a ρ-bounded subset of Xρ .

(1) A mapping T : C→ C is called ρ-nonexpansive if ρ(T (x)−T (y)) ≤ ρ(x− y) for any
x,y ∈C.

(2) The quantity rρ(x,C) = sup {ρ(x− y) : y ∈C} will be called the ρ-Chebyshev radius
of C with respect to x.

(3) The ρ-Chebyshev radius of C is defined by Rρ(C) = inf {rρ(x,C) : x ∈C}.

Note that Rρ(C) ≤ rρ(x,C) ≤ δρ(C), for any x ∈C and any ρ-bounded nonempty subset C
of Xρ .

Let C be a ρ-bounded subset of Xρ such that δρ(C)> 0. and let A be a class of subsets of C.
With this in mind, let us introduce the following two definitions.

Definition 3.2. A class A is said to be ρ-normal if, for each A ∈ A , not reduced to a single
point, we have Rρ(A) < δρ(A). Alternatively, we say in this situation that the set C has a
ρ-normal structure.

Definition 3.3. We say that A is countably compact if any decreasing sequence {An}n≥1 of
nonempty elements of A , has a nonempty intersection.

The following technical result is a general modular version of a result for function modulars
in the cited paper [9] by Khamsi, Kozlowski and Reich, and relates to Kirk’s lemma [12], being
in its turn an abstraction of a result obtained by Gillespie and Williams [6]. We provide the
proof for the sake of completeness. Please note that, in contrast to previous results, our result
is proved for general modular spaces, where no convexity or any other additional structure is
assumed.

Lemma 3.1. Let Xρ be any modular space, and let K ⊂ Xρ be ρ-bounded. Let K be a class
of subsets of K which is stable under arbitrary intersections and contains all sets of the form
K ∩Bρ(x, p), where x ∈ K and p > 0. Suppose that T : K → K is ρ-nonexpansive. Then, for
each ε > 0, there exists Kε ∈K such that T (Kε)⊂ Kε and for which

δρ(Kε)≤ Rρ(K)+ εδρ(K). (3.1)

Proof. Let us denote r = Rρ(K)+ εδρ(K). If δρ(K) = 0, then (3.1) is trivially satisfied with
Kε = K. Hence we can assume that δρ(K) > 0. Denote K∗ = {z ∈ K : K ⊂ Bρ(z,r)}, which is
not empty in view of the definition of r. Define a class D = {D∈K : K∗ ⊂D⊂K, T (D)⊂D}
and note that D 6= /0 since K ∈D . Set F =

⋂
D . It is easy to see that F ∈K and that K∗ ⊂ F .

It follows from the definition of D that T (F)⊂ F . Denoting A = K∗∪T (F), we conclude then
that A ⊂ F . Because of this and the fact that F ∈K we conclude that cov(A) =

⋂
{D ∈K :

A⊂ D} ⊂ F , which implies that

T (cov(A))⊂ T (F)⊂ A⊂ cov(A), (3.2)

proving that cov(A) ∈D . Because of this and the fact that cov(A)⊂ F we have cov(A) = F (by
the definition of F). Define Kε =

⋂
u∈F Bρ(u,r)∩F and observe that Kε ∈K because K is

stable under intersections and contains intersections of ρ-balls with K (remember that F ⊂ K).
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It follows from the definition of K∗ and the fact that K∗⊂F that K∗⊂Kε . Since K∗ 6= /0 it follows
that Kε 6= /0. Let us prove now that T (Kε)⊂Kε . Indeed, let x∈Kε , then x∈F , which implies that
T (x) ∈ F . Let u ∈ F then ρ(T (x)−T (u))≤ ρ(x−u)≤ r because T is ρ-nonexpansive, x ∈ Kε

and u ∈ F . Hence T (F)⊂ Bρ(T (x),r). Let z ∈ K∗, then ρ(T (x)− z)≤ r because K ⊂ Bρ(z,r),
hence K∗ ⊂ Bρ(T (x),r). We conclude the that A = K∗ ∪ T (F) ⊂ Bρ(T (x),r), which in turn
implies that F = cov(A) ⊂ Bρ(T (x),r). This means that for every u ∈ F , u ∈ Bρ(T (x),r) and
hence T (x) ∈ Bρ(u,r), which implies that T (x) ∈ Cε (we already know that T (x) ∈ F). Our
assertion that T (Cε)⊂Cε is therefore proved. Finally, let x,y ∈Cε , then x ∈ F and y ∈ Bρ(x,r),
which implies that ρ(x− y)≤ r and consequently that δρ(Kε)≤ r. The proof of the Lemma is
therefore complete. �

We are now ready to prove a fixed point result that generalises (among many other results) the
classical Kirk Theorem [11] for Banach spaces and, at the same time, the Khamsi-Kozlowski-
Reich Theorem for modular function spaces [9, Theorem 3.5]. We quote both these fundamental
results below. The commentary about the relations between these two results and Theorem 3.3
of this paper will be provided after the proof of the latter result.

Theorem 3.1 (Kirk Theorem). Let C be a nonempty, bounded, closed, and convex subset of
a reflexive Banach space, and suppose that C has normal structure. If T is a nonexpansive
mapping of C into itself, then T has a fixed point.

Theorem 3.2 (Khamsi-Kozlowski-Reich Theorem). Let ρ have the Fatou property. Suppose
that a ρ-bounded, ρ-a.e. compact C subset of a modular function space Lρ has ρ-normal
structure. If T : C→C is ρ-nonexpansive, then it has a fixed point.

Theorem 3.3. Let (Xρ ,ρ,ζ ) be a modulated LT I-space. Let C ⊂ Xρ be nonempty ρ-bounded,
sequentially ζ -compact. Define A as a class of all nonempty, ζ -closed subset of C and assume
that A is ρ-normal. Let T : C→C be a ρ-nonexpansive mapping. Then T has a fixed point in
C.

Proof. First, we will demonstrate that A is countably compact. Indeed, let {An} be a decreasing
sequence of nonempty sets from A . We need to show that the interception of {An} is nonempty.
Let xn ∈An⊂C for every n∈N. Since C is sequentially ζ -compact there is a subsequence {xnk}

and x ∈ C such that xnk

ζ→ x. We claim that x ∈
∞⋂

k=1

Ank . To this end, suppose to the contrary

that x /∈ Ank for k ≥ k0 for some k0 ∈ N. It follows from Proposition 2.2 (v) that the set Ank0
is

sequentially ζ -compact and therefore x ∈ Ank0
(being the ζ -limit of {xnk}), which contradicts

the indirect assumption, and proves that x ∈
∞⋂

k=1

Ank and hence that A is countably compact.

Let D = {D ∈ A : D 6= /0, T : D→ D} and note that D 6= /0 because C ∈ D . Let us define
δ̃ρ : D → [0,∞) by

δ̃ρ(D) = inf{δρ(B) : B ∈D , B⊂ D}. (3.3)

Set D1 = C. By definition of δ̃ (D1), there exists D2 ∈ D such that D2 ⊂ D1 and δρ(D2) <

δ̃ (D1)+ 1. Using the same argument we can inductively construct a sequence {Dn} such that
Dn+1 ∈D , Dn+1 ⊂ Dn and

δρ(Dn+1)< δ̃ (Dn)+
1
n
. (3.4)
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Since A is countably compact, then D∞ =
⋂
n≥1

Dn is not empty. Clearly D∞ ∈D and T : D∞→

D∞ is ρ-nonexpansive. It remains to be proved that D∞ is reduced to a single point. Let us
define a class F = {D ∈ D : D ⊂ D∞}. Fix temporarily an arbitrary ε > 0. Observe that we
can apply Lemma 3.1 taking D∞ instead of K and F instead of K . Hence, there exists Dε ∈D
such that Dε ⊂ D∞, T : Dε → Dε and

δρ(Dε)≤ Rρ(D∞)+ εδρ(D∞). (3.5)

Let us observe that for every n, δ̃ (Dn)≤ δρ(Dε) because of the definition of δ̃ (Dn) and the fact
that Dε ∈D , Dε ⊂ D∞ ⊂ Dn and T (Dε)⊂ Dε . Using this fact and combining it with (3.4) and
(3.5) we have

δρ(D∞)−
1
n
≤ δρ(Dn+1)−

1
n
≤ δ̃ρ(Dn)≤ δρ(Dε)≤ Rρ(D∞)+ εδρ(D∞). (3.6)

Passing with n to infinity we get δρ(D∞)≤ Rρ(D∞)+εδρ(D∞), which by arbitrariness of ε > 0
gives us δρ(D∞) ≤ Rρ(D∞). In view of the assumption that A is normal, this is possible only
if D∞ is reduced to a single point which is then a fixed point for T . �

In [9], the Khamsi-Kozlowski-Reich Theorem (Theorem 3.2) was presented as an analog of
Kirk’s fundamental result in Banach spaces (Theorem 3.3) in modular function spaces. It was
not really a generalisation of the Kirk Theorem because, obviously, not every Banach space is
a modular function space. As intimidated in Introduction to this paper, the similarity between
these two results called for a structure allowing to generalise both these fundamental results. As
observed in Remark 2.1, Banach spaces and modular function spaces with the Fatou property
are examples of modulated LT I-spaces, and hence our Theorem 3.3 generalises both these
classical results, as announced earlier in this paper.

Brailey Sims observed in [19] that Banach spaces which are uniformly convex in every di-
rection (UCED) have weak normal structure (i.e., every weak compact convex set has normal
structure), an important result with origins in work by Garkavi [5] (similar results were obtained
also in hyperbolic spaces, see e.g. the books by Goebel and Reich [7] and by Khamsi and Kirk
[8]). Using then Kirks’ theorem, we can conclude that UCED Banach spaces enjoy the weak
fixed point property. As it turns out, we have an analogous result in modulated LT I-spaces.
To see this, we introduced a relevant notion of UCED, in which we follow a similar notion
introduced for modular function spaces in [9], see also a more recent application of UCED for
modulated topological vector spaces in [16] and modular function spaces in [2].

Definition 3.4. [15] [Def. 3.6] Let ρ be a convex modular. For any nonzero u ∈ Xρ and r > 0,
we define the r-modulus of uniform convexity of ρ in the direction of u as

δ (r,u) = inf
{

1− 1
r

ρ

(
y+

1
2

u
)}

,

where the infimum is taken over all y ∈ Xρ such that ρ(y)≤ r and ρ(y+u)≤ r.
We say that Xρ is ρ uniformly convex in every direction (ρ −UCED) if δ (r,u) > 0 for every
nonzero u ∈ Xρ and all r > 0.

We will need the following result proved in [15], and inspired by an analogous result for
modular function spaces [9][Proposition 3.10]. For the completeness sake, we reproduce its
short proof.
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Proposition 3.1. [15] [Prop.3.7] Let a modular space Xρ be ρ −UCED, and let C ⊂ Xρ be
convex, ρ-bounded and not a singleton. Then C has a ρ-nondiametral point.

Proof. Take any x 6= y elements of C. Fix temporarily any h ∈C and set u = x− y, w = y− h
and r = δρ(C). Then ρ(w) = ρ(y− u) ≤ r and ρ(w+ u) = ρ(x− h) ≤ r. By the definition of
δ (r,u) we have then

ρ

(
w+

1
2

u
)
≤ r(1−δ (r,u)),

which by a straightforward calculation gives us

ρ

(x+ y
2
−h
)
≤ r(1−δ (r,u)).

Hence,
sup
h∈C

ρ

(x+ y
2
−h
)
≤ δρ(C)(1−δ (r,u))< δρ(C),

because δ (r,u)> 0. Consequently, x+y
2 is not a ρ-diametral point in C. �

By combining Theorem 3.3 with Proposition 3.1, we obtain the following result being an
extension of the Browder fixed point theorem to the case of modulated LT I-spaces.

Theorem 3.4. Let (Xρ ,ρ,ζ ) be a ρ −UCED modulated LT I-space. Let C ⊂ Xρ be convex,
ρ-bounded and ζ -sequentially compact. If T : C→ C is ρ-nonexpansive, then T has a fixed
point.
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