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Abstract. We consider the method of alternating (metric) projections for pairs of linear subspaces of
finite dimensional Banach spaces. We investigate the size of the set of points for which this method con-
verges to the metric projection onto the intersection of these subspaces. In addition, we give a character-
isation of the pairs of subspaces for which the alternating projection method converges to the projection
onto the intersection for every initial point. We provide a characterisation of the linear subspaces of ¢7,
1 < p < oo, p # 2, which admit a linear metric projection and use this characterisation to show that in £3,
1 < p < oo, p# 2, the set of pairs of subspaces for which the alternating projection method converges to
the projection onto the intersection is small in a probabilistic sense.
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1. INTRODUCTION
For a Banach space X and a closed subspace M, we denote by
Pyx:={yeM: [lx—y| =d(x,M)}

the set of points which realise the distance between the subspace M and the point x € X. For
strictly convex reflexive spaces the set Pyx is a singleton. Therefore, for these spaces and for
every closed subspace M, we can consider the mapping

Py X=X, x — Pyx

which is called the metric projection onto M. Under some regularity assumptions on the Banach
space X, which will always be satisfied in our setting, the metric projection is continuous, see
e.g [4, 13].

Given closed linear subspaces M,N C X we are interested in the question of whether the
alternating projection method, which for xg € X is defined by

Xok+1 = Puxok,  Xok = Pyxor—1 fork € No,
converges to the projection Pyyxo of xo onto the intersection M NN.
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In [12], J. von Neumann showed that if X is a Hilbert space the alternating projection method
always converges to the projection onto the intersection. A geometric proof of this result has
been given by E. Kopeckd and S. Reich in [5], see also [6, 7]. However it turns out that this
behaviour is strongly tied to the Hilbert space case. In [9], W. Stiles proved that if for a Banach
space X of dimension at least three for all pairs of subspaces (M,N) the alternating projection
method converges to the projection onto the intersection M NN, then X is a Hilbert space. In
other words, every Banach space of dimension at least three, which is not a Hilbert space, con-
tains at least two closed linear subspaces M and N for which the alternating projection method
does not converge to the projection onto M N N. On the other hand, also in [9], W. Stiles proved
that in finite dimensional smooth and strictly convex Banach spaces, the alternating projection
method always converges to some element of M N N. In [1], B. Atlestam and F. Sullivan gen-
eralised these results to an infinite dimensional setting while imposing additional conditions on
M and N.

These results motivate the following three questions on the alternating projection method in
finite dimensional Banach spaces.

(1) For subspaces M and N for which the alternating projection method does not converge to
the projection onto M NN, how large is the set of points x € X for which (PyPy)"x, or in
the opposite order, converges to Py~nyx? One might hope that also in this case the set of
points for which is occurs might be a large set.

(ii) For how many pairs of subspaces (M, N) does the alternating projection method converge
to the projection onto M NN for all points of X?

(ii1) How large is the distance between the limit of the alternating projection method and the
projection onto the intersection?

In this article, we address the questions (i) and (ii).

In Section 2, we show that the convergence of the alternating projection method to the metric
projection onto the intersection happens on a closed set A containing M N N. We exhibit an
example where both A and its complement have nonempty interior and show that if M NN
contains an interior point of A, then A = X. We give a characterisation of pairs (M,N) of
subspaces where the alternating projection method converges to Pyy for all points and apply
this to show that linearity of Py~ is sufficient for this behaviour.

In Section 3, we characterise the subspaces of Ef,, 1 < p < oo, p # 2 for which the metric
projection is linear.

In Section 4, we apply the characterisation given in Section 3 to show that the set of pairs (M,N)
of subspaces of E?, for which the alternating projection method converges to Py is small in a
probabilistic sense.

The results of Sections 3 and 4 are part of the second author’s master thesis [8] which was
written under the supervision of the first author.

2. ALTERNATING PROJECTIONS IN FINITE DIMENSIONAL SPACES

We consider a finite-dimensional strictly convex and smooth Banach space X and two closed
linear subspaces M,N C X.
We recall the following results due to W. Stiles.
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Proposition 2.1 (Theorem 3.1 in [9, p. 24]). Let X be finite-dimensional, strictly convex, and
smooth. Given two subspaces M,N C X there is a number 0 < k < 1 such that

HPMPNX— PNXH < kHPNx—xH
forall x e M.

W. Stiles uses this result to show that for a strictly convex finite-dimensional Banach space X
the sequence (PyPy)"x converges to a point in M NN for every x € X if and only if X is smooth.
A careful examination of the proof given in [9] shows that for smooth spaces, the sequence
(PyPy)" of operators converges uniformly on bounded sets. We summarise this observation in
the following theorem.

Theorem 2.1. Let X be a finite-dimensional, strictly convex, and smooth Banach space and let
M,N C X two subspaces. The sequence {T,}:_, where
TIp =1, Ty = PyToy and Ty = PyuTon—

converges to a retraction Ry y onto M NN, uniformly on bounded sets. The retraction Ry y
satisfies

RM7N(/'LX) = ARy NX and RM,N(Z +Xx) =z+ Ry Nx
forallze MNN, A € Rand x € X.

The following proof is based on parts of the proof of Theorem 3.2 in [9, pp. 25-26] and is
mainly included to keep the paper self-contained.

Proof. By Proposition 2.1, there is a number 0 < k < 1
[PrPyy — Eyyl| < kl[Pyy—yll  and  |[PvPyz— Pyzll < k||Puz —z|
forally € M and all z € N. Let R > 0 and x € B(0,R). From the above inequalities we obtain
| T 1x — Tox|| < k||Tx — T 1x||
and hence for m > n we have
| Thx — Tpx|| < ||Twx — Typ1x|| + - - - + || T 1x — Tx||
< K ||PMPNX—PNX|| + ... —|—km_2||PMPNx —PN)CH
| 2R
1—k
and hence {7, };>_, is a Cauchy sequence for the topology of uniform convergence on bounded
subsets of X. Hence it converges uniformly on bounded sets to a continuous operator Ry y.
Since for x € X we have Tp,x € M and T, 1x € N. Hence the limit has to be an element of both
closed subspaces M and N. Hence the range of Ry y has to be a subset of M N N. Moreover,
since Pyz = Pyz =z forall z€ MNN, we have Ry yz = z for all z € MNN and hence Ry y is a

continuous retraction onto M NN. The claimed properties of Ry y are a direct consequence of
the definition of Ry, y and the properties of the metric projections Py and Py. 0

1
<K [Pl < K

Remark 2.1. Note that the limit might depend on the order in which the projections with re-
spect to M and N are taken. So the previous theorem implies the existence of two continuous
retractions Ry y and Ry » onto M N N. They are connected via

Ry NPy =Ry m and Ry mPy = Ry N
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since
RN,M = lim (PNPM)"x = lim PN(PMPN)nilpr = PNRMWPMX = RMJVPMX
n—yoo n—oo

and

RM,N = lgll (PMPN)nX = lgn PM(PNPM)"_IPNx = PMRN7MPNX = RN7MPN)C.
n (] n oo

In particular we have Ry y = Ry » whenever these retractions commute with the projections
PM and PN.

The following observation gives a criterion for the convergence of the alternating projection
method to the projection onto the intersection.

Proposition 2.2. For x € X the following assertions are equivalent.

(i) Ry nx = Ry pyx = Pynnx.
(ii) PMQN(PMPN)nx = PMQN(PNPM)HX = Pyrwnx forall n € N,

Proof. First note that if condition (i) is satisfied we have
PMQNX = 11_I>11 (PMPN)mX = 11_r>n (PMPN)min (PMPN)"x = PMﬂN(PMPN)nx
m-—o0 m—yoo

and similarly Pynx = Pyn(PvPy)"x, i.e. condition (ii) holds.
Conversely, note that

Ry nx = PynNRy Nx = li_r}n Pyrv (PuPn)"x = li_r}n Pyinnx = Pynnx
n—roo n—oo
by continuity of Pyy. The argument for Ry y = Pyny 1s analogous. 0J

Remark 2.2. Since both Ry ny and Pyny are continuous, they agree on a closed subset of X
which contains M NN.

In the following we want to see whether we can say more about the set A of points for which
the alternating projection algorithm converges to the projection onto the intersection.

Proposition 2.3. Ifthere are z € MNN and € > 0 such that Ry nx = Pynnx for all x € z+ €By,
then Ry nx = Pyrwx for all x € X.

Proof. Givenx € X wesety:=x—2z,y = my and observe that

2
yyeeBy and x=z+ @y’.

Using Theorem 2.1, we obtain that

2 2
Ry Nx = Ry N (Z + —|LyHyl> =zt _’L)’H Ry vy

”

2 2 2 2
(12 e 2y ey = (120 P

= Punn(2+Y) = Punnx,

as claimed. ]
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Remark 2.3. The previous results show that if the alternating projection method for two sub-
spaces M and N does not converge to the metric projection onto the intersection M NN, there is
no hope that it converges at least on a large set of points. Since the set where Ry vy and Pyny
agree is a closed set, convergence on a dense set already implies convergence everywhere.
Moreover, by the previous result, if the set of points x for which Ry yx = Pyrwx contains a ball
intersecting M NN, it is already the whole space.

Summing up, since the maps Py~n are homogeneous and additive with respect to elements
of MNN the set

A= {x €X: Rynx=Rymux= PMme}

is a closed set containing the subspace M NN and the translates of a cone C by every element
of MNN. In other words the set A is a closed set containing (M NN) + C for the cone C =
(ker Pynn) N (kerRM,N) N (kerRNM).

The next example shows that in general it is possible that both the sets A above and its
complement are somewhat large.

Example 2.1. We exhibit a simple example where both the set
A={veEX: Runv=Rymv=Purwv}
and its complement have nonempty interior. Let X be the space R? equipped with the norm

Va2 +y2 472 ifxy>0
[(x,3,2)[| =

VP2 P2 42 ity <o

which is obviously strictly convex on R3. A direct computation shows that it is also contin-
uously differentiable outside the origin, i.e. it is in particular a smooth norm. Moreover note
[v|[2 < ||v|| for all v € R3. In particular, if for a point v € X and its (Euclidean) orthogonal
projection u onto a subspace L the first two entries of v — u are non-negative, we have

v —ull = llv=ul2 < [lv=wlla < [lv=wl|

for all w € L which implies that Prv = u. We consider the subspaces

1 1
M = span 11,10 and N = span I],11
1 0 1

Note that the orthogonal projection of v € R3 onto M is given by

1 0 Vi
w=v [0+ Y2+ Vs 1] = —VZ;”
0 1) \wis

and hence the set of points v for which the first two entries of v —w are non-negative contains
the set

Q:={(x,52) ER’: x>0,y >0,z <0}.

A similar computation shows that the same is true for N. Since the projection onto a hyper-
plane is linear and Q is three-dimensional, we may conclude that Py, and Py coincides with the
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orthogonal projection onto M and N, respectively. Moreover, since on R? all norms are equiva-
lent, von Neumann’s results imply that Ry, y = Ry y = P where P is the orthogonal projection
onto the subspace M N N. A computation similar to the above one shows that on the set

C:={(x,52) e R*: x>0,y>0,z< —x—y}.

the metric projection onto M NN coincides with the orthogonal projection. In particular on this
cone, which has nonempty interior, the alternating algorithm converges to Pyy. In order to
show that also the set of points for which the alternating projection method does not converge
to Pynn has nonempty interior, since this set is an open set, we only have to show that it
is nonempty. For this aim consider v = (—1,2,0) and note that the orthogonal projection is
Ry nv=Pv=(1/3,1/3,1/3). Moreover, for the computation of the metric projection Pyrnv
note that for all 7 € (—1,2) the first entry of v—1(1,1,1) is negative while the second one is
positive. Observe that the derivative of ||v —¢(1,1,1)|? fort € (—1,1) is given as

d _ 4 3(==1) 3(2-1) 1/3
a”v—t(l,l,l)Hz—g(— N _2_t) ((1+t)3/2+(2_t)3/2> o

which does not vanish at 1/3 but at a smaller value for ¢ which is 7y ~ 0.28. Since for this
to we obtain ||v—#o(1,1,1)||> ~ 5.8 which is smaller than both ||[v — (—1)(1,1,1)||3 = 10 and
lv—2(1,1,1)|5 = 13, we conclude that Pyryv # Ry nv.

We conclude this section with a characterisation of the pairs of subspaces M and N for which
the alternating projection method converges for all initial points to the projection onto the inter-
section. For the next theorem, recall that, following [11], a B-operator is a mapping P: X — X
satisfying the following two conditions:

(i) ||x— Px]|| < ||x|| for all x € X.
(ii) ||x — Px|| = ||x|| if and only if Px = 0.
We can now give the following characterisation of when Ry v = Ry m = Punn.
Theorem 2.2. The following assertions are equivalent.

(i) RuN = Rnm = Punn

(ii) PurnPym = Punn and PynnPy = Pun-
(iii) Py (ker Pynn) C ker Pyny and Py(ker Pyry) C ker Py
(iv) Ry n and Ry m are B-operators.

Proof. The equivalence of (i) and (ii) is a direct consequence of Proposition 2.2.
That (ii) implies (iii) is obvious. For the converse implication note that

PyrvPux — Pyrvx = Pyrn (Pux — Purivx) = Pyrv (Py (X — Pyrvx)) =0
since Pynyx € MNN C M. Using a similar computation for Py finishes the proof of the impli-
cation (iii)=>(ii).
The equivalence of (i) and (iv) is a direct consequence of Theorem 1 in [11, p. 248]. O
Corollary 2.1. If Pyny is linear, we have Ry n = Ry m = Punn.

Proof. If Py i1s linear, the set ker Py 1s a linear subspace. For z € ker Pyynny we have

Pyz=z+ (Puz—2) and Pyvz=z+ (Pvz—2).



OBSERVATIONS ON THE METRIC PROJECTION 47

Note that for x € X we have Pyx = 0 if and only if ||x —y|| > ||x|| for all y € M and hence also
for all y € M NN which is equivalent to Pyynyx = 0. Hence ker Py; C ker Pyynn and a similar
argument shows that ker Py C ker Pyny.

Since Pyz—z € ker Pyy C ker Pyny and Pyz — z € ker Py C ker Py, we may deduce from the
assertion that ker Py is a linear subspace, that Pysz, Pyz € ker Pyynn. Now the claim follows
from Theorem 2.2. [

3. CHARACTERISATION OF THE SUBSPACES OF EZ WITH LINEAR METRIC PROJECTION

An extended version of these results, including more detailed proofs, can be found in the
second author’s master thesis [8].

Lemma 3.1. Let X be a uniformly convex space and M C X a closed subspace with metric pro-
Jjection Py. The mapping Q :=1d —Py is a continuous retraction onto ker(Py) which satisfies
ker(Q) = M.

Proof. In order to see that Q is a retraction onto ker(Py) observe that
Q0x = (Id—Py) (x — Pyx) = x — Pyyx — Py (x — Pyx) = x — Pyx = Ox

and Ox = x if and only if Pyx = 0. Since Pyx = x happens precisely for x € M, we have
ker(Q) = M. O

Lemma 3.2. Let L C ¢}, p> 1 and n > 2, be a one dimensional subspace spanned by the vector
a=(ay,...,ay). Then,

ker(P) = {x cR": Za,- sign(xi)|x,-]p*1 = 0}.
i=1

Proof. By definition of the metric projection we have P (x) = 0 if and only if
lx|| < |lx— adl| forall oeR.
Since the mapping ¢ — t? is increasing for ¢ > 0, this is equivalent to
|x]|? < ||x— aal|? forall oeRR.

Since the mapping defined by f(o) = ||x — atal|? is a differentiable convex function, its mini-
mum is characterised by f’(o) = 0. Computing this derivative results in the claimed character-
isation. O

The following lemma is well-known, but since its proof is rather easy we include it for the
convenience of the reader.

Lemma 3.3. A metric projection P onto a linear subspace A of a uniformly convex Banach
space X is linear if and only if ker(P) is a linear subspace of X.

Proof. We only have to show that P is linear if ker(P) is a linear subspace. Assume that both A
and ker(P) = (Id —P)[X] are linear subspaces of X. Given x,y € X,A € R, we observe that

Ax+y=APx+Py+A(Id—P)x+ (Id—P)y = Pz; + (Id—P)z,
for some z1,2, € X and hence
P(Ax+y) = P(Pzi + 22 — P22) = Pz1 + P(22) — Pzp = Pz; = APx+ Py,

i.e. P is a linear projection. U
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Lemma 3.4. Let X be a uniformly convex and uniformly smooth Banach space and A,B C X
be linear subspaces where A+ B is closed. The metric projection Py p is linear if and only if
ker(Py) Nker(Pg) is a linear subspace of X. In particular, if Py and Pg are linear, Py p is linear.

Proof. By the main theorem of [10, p. 117], the sequence ((Id—P4)(Id—Pg))" of operators
converges pointwise to the mapping Id —P4p. In particular, we obtain that x = x — P4 gx for
all points x € ker(P4) Nker(Pg). Hence,

ker(Py) Nker(Pg) C ker(Ps+p).

On the other hand, the condition P4 gx = 0 is characterised by ||x— (a+b)|| > ||x|| for all points
a € A and b € B. Since 0 € AN B, we may conclude that

lx—all =l and  |be=b] > |l

for all @ € A and all b € B. In other words, we have P4x = Pgx = 0. Summing up, we have
shown that ker(Pyp) = ker(P4) Nker(Pg). Now the claim follows from Lemma 3.3. O

Theorem 3.1. Let L be a non-trivial subspace of l}, = (R", | - || ;) with p € (1,00)\ {2}, n > 2.
The metric projection Py, is linear if and only if L is of the form

d
@R(eik‘l’)tkejk) with d € {1,...,71}, ik, Jr € {1,...,1’1} M €ER.
k=1

In other words the projection is linear if and only if the subspace is spanned by vectors with at
most two nonzero entries.

For the proof we recall the following characterisation of the one-dimensional subspaces of /,,
with linear metric projection due to F. Deutsch.

Lemma 3.5 (Corollary 5.3 in [3, p. 290]). A one-dimensional subspace of £, 1 < p < oo, p #2,
admits a linear metric projection if and only if it is spanned by an element with at most two non-
zero coordinates.

The second tool we need for the proof of this theorem is the following lemma.

Lemma 3.6. Let ¢: R — R be a bijection, ®: R"* — R" the function which applies ¢ to each
entry ®((x1,...,x,)) := (¢(x;))1_,, let A € RY*" be a matrix with d < n and let

K={xeR": A®(x) =0}

be a linear subspace of R". Then there are row operations Ey,...,Ey € R4 such that the
solution set

Ki={xeR": A,_®(x) =0}
of every single row of our new matrix A= E,. ---EA is a linear subspace.

Proof. We show this by induction over the dimension d. Since the case d = 1 is obvious, we
assume that d > 1. We can eliminate entries from A using row operations until every row in A
has a pivot. However, since we cannot permute columns, in general, the pivot of the i-th row
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will not be at the i-th position, so let j(i) denote the column index of the i-th pivot. Now our
equation looks like this:

arjy | * 0 * 0

0 0 az i) | * : ®(x) = 0
: : - " 0
0 0 0 0 ad7 j(d)
where the pivots are the only non-zero entries in their respective column and the rows are
ordered in such a way that j is strictly increasing. Let P be the invertible matrix that transforms
A into row echelon form, i.e. PA is the matrix above.
Note that without loss of generality, we may assume that there are no leading columns of

zeros. This allows us also to assume without loss of generality that j(1) = 1. Then we can
define

fi(x2,. . x) =97 ! (_ Z?Z(PA)qub(xj))

(PA) 1,
and M, := N, K;. We get that K| = {x € R": x; = fi(x2,...,x,)} and
K={(filx2,.. ., xn),%2,...,%0) ER": (x2,...,%,) EM1} = Lo,

Since K is a linear subspace, the above implies that the graph of fi]y, is a linear subspace
and hence fi|y, is linear which implies that M is a linear subspace. In other words, we have
shown that the intersection ﬂfzz K; is a linear subspace. We can now repeat this process for the
(d — 1) X n matrix

A= (((PA)ij)fl:z)jzl

that consists of all entries of PA except for the first row. We can do this since we now know that
M|, the set defined by AICTD(xz, ...,Xy) =0, is a linear subspace. Moreover, the first column of
A1 is zero and can therefore be omitted. Now the claim follows by the induction hypothesis. [

Proof of Theorem 3.1. That the condition on L is sufficient is a direct consequence of Lemma 3.5
and Lemma 3.4.

For the proof of the converse implication, we use an inductive argument over the dimension
of the subspace L C £}, and note that the one-dimensional case follows from Lemma 3.5. We
are left to consider the case of a d-dimensional subspace represented as L = EB?Z 1 L; where all
L; are one-dimensional. Since we assume that Py is linear, we may use Lemma 3.4 to conclude
that the set ﬂflzlker(PLi) is a linear subspace. We now show that this implies the existence
of a representation L = @fl:] L; where each of the L; is spanned by an element with at most
two nonzero entries. To this end, we pick a basis of the L;. So, let al) € L; \ {0} and write

(~l) )ij- Then by

their coordinates with respect to the standard basis into a d X n matrix A := (a j

Lemma 3.4 the intersection K = ker(Pz,) N--- Nker(P,) can be described as

sign()c1)|x1|p*1
K=<{xeR": A : =0

sign (xn ) x| P~
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Since ¢: R — R: x — sign(x)|x[P~! is bijective for all p > 1, we can apply elementary row
operations to the system of linear equations Ay = 0 where y; = @(x;) without changing its
solution set, and due to the one-to-one correspondence between y and x that means the solu-
tion set of A®(x) = 0 also stays the same under row operations (here, ®(x) is a shorthand for
[¢(x;)]_1). Due to this fact, we will look at AP(x) = 0 as if it were a system of linear equa-
tions even if it is not when viewed as equations in x. Now we may apply Lemma 3.6 to obtain
a matrix A such that A®(x) = 0 if and only if A®(x) = 0 and with the property that the sets
K;={x€R": A;_®(x) = 0} are linear subspaces. By Lemma 3.2 the sets K; are kernels of the
metric projection onto a single one-dimensional subspace L;. Since they are linear subspaces,
Lemmas 3.3 and 3.5 imply that each of them is spanned by an element with at most two nonzero
entries. U

4. ALTERNATING PROJECTIONS AND RANDOM SUBSPACES OF 5?,

Since by Theorem 2.3 in [9, p. 22] every at least three-dimensional Banach space X which
is not isomorphic to an inner product space, has to contain two subspaces N and M and a point
x € X such that the sequence of iterates (PyPy)"x does not converge to Pynnx, it seems natural
to investigate the size of the set of pairs of subspaces (M,N) where the alternating projection
method converges to a projection onto the intersection. We will address this question in the
particular case of 6137. Since in a three-dimensional space, the only nontrivial case is the one of
two two-dimensional subspaces, we restrict ourselves to the case of pairs of two-dimensional
subspaces of E;’,.

We start our investigation by providing a description of the kernel of the metric projection
onto a linear subspace of a finite dimensional £,-space using the duality mapping.

Lemma 4.1. The kernel of Py: U}, — (), can be written as ker Py = jq(AL) using the duality
mapping
sign(xy)|xy |97
jq(x) - )
sign(x,)|x, |4~

q:= ﬁ the Hélder complement of p and A the ¢»-orthogonal complement of A.

Proof. From Lemma 3.2 we deduce that

kerPy = {x eR?

Y aYsign(x;)xi|P ! = 0fork=1,... ,m}
i=1

for some basis {a(l), o ,a(m)} of A. These conditions are equivalent to the ¢,-orthogonality of
a(l), e ,a(’”) to the vector jp(x). Since j;l = jg» see e.g. Corollary 3.5 in [2, p. 62], we obtain
Ker(Pa) = {x € B* | (@), jp()) = ... = (@), jp(x) =0} =
= {Ja(0) B [ @V x) = .. = (@ ) =0} = jy(a"),

which finishes the proof. U
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We call a two-dimensional subspace A of R chosen uniformly at random if there is a vector
a chosen uniformly from the Euclidean unit sphere such that (a,x) =0 for all x € A, i.e. A is
the /,-orthogonal complement of some uniformly random ¢;-unit vector a.

Proposition 4.1. Let X = Kf, and A and B be two-dimensional subspaces chosen uniformly at
random. Then Py and Pg are linear, but P(Pyqp is linear) = 0.

Proof. Since the metric projection onto hyperplanes is always linear, in R> all planes have a
linear projection, i.e. the maps P4 and Pp are linear. On the other hand, by Theorem 3.1 Pyqp
is linear iff A N B, which is almost surely one-dimensional, is spanned by a vector with at most
two non-zero entries. Since the space AN B is the set of all points which are ¢,-orthogonal to
both a and b, we know that

a2b3 —(13[92
ANB = R(a X b) =R |azb; —a1b;3
albz—azbl

Therefore using the union bound and the fact that a; ~ aj ~ by for any i,j,k € {1,2,3} we
conclude that
P(PAQB 1S linear) = ]P)(azb3 =aszbyVazby =a b3V ay by = azbl)
S 3]P’(a1b2 = azbl).

We are left to compute the latter probability. By construction of our random model, we have

cosoy/1— 2 cosfB+/1—y?
a—= Sina\/l_(])z , b= Sinﬁ\/l_llfz 7aaﬁe%—ﬂ,ﬂ]a¢awe%—l7l]'
0 v

Therefore,

P(aiby = axby) =P (cosa\/ 1—¢2sinBy/1—y2=sino\/1—p2cosf/1— l//z)

<P(¢*=1)+P(y* = 1)+P(sin( — ) =0)
=0+P({keZ: B=oa+kn})=0,

as claimed. O
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