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OBSERVATIONS ON THE METRIC PROJECTION IN FINITE DIMENSIONAL
BANACH SPACES
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Abstract. We consider the method of alternating (metric) projections for pairs of linear subspaces of
finite dimensional Banach spaces. We investigate the size of the set of points for which this method con-
verges to the metric projection onto the intersection of these subspaces. In addition, we give a character-
isation of the pairs of subspaces for which the alternating projection method converges to the projection
onto the intersection for every initial point. We provide a characterisation of the linear subspaces of `n

p,
1 < p < ∞, p 6= 2, which admit a linear metric projection and use this characterisation to show that in `3

p,
1 < p < ∞, p 6= 2, the set of pairs of subspaces for which the alternating projection method converges to
the projection onto the intersection is small in a probabilistic sense.
Keywords. Alternating projection method; Finite dimensional Banach space; Linearity of the metric
projection in `n

p; Metric projection.
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1. INTRODUCTION

For a Banach space X and a closed subspace M, we denote by

PMx := {y ∈M : ‖x− y‖= d(x,M)}

the set of points which realise the distance between the subspace M and the point x ∈ X . For
strictly convex reflexive spaces the set PMx is a singleton. Therefore, for these spaces and for
every closed subspace M, we can consider the mapping

PM : X → X , x 7→ PMx

which is called the metric projection onto M. Under some regularity assumptions on the Banach
space X , which will always be satisfied in our setting, the metric projection is continuous, see
e.g [4, 13].

Given closed linear subspaces M,N ⊂ X we are interested in the question of whether the
alternating projection method, which for x0 ∈ X is defined by

x2k+1 = PMx2k, x2k = PNx2k−1 for k ∈ N0,

converges to the projection PM∩Nx0 of x0 onto the intersection M∩N.
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In [12], J. von Neumann showed that if X is a Hilbert space the alternating projection method
always converges to the projection onto the intersection. A geometric proof of this result has
been given by E. Kopecká and S. Reich in [5], see also [6, 7]. However it turns out that this
behaviour is strongly tied to the Hilbert space case. In [9], W. Stiles proved that if for a Banach
space X of dimension at least three for all pairs of subspaces (M,N) the alternating projection
method converges to the projection onto the intersection M∩N, then X is a Hilbert space. In
other words, every Banach space of dimension at least three, which is not a Hilbert space, con-
tains at least two closed linear subspaces M and N for which the alternating projection method
does not converge to the projection onto M∩N. On the other hand, also in [9], W. Stiles proved
that in finite dimensional smooth and strictly convex Banach spaces, the alternating projection
method always converges to some element of M∩N. In [1], B. Atlestam and F. Sullivan gen-
eralised these results to an infinite dimensional setting while imposing additional conditions on
M and N.

These results motivate the following three questions on the alternating projection method in
finite dimensional Banach spaces.

(i) For subspaces M and N for which the alternating projection method does not converge to
the projection onto M∩N, how large is the set of points x ∈ X for which (PMPN)

nx, or in
the opposite order, converges to PM∩Nx? One might hope that also in this case the set of
points for which is occurs might be a large set.

(ii) For how many pairs of subspaces (M,N) does the alternating projection method converge
to the projection onto M∩N for all points of X?

(iii) How large is the distance between the limit of the alternating projection method and the
projection onto the intersection?

In this article, we address the questions (i) and (ii).
In Section 2, we show that the convergence of the alternating projection method to the metric

projection onto the intersection happens on a closed set A containing M ∩N. We exhibit an
example where both A and its complement have nonempty interior and show that if M ∩N
contains an interior point of A, then A = X . We give a characterisation of pairs (M,N) of
subspaces where the alternating projection method converges to PM∩N for all points and apply
this to show that linearity of PM∩N is sufficient for this behaviour.

In Section 3, we characterise the subspaces of `3
p, 1 < p < ∞, p 6= 2 for which the metric

projection is linear.
In Section 4, we apply the characterisation given in Section 3 to show that the set of pairs (M,N)

of subspaces of `3
p for which the alternating projection method converges to PM∩N is small in a

probabilistic sense.
The results of Sections 3 and 4 are part of the second author’s master thesis [8] which was

written under the supervision of the first author.

2. ALTERNATING PROJECTIONS IN FINITE DIMENSIONAL SPACES

We consider a finite-dimensional strictly convex and smooth Banach space X and two closed
linear subspaces M,N ⊂ X .

We recall the following results due to W. Stiles.
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Proposition 2.1 (Theorem 3.1 in [9, p. 24]). Let X be finite-dimensional, strictly convex, and
smooth. Given two subspaces M,N ⊂ X there is a number 0 < k < 1 such that

‖PMPNx−PNx‖ ≤ k‖PNx− x‖
for all x ∈M.

W. Stiles uses this result to show that for a strictly convex finite-dimensional Banach space X
the sequence (PMPN)

nx converges to a point in M∩N for every x ∈ X if and only if X is smooth.
A careful examination of the proof given in [9] shows that for smooth spaces, the sequence
(PMPN)

n of operators converges uniformly on bounded sets. We summarise this observation in
the following theorem.

Theorem 2.1. Let X be a finite-dimensional, strictly convex, and smooth Banach space and let
M,N ⊂ X two subspaces. The sequence {Tn}∞

n=1 where

T0 = I, T2n+1 = PNT2n and T2n = PMT2n−1

converges to a retraction RM,N onto M ∩N, uniformly on bounded sets. The retraction RM,N
satisfies

RM,N(λx) = λRM,Nx and RM,N(z+ x) = z+RM,Nx
for all z ∈M∩N, λ ∈ R and x ∈ X.

The following proof is based on parts of the proof of Theorem 3.2 in [9, pp. 25–26] and is
mainly included to keep the paper self-contained.

Proof. By Proposition 2.1, there is a number 0 < k < 1

‖PMPNy−PNy‖ ≤ k‖PNy− y‖ and ‖PNPMz−PMz‖ ≤ k‖PMz− z‖
for all y ∈M and all z ∈ N. Let R > 0 and x ∈ B(0,R). From the above inequalities we obtain

‖Tn+1x−Tnx‖ ≤ k‖Tnx−Tn−1x‖
and hence for m > n we have

‖Tnx−Tmx‖ ≤ ‖Tnx−Tn+1x‖+ . . .+‖Tm−1x−Tmx‖

≤ kn−1‖PMPNx−PNx‖+ . . .+ km−2‖PMPNx−PNx‖

≤ kn−1 1
1− k

‖PNx‖ ≤ kn−1 2R
1− k

and hence {Tn}∞
n=1 is a Cauchy sequence for the topology of uniform convergence on bounded

subsets of X . Hence it converges uniformly on bounded sets to a continuous operator RM,N .
Since for x ∈ X we have T2nx ∈M and T2n+1x ∈ N. Hence the limit has to be an element of both
closed subspaces M and N. Hence the range of RM,N has to be a subset of M∩N. Moreover,
since PMz = PNz = z for all z ∈M∩N, we have RM,Nz = z for all z ∈M∩N and hence RM,N is a
continuous retraction onto M∩N. The claimed properties of RM,N are a direct consequence of
the definition of RM,N and the properties of the metric projections PM and PN . �

Remark 2.1. Note that the limit might depend on the order in which the projections with re-
spect to M and N are taken. So the previous theorem implies the existence of two continuous
retractions RM,N and RN,M onto M∩N. They are connected via

RM,NPN = RN,M and RN,MPM = RM,N
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since

RN,M = lim
n→∞

(PNPM)nx = lim
n→∞

PN(PMPN)
n−1PMx = PNRM,NPMx = RM,NPMx

and
RM,N = lim

n→∞
(PMPN)

nx = lim
n→∞

PM(PNPM)n−1PNx = PMRN,MPNx = RN,MPNx.

In particular we have RM,N = RN,M whenever these retractions commute with the projections
PM and PN .

The following observation gives a criterion for the convergence of the alternating projection
method to the projection onto the intersection.

Proposition 2.2. For x ∈ X the following assertions are equivalent.

(i) RM,Nx = RN,Mx = PM∩Nx.
(ii) PM∩N(PMPN)

nx = PM∩N(PNPM)nx = PM∩Nx for all n ∈ N.

Proof. First note that if condition (i) is satisfied we have

PM∩Nx = lim
m→∞

(PMPN)
mx = lim

m→∞
(PMPN)

m−n(PMPN)
nx = PM∩N(PMPN)

nx

and similarly PM∩Nx = PM∩N(PNPM)nx, i.e. condition (ii) holds.
Conversely, note that

RM,Nx = PM∩NRM,Nx = lim
n→∞

PM∩N(PMPN)
nx = lim

n→∞
PM∩Nx = PM∩Nx

by continuity of PM∩N . The argument for RN,M = PM∩N is analogous. �

Remark 2.2. Since both RM,N and PM∩N are continuous, they agree on a closed subset of X
which contains M∩N.

In the following we want to see whether we can say more about the set A of points for which
the alternating projection algorithm converges to the projection onto the intersection.

Proposition 2.3. If there are z ∈M∩N and ε > 0 such that RM,Nx = PM∩Nx for all x ∈ z+εBX ,
then RM,Nx = PM∩Nx for all x ∈ X.

Proof. Given x ∈ X we set y := x− z, y′ = ε

2‖y‖y and observe that

y′ ∈ εBX and x = z+
2‖y‖

ε
y′.

Using Theorem 2.1, we obtain that

RM,Nx = RM,N

(
z+

2‖y‖
ε

y′
)
= z+

2‖y‖
ε

RM,Ny′

=

(
1− 2‖y‖

ε

)
z+

2‖y‖
ε

RM,N(z+ y′) =
(

1− 2‖y‖
ε

)
z+

2‖y‖
ε

PM∩N(z+ y′)

= PM∩N(z+ y) = PM∩Nx,

as claimed. �
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Remark 2.3. The previous results show that if the alternating projection method for two sub-
spaces M and N does not converge to the metric projection onto the intersection M∩N, there is
no hope that it converges at least on a large set of points. Since the set where RM,N and PM∩N
agree is a closed set, convergence on a dense set already implies convergence everywhere.
Moreover, by the previous result, if the set of points x for which RM,Nx = PM∩Nx contains a ball
intersecting M∩N, it is already the whole space.

Summing up, since the maps PM∩N are homogeneous and additive with respect to elements
of M∩N the set

A = {x ∈ X : RM,Nx = RN,Mx = PM∩Nx}
is a closed set containing the subspace M∩N and the translates of a cone C by every element
of M ∩N. In other words the set A is a closed set containing (M ∩N)+C for the cone C =
(kerPM∩N)∩ (kerRM,N)∩ (kerRN,M).

The next example shows that in general it is possible that both the sets A above and its
complement are somewhat large.

Example 2.1. We exhibit a simple example where both the set

A = {v ∈ X : RM,Nv = RN,Mv = PM∩Nv}

and its complement have nonempty interior. Let X be the space R3 equipped with the norm

‖(x,y,z)‖=

{√
x2 + y2 + z2 if xy≥ 0√(
|x|3/2 + |y|3/2

)4/3
+ z2 if xy < 0

which is obviously strictly convex on R3. A direct computation shows that it is also contin-
uously differentiable outside the origin, i.e. it is in particular a smooth norm. Moreover note
‖v‖2 ≤ ‖v‖ for all v ∈ R3. In particular, if for a point v ∈ X and its (Euclidean) orthogonal
projection u onto a subspace L the first two entries of v−u are non-negative, we have

‖v−u‖= ‖v−u‖2 ≤ ‖v−w‖2 ≤ ‖v−w‖

for all w ∈ L which implies that PLv = u. We consider the subspaces

M = span


1

1
1

 ,

1
0
0

 and N = span


1

1
1

 ,

0
1
0

 .

Note that the orthogonal projection of v ∈ R3 onto M is given by

w = v1

1
0
0

+
v2 + v3

2

0
1
1

=

 v1
v2+v3

2
v2+v3

2


and hence the set of points v for which the first two entries of v−w are non-negative contains
the set

Q := {(x,y,z) ∈ R3 : x≥ 0,y≥ 0,z≤ 0}.
A similar computation shows that the same is true for N. Since the projection onto a hyper-
plane is linear and Q is three-dimensional, we may conclude that PM and PN coincides with the
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orthogonal projection onto M and N, respectively. Moreover, since on R3 all norms are equiva-
lent, von Neumann’s results imply that RM,N = RN,M = P where P is the orthogonal projection
onto the subspace M∩N. A computation similar to the above one shows that on the set

C := {(x,y,z) ∈ R3 : x≥ 0,y≥ 0,z≤−x− y}.

the metric projection onto M∩N coincides with the orthogonal projection. In particular on this
cone, which has nonempty interior, the alternating algorithm converges to PM∩N . In order to
show that also the set of points for which the alternating projection method does not converge
to PM∩N has nonempty interior, since this set is an open set, we only have to show that it
is nonempty. For this aim consider v = (−1,2,0) and note that the orthogonal projection is
RM,Nv = Pv = (1/3,1/3,1/3). Moreover, for the computation of the metric projection PM∩Nv
note that for all t ∈ (−1,2) the first entry of v− t(1,1,1) is negative while the second one is
positive. Observe that the derivative of ‖v− t(1,1,1)‖2 for t ∈ (−1,1) is given as

d
dt
‖v− t(1,1,1)‖2 =

4
3

(
−3(−t−1)

2
√

1+ t
− 3(2− t)

2
√

2− t

)(
(1+ t)3/2 +(2− t)3/2

)1/3
+2t

which does not vanish at 1/3 but at a smaller value for t which is t0 ≈ 0.28. Since for this
t0 we obtain ‖v− t0(1,1,1)‖2 ≈ 5.8 which is smaller than both ‖v− (−1)(1,1,1)‖2

2 = 10 and
‖v−2(1,1,1)‖2

2 = 13, we conclude that PM∩Nv 6= RM,Nv.

We conclude this section with a characterisation of the pairs of subspaces M and N for which
the alternating projection method converges for all initial points to the projection onto the inter-
section. For the next theorem, recall that, following [11], a B-operator is a mapping P : X → X
satisfying the following two conditions:

(i) ‖x−Px‖ ≤ ‖x‖ for all x ∈ X .
(ii) ‖x−Px‖= ‖x‖ if and only if Px = 0.
We can now give the following characterisation of when RM,N = RN,M = PM∩N .

Theorem 2.2. The following assertions are equivalent.

(i) RM,N = RN,M = PM∩N
(ii) PM∩NPM = PM∩N and PM∩NPN = PM∩N .

(iii) PM(kerPM∩N)⊂ kerPM∩N and PN(kerPM∩N)⊂ kerPM∩N
(iv) RM,N and RN,M are B-operators.

Proof. The equivalence of (i) and (ii) is a direct consequence of Proposition 2.2.
That (ii) implies (iii) is obvious. For the converse implication note that

PM∩NPMx−PM∩Nx = PM∩N(PMx−PM∩Nx) = PM∩N(PM(x−PM∩Nx)) = 0

since PM∩Nx ∈M∩N ⊂M. Using a similar computation for PN finishes the proof of the impli-
cation (iii)⇒(ii).

The equivalence of (i) and (iv) is a direct consequence of Theorem 1 in [11, p. 248]. �

Corollary 2.1. If PM∩N is linear, we have RM,N = RN,M = PM∩N .

Proof. If PM∩N is linear, the set kerPM∩N is a linear subspace. For z ∈ kerPM∩N we have

PMz = z+(PMz− z) and PNz = z+(PNz− z).
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Note that for x ∈ X we have PMx = 0 if and only if ‖x− y‖ ≥ ‖x‖ for all y ∈M and hence also
for all y ∈ M ∩N which is equivalent to PM∩Nx = 0. Hence kerPM ⊂ kerPM∩N and a similar
argument shows that kerPN ⊂ kerPM∩N .

Since PMz−z∈ kerPM ⊂ kerPM∩N and PNz−z∈ kerPN ⊂ kerPM∩N , we may deduce from the
assertion that kerPM∩N is a linear subspace, that PMz,PNz ∈ kerPM∩N . Now the claim follows
from Theorem 2.2. �

3. CHARACTERISATION OF THE SUBSPACES OF `n
p WITH LINEAR METRIC PROJECTION

An extended version of these results, including more detailed proofs, can be found in the
second author’s master thesis [8].

Lemma 3.1. Let X be a uniformly convex space and M ⊂ X a closed subspace with metric pro-
jection PM. The mapping Q := Id−PM is a continuous retraction onto ker(PM) which satisfies
ker(Q) = M.

Proof. In order to see that Q is a retraction onto ker(PM) observe that

QQx = (Id−PM)(x−PMx) = x−PMx−PM(x−PMx) = x−PMx = Qx

and Qx = x if and only if PMx = 0. Since PMx = x happens precisely for x ∈ M, we have
ker(Q) = M. �

Lemma 3.2. Let L⊂ `n
p, p > 1 and n≥ 2, be a one dimensional subspace spanned by the vector

a = (a1, . . . ,an). Then,

ker(PL) =
{

x ∈ Rn :
n

∑
i=1

ai sign(xi)|xi|p−1 = 0
}
.

Proof. By definition of the metric projection we have PL(x) = 0 if and only if

‖x‖ ≤ ‖x−αa‖ for all α ∈ R.
Since the mapping t 7→ t p is increasing for t ≥ 0, this is equivalent to

‖x‖p ≤ ‖x−αa‖p for all α ∈ R.
Since the mapping defined by f (α) = ‖x−αa‖p is a differentiable convex function, its mini-
mum is characterised by f ′(α) = 0. Computing this derivative results in the claimed character-
isation. �

The following lemma is well-known, but since its proof is rather easy we include it for the
convenience of the reader.

Lemma 3.3. A metric projection P onto a linear subspace A of a uniformly convex Banach
space X is linear if and only if ker(P) is a linear subspace of X.

Proof. We only have to show that P is linear if ker(P) is a linear subspace. Assume that both A
and ker(P) = (Id−P)[X ] are linear subspaces of X . Given x,y ∈ X ,λ ∈ R, we observe that

λx+ y = λPx+Py+λ (Id−P)x+(Id−P)y = Pz1 +(Id−P)z2

for some z1,z2 ∈ X and hence

P(λx+ y) = P(Pz1 + z2−Pz2) = Pz1 +P(z2)−Pz2 = Pz1 = λPx+Py,

i.e. P is a linear projection. �
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Lemma 3.4. Let X be a uniformly convex and uniformly smooth Banach space and A,B ⊂ X
be linear subspaces where A+B is closed. The metric projection PA+B is linear if and only if
ker(PA)∩ker(PB) is a linear subspace of X. In particular, if PA and PB are linear, PA+B is linear.

Proof. By the main theorem of [10, p. 117], the sequence ((Id−PA)(Id−PB))
n of operators

converges pointwise to the mapping Id−PA+B. In particular, we obtain that x = x−PA+Bx for
all points x ∈ ker(PA)∩ker(PB). Hence,

ker(PA)∩ker(PB)⊂ ker(PA+B).

On the other hand, the condition PA+Bx = 0 is characterised by ‖x−(a+b)‖≥ ‖x‖ for all points
a ∈ A and b ∈ B. Since 0 ∈ A∩B, we may conclude that

‖x−a‖> ‖x‖ and ‖x−b‖> ‖x‖

for all a ∈ A and all b ∈ B. In other words, we have PAx = PBx = 0. Summing up, we have
shown that ker(PA+B) = ker(PA)∩ker(PB). Now the claim follows from Lemma 3.3. �

Theorem 3.1. Let L be a non-trivial subspace of `n
p = (Rn,‖ · ‖p) with p ∈ (1,∞)\{2}, n> 2.

The metric projection PL is linear if and only if L is of the form

d⊕
k=1

R(eik +λke jk) with d ∈ {1, . . . ,n}, ik, jk ∈ {1, . . . ,n} λk ∈ R.

In other words the projection is linear if and only if the subspace is spanned by vectors with at
most two nonzero entries.

For the proof we recall the following characterisation of the one-dimensional subspaces of `p
with linear metric projection due to F. Deutsch.

Lemma 3.5 (Corollary 5.3 in [3, p. 290]). A one-dimensional subspace of `p, 1 < p < ∞, p 6= 2,
admits a linear metric projection if and only if it is spanned by an element with at most two non-
zero coordinates.

The second tool we need for the proof of this theorem is the following lemma.

Lemma 3.6. Let φ : R→ R be a bijection, Φ : Rn→ Rn the function which applies φ to each
entry Φ((x1, . . . ,xn)) := (φ(xi))

n
i=1, let A ∈ Rd×n be a matrix with d ≤ n and let

K = {x ∈ Rn : AΦ(x) = 0}

be a linear subspace of Rn. Then there are row operations E1, . . . ,Em ∈ Rd×d such that the
solution set

K̃i = {x ∈ Rn : Ãi−Φ(x) = 0}

of every single row of our new matrix Ã = Em · · ·E1A is a linear subspace.

Proof. We show this by induction over the dimension d. Since the case d = 1 is obvious, we
assume that d > 1. We can eliminate entries from A using row operations until every row in A
has a pivot. However, since we cannot permute columns, in general, the pivot of the i-th row
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will not be at the i-th position, so let j(i) denote the column index of the i-th pivot. Now our
equation looks like this: 0

a1, j(1) ∗ 0 ∗ 0

*
0 0 a2, j(2) ∗ ...
...

... . . . . . . 0
0 0 0 0 ad, j(d)

Φ(x) = 0.

where the pivots are the only non-zero entries in their respective column and the rows are
ordered in such a way that j is strictly increasing. Let P be the invertible matrix that transforms
A into row echelon form, i.e. PA is the matrix above.

Note that without loss of generality, we may assume that there are no leading columns of
zeros. This allows us also to assume without loss of generality that j(1) = 1. Then we can
define

f1(x2, . . . ,xn) := φ
−1

(
−

∑
n
j=2(PA)1 jφ(x j)

(PA)11

)
and M1 :=

⋂d
i=2 K̃i. We get that K̃1 = {x ∈ Rn : x1 = f1(x2, . . . ,xn)} and

K =
{(

f1(x2, . . . ,xn),x2, . . . ,xn
)
∈ Rn : (x2, . . . ,xn) ∈M1

}
= Γ f1|M1

.

Since K is a linear subspace, the above implies that the graph of f1|M1 is a linear subspace
and hence f1|M1 is linear which implies that M1 is a linear subspace. In other words, we have
shown that the intersection

⋂d
i=2 K̃i is a linear subspace. We can now repeat this process for the

(d−1)×n matrix

A1 :=
((

(PA)i j
)d

i=2

)n

j=1

that consists of all entries of PA except for the first row. We can do this since we now know that
M1, the set defined by A1Φ̃(x2, . . . ,xn) = 0, is a linear subspace. Moreover, the first column of
A1 is zero and can therefore be omitted. Now the claim follows by the induction hypothesis. �

Proof of Theorem 3.1. That the condition on L is sufficient is a direct consequence of Lemma 3.5
and Lemma 3.4.

For the proof of the converse implication, we use an inductive argument over the dimension
of the subspace L ⊂ `n

p and note that the one-dimensional case follows from Lemma 3.5. We
are left to consider the case of a d-dimensional subspace represented as L =

⊕d
i=1 Li where all

Li are one-dimensional. Since we assume that PL is linear, we may use Lemma 3.4 to conclude
that the set

⋂d
i=1 ker(PLi) is a linear subspace. We now show that this implies the existence

of a representation L =
⊕d

i=1 L̃i where each of the L̃i is spanned by an element with at most
two nonzero entries. To this end, we pick a basis of the Li. So, let a(i) ∈ Li \ {0} and write
their coordinates with respect to the standard basis into a d× n matrix A := (a(i)j )i j. Then by
Lemma 3.4 the intersection K = ker(PL1)∩·· ·∩ker(PLd) can be described as

K =

x ∈ Rn : A

sign(x1)|x1|p−1

...
sign(xn)|xn|p−1

= 0

 .
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Since φ : R→ R : x 7→ sign(x)|x|p−1 is bijective for all p > 1, we can apply elementary row
operations to the system of linear equations Ay = 0 where yi = φ(xi) without changing its
solution set, and due to the one-to-one correspondence between y and x that means the solu-
tion set of AΦ(x) = 0 also stays the same under row operations (here, Φ(x) is a shorthand for
[φ(x j)]

n
j=1). Due to this fact, we will look at AΦ(x) = 0 as if it were a system of linear equa-

tions even if it is not when viewed as equations in x. Now we may apply Lemma 3.6 to obtain
a matrix Ã such that ÃΦ(x) = 0 if and only if AΦ(x) = 0 and with the property that the sets
K̃i = {x ∈ Rn : Ãi−Φ(x) = 0} are linear subspaces. By Lemma 3.2 the sets K̃i are kernels of the
metric projection onto a single one-dimensional subspace L̃i. Since they are linear subspaces,
Lemmas 3.3 and 3.5 imply that each of them is spanned by an element with at most two nonzero
entries. �

4. ALTERNATING PROJECTIONS AND RANDOM SUBSPACES OF `3
p

Since by Theorem 2.3 in [9, p. 22] every at least three-dimensional Banach space X which
is not isomorphic to an inner product space, has to contain two subspaces N and M and a point
x ∈ X such that the sequence of iterates (PMPN)

nx does not converge to PM∩Nx, it seems natural
to investigate the size of the set of pairs of subspaces (M,N) where the alternating projection
method converges to a projection onto the intersection. We will address this question in the
particular case of `3

p. Since in a three-dimensional space, the only nontrivial case is the one of
two two-dimensional subspaces, we restrict ourselves to the case of pairs of two-dimensional
subspaces of `3

p.
We start our investigation by providing a description of the kernel of the metric projection

onto a linear subspace of a finite dimensional `p-space using the duality mapping.

Lemma 4.1. The kernel of PA : `n
p → `n

p can be written as kerPA = jq(A⊥) using the duality
mapping

jq(x) =

sign(x1)|x1|q−1

...
sign(xn)|xn|q−1

 ,
q := p

p−1 the Hölder complement of p and A⊥ the `2-orthogonal complement of A.

Proof. From Lemma 3.2 we deduce that

kerPA =

{
x ∈ R3

∣∣∣∣∣ n

∑
i=1

a(k)i sign(xi)|xi|p−1 = 0 for k = 1, . . . ,m

}

for some basis {a(1), . . . ,a(m)} of A. These conditions are equivalent to the `2-orthogonality of
a(1), . . . ,a(m) to the vector jp(x). Since j−1

p = jq, see e.g. Corollary 3.5 in [2, p. 62], we obtain

ker(PA) =
{

x ∈ R3
∣∣∣ 〈a(1), jp(x)〉= . . .= 〈a(m), jp(x)〉= 0

}
=

=
{

jq(x) ∈ R3
∣∣∣ 〈a(1),x〉= . . .= 〈a(m),x〉= 0

}
= jq(A⊥),

which finishes the proof. �
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We call a two-dimensional subspace A of R3 chosen uniformly at random if there is a vector
a chosen uniformly from the Euclidean unit sphere such that 〈a,x〉 = 0 for all x ∈ A, i.e. A is
the `2-orthogonal complement of some uniformly random `2-unit vector a.

Proposition 4.1. Let X = `3
p and A and B be two-dimensional subspaces chosen uniformly at

random. Then PA and PB are linear, but P(PA∩B is linear) = 0.

Proof. Since the metric projection onto hyperplanes is always linear, in R3 all planes have a
linear projection, i.e. the maps PA and PB are linear. On the other hand, by Theorem 3.1 PA∩B
is linear iff A∩B, which is almost surely one-dimensional, is spanned by a vector with at most
two non-zero entries. Since the space A∩B is the set of all points which are `2-orthogonal to
both a and b, we know that

A∩B = R(a×b) = R

a2b3−a3b2
a3b1−a1b3
a1b2−a2b1

 .
Therefore using the union bound and the fact that ai ∼ a j ∼ bk for any i, j,k ∈ {1,2,3} we
conclude that

P(PA∩B is linear) = P(a2b3 = a3b2∨a3b1 = a1b3∨a1b2 = a2b1)

≤ 3P(a1b2 = a2b1).

We are left to compute the latter probability. By construction of our random model, we have

a =

cosα
√

1−φ 2

sinα
√

1−φ 2

φ

 , b =

cosβ
√

1−ψ2

sinβ
√

1−ψ2

ψ

 ,α,β ∈U[−π,π],φ ,ψ ∈U[−1,1].

Therefore,

P(a1b2 = a2b1) = P
(

cosα

√
1−φ 2 sinβ

√
1−ψ2 = sinα

√
1−φ 2 cosβ

√
1−ψ2

)
≤ P(φ 2 = 1)+P(ψ2 = 1)+P(sin(β −α) = 0)

= 0+P({k ∈ Z : β = α + kπ}) = 0,

as claimed. �
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