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Abstract. We consider a nonlinear Dirichlet problem driven by the anisotropic (p,q)-Laplacian, and a
Carathéodory reaction f (z,x) (z ∈ Ω ⊆ RN , x ∈ R), which is only locally defined around zero in x ∈ R.
We prove a mltiplicity theorem providing sign information for all the solutions, which are also ordered.
Also, under a symmetry condition on f (z, ·) , we generate a whole sequence of nodal smooth solutions,
converging to zero in C1

0
(
Ω
)
.
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1. INTRODUCTION

In this paper, we study the following Dirichlet problem driven by the anisotropic (p,q)-
Laplacian

−4p(z)u(z)−4q(z)u(z) = f (z,u(z)) in Ω, u |∂Ω= 0. (1.1)

In this problem, Ω⊆ RN is a bounded domain with a C2 boundary ∂Ω. Consider the set

E1 =

{
r ∈C

(
Ω
)

: 1 < min
Ω

r
}
,

and let r ∈ E1. By4r(z), we denote the anisotropic r− Laplace differential operator defined by

4r(z)u = div
(
|Du|r(z)−2 Du

)
, for all u ∈W 1,r(z)

0 (Ω) ,

where |·| denotes the norm in RN . In contrast with the isotropic r− Laplacian (that is, r (z) =
r > 1 for all z ∈ Ω), the anisotropic operator is not homogeneous, and this is a source of diffi-
culties in the analysis of anisotropic problems. Problem (1.1) is driven by the sum of two such
operators with different exponents (double phase problem).

In the reaction (right hand side of (1.1)), the function f (z,x) is a Carathéodory function (that
is, z 7→ f (z,x) is measurable and x 7→ f (z,x) is continuous) which is only locally defined in x,
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that is, the restrictions on f (z, ·) concern only its behavior near zero. There are no conditions
about the behavior of f (z, ·) as x→±∞.

Our aim is to prove a multiplicity theorem for problem (1.1) (three solutions theorem), pro-
viding sign information for all the solutions. Moreover, imposing a symmetry condition on
f (z, ·) , we generate a whole sequence of smooth nodal solutions converging to zero in C1

0
(
Ω
)
,

complementing a recent similar result of the authors [1]. Our work here extends that of Tan-
Fang [2] (see Theorems 1.2, 1.3, and 1.4).

The multiplicity results of Tan-Fang [2] were obtained by imposing global conditions on
f (z, ·) (that is, both near zero and near±∞), and the authors did not provide sign information for
all the solutions. Moreover, in Theorem 1.4 of Tan-Fang [2], which produces a whole sequence
of solutions under a symmetry condition, the authors did not demonstrate that the solutions are
nodal and that the convergence is in C1

0
(
Ω
)

(they show convergence to zero in W 1,p(z)
0 (Ω)).

Finally we point out that in Tan-Fang [2], the equation is driven by the p(z)-Laplacian only.
In the past, multiplicity theorems for the problems with a locally defined reaction were proved

only for parametric isotropic problems. We here mention the works of Gasinski-Papageorgiou
[3] and Papageorgiou-Radulescu-Repovs [4]. Similar remarks apply to the results concerning
asymptotically vanishing nodal solutions. We refer to the works of Leonardi-Papageorgiou [5],
Papageorgiou-Zhang [6], and Wang [7].

2. MATHEMATICAL BACKGROUND - HYPOTHESES

For the analysis of problem (1.1) , we use Lebesgue and Sobolev spaces with variable expo-
nents. A comprehensive presentation of the theory of those spaces can be found in the books of
Cruz Uribe-Fiorenza [8] and of Diening-Harjulehto-Hasto-Ruzicka [9].

By L0 (Ω) , we denote the space of all Lebesgue measurable functions u : Ω → R. As
usual, we identify two such functions which differ only on a Lebesgue null set. Let r ∈ E1 ={

r ∈C
(
Ω
)

: 1 < min
Ω

r
}
. Then the anisotropic Lebesgue space Lr(z) (Ω) is defined by

Lr(z) (Ω) =

{
u ∈ L0 (Ω) : ρr (u) =

∫
Ω

|u|r(z) dz < ∞

}
.

On this space, we define the so called ”Luxemburg norm” by

‖u‖r(z) = inf

{
λ > 0 :

∫
Ω

(
|u(z)|

λ

)r(z)

dz≤ 1

}
.

Equipped with this norm, Lr(z) (Ω) becomes a separable and reflexive (in fact uniformly convex)
Banach space.

The Luxemburg norm ‖·‖r(z) and the modular function ρr (·) are closely related. In what
follows, given r ∈ E1, we define

r− = min
Ω

r and r+ = max
Ω

r.

Proposition 2.1. If r ∈ E1 and {un,u}n∈N ⊆ Lr(z) (Ω) , then
(a) ‖u‖r(z) = λ ⇐⇒ ρr

( u
λ

)
= 1;

(b) ‖u‖r(z) < 1 (resp. = 1, > 1)⇔ ρr (u)< 1 (resp. = 1, > 1);



ANISOTROPIC (p,q)-EQUATIONS WITH A LOCALLY DEFINED REACTION 67

(c) ‖u‖r(z) ≤ 1⇒‖u‖r+
r(z) ≤ ρr (u)≤ ‖u‖r−

r(z) and

‖u‖r(z) ≥ 1⇒‖u‖r−
r(z) ≤ ρr (u)≤ ‖u‖r+

r(z) ;

(d) ‖un‖r(z)→ 0 (resp. →+∞)⇐⇒ ρr (un)→ 0 (resp. →+∞) ;
(e) ‖un−u‖r(z)→ 0⇐⇒ ρr (un−u)→ 0.
The modular function ρr (·) is continuous and convex, hence weakly lower semicontinuous

too.

Given r ∈ E1, let r′ ∈ E1 be defined by

r′ (z) =
r (z)

r (z)−1
for all z ∈Ω

(that is,
1

r (z)
+

1
r′ (z)

= 1, for all z ∈Ω).

We have Lr(z) (Ω)∗ = Lr′(z) (Ω) and can state the following Holder-type inequality∫
Ω

|uv|dz≤
[

1
r−

+
1

r′−

]
‖u‖r(z) ‖v‖r′(z)

for all u ∈ Lr(z) (Ω) , all v ∈ Lr′(z) (Ω) .

We can also define the variable exponent (anisotropic) Sobolev spaces. So, for r ∈ E1, we define

W 1,r(z) (Ω) =
{

u ∈ Lr(z) (Ω) : |Du| ∈ Lr(z) (Ω)
}
,

where Du is the weak gradient of u. This space is equipped with the following norm

‖u‖1,r(z) = ‖u‖r(z)+‖Du‖r(z) for all u ∈W 1,r(z) (Ω)

with
‖Du‖r(z) = ‖|Du|‖r(z) .

Then W 1,r(z) (Ω) becomes a separable and reflexive (in fact uniformly convex) Banach space.
Let

C0,1 (
Ω
)
=
{

u : Ω→ R : u is Lipschitz continuous
}
.

Given r ∈ E1∩C0,1 (Ω) , we define

W 1,r(z)
0 (Ω) =C∞

c (Ω)
‖‖1,r(z).

This is a Banach space which is separable and reflexive (in fact uniformly convex), and the
Poincaré inequality holds, that is,

‖u‖r(z) ≤ Ĉ‖Du‖r(z) for some Ĉ > 0, all u ∈W 1,r(z)
0 (Ω) .

Therefore, on W 1,r(z)
0 (Ω) , we can consider the equivalent norm

‖u‖= ‖Du‖r(z) for all u ∈W 1,r(z)
0 (Ω) .

For these spaces, we have the following useful embeddings (anisotropic Sobolev embedding
theorem):
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Proposition 2.2. If r ∈ E1∩C0,1 (Ω) with r (z)< N for all z ∈Ω, then

W 1,r(z)
0 (Ω) ↪→ Lτ(z) (Ω)

continuously (resp. compactly) for all τ ∈ C (Ω) with 1 ≤ τ (z) ≤ r∗ (z) for all z ∈ Ω (resp.
1≤ τ (z)< r∗ (z) for all z ∈Ω), where

r∗ (z) =
Nr (z)

N− r (z)
for all z ∈Ω.

We have
W 1,r(z)

0 (Ω)∗ =W−1,r′(z) (Ω)

and consider the nonlinear operator Ar(z) : W 1,r(z)
0 (Ω)→W−1,r′(z) (Ω) defined by〈

Ar(z) (u) ,h
〉
=
∫
Ω

|Du|r(z)−2 (Du,Dh)RN dz (2.1)

for all u, v ∈W 1,r(z)
0 (Ω) ,

where (·, ·)RN denotes the inner product in RN . This operator defined by (2.1) has the following
properties (see Fan-Zhang [10], Theorem 3.1).

Proposition 2.3. The operator Ar(z) : W 1,r(z)
0 (Ω)→ W−1,r′(z) (Ω) is bounded (that is, maps

bounded sets to bounded sets), continuous, strictly monotone (thus maximal monotone, too),
and of type (S)+ , that is, ”if un

w→ u in W 1,r(z)
0 (Ω) and

limsup
n→∞

〈
Ar(z) (un) ,un−u

〉
≤ 0,

then
un→ u in W 1,r(z)

0 (Ω) as n→ ∞”.

Here and in what follows, ” w→ ” stands for the weak convergence.
We also use the space

C1
0
(
Ω
)
=
{

u ∈C1 (
Ω
)

: u|∂Ω = 0
}
,

which is an ordered Banach space with positive (order) cone

C+ =
{

u ∈C1
0
(
Ω
)

: u(z)≥ 0 for all z ∈Ω
}
.

This cone has a nonempty interior, given by

int C+ =

{
u ∈C+ : u(z)> 0 for all z ∈Ω,

∂u
∂n
|∂Ω< 0

}
with

∂u
∂n

= (Du,n)RN ,

where n(·) is the outward unit normal on ∂Ω. Let u : Ω→ R be measurable. Then we define

u± (z) = max{±u(z) ,0} for all z ∈Ω.

Both u± (·) are measurable and

u = u+−u−, |u|= u++u−.
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Moreover, if u ∈W 1,r(z)
0 (Ω) , then u± ∈W 1,r(z)

0 (Ω) . If u, v : Ω→ R are measurable functions
with u(z)≤ v(z) for all z ∈Ω, then we define

[u,v] =
{

h ∈W 1,r(z)
0 (Ω) : u(z)≤ h(z)≤ v(z) for a.a. z ∈Ω

}
.

Also by intC1
0(Ω) [u,v] , we denote the interior in C1

0
(
Ω
)

of [u,v]∩C1
0
(
Ω
)
.

Suppose that ϕ ∈C1
(

W 1,r(z)
0 (Ω)

)
. The critical set of ϕ is defined by

Kϕ =
{

u ∈W 1,r(z)
0 (Ω) : ϕ

′ (u) = 0
}
.

Let u ∈ Kϕ be isolated and k ∈ N0. By Ck (ϕ,u) , we denote the kth−critical group of ϕ at u,
with coefficients in the field of reals. So, Ck (ϕ,u) is a linear space and no torsion phenomena
can occur (see Papageorgiou-Radulescu-Repovs [11], Sections 6.1 and 6.2).

Now we introduce our hypotheses on the data of problem (1.1) .

H0 : p, q ∈C0,1 (Ω) , 1 < q(z)< p(z)< N for all z ∈Ω.
H1 : f : Ω×R→R is a Carathéodory function such that f (z,0) = 0 for a. a. z ∈Ω and

(i) there exist θ− < 0 < θ+ and a0 ∈ L∞ (Ω) such that

f (z,θ+)≤−C0 < 0 <C0 ≤ f (z,θ−) for a.a. z ∈Ω,

| f (z,x)| ≤ a0 (z) for a. a. z ∈Ω, all |x| ≤ θ̂ := max{θ+,−θ−} ;

(ii) there exists τ ∈C
(
Ω
)

with τ+ < q− and δ > 0 such that

C1 |x|τ(z) ≤ f (z,x)x for a. a. z ∈Ω, all |x| ≤ δ ;

(iii) there exists ξ̂ > 0 such that for a. a. z ∈Ω, the function

x→ f (z,x)+ ξ̂ |x|p(z)−2 x

is nondecreasing on
[
−θ̂ , θ̂

]
.

Remark 2.1. We see that our hypotheses on f (z, ·) concern the interval
[
−θ̂ , θ̂

]
. The values

of f (z, ·) outside
[
−θ̂ , θ̂

]
are irrelevant and the function can be arbitrary there.

3. A MULTIPLICITY THEOREM

In this section, we prove a multiplicity theorem for problem (1.1) (three solutions theorem),
and we provide sign information for all the solutions.

First, we produce two nontrivial constant sign smooth solutions.

Proposition 3.1. If hypotheses H0, H1 hold, then problem (1.1) has at least two constant sign
solutions

u0 ∈ int C+ with u0 (z)< θ+ for all z ∈Ω,

v0 ∈ −int C+ with θ− < v0 (z) for all z ∈Ω.
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Proof. We introduce the Carathéodory function g+ (z,x) defined by

g+ (z,x) =
{

f (z,x+) if x≤ θ+

f (z,θ+) if θ+ < x.
(3.1)

Let

G+ (z,x) =
x∫

0

g+ (z,s)ds

and consider the C1− functional ψ+ : W 1,p(z)
0 (Ω)→ R defined by

ψ+ (u) =
∫
Ω

1
p(z)
|Du|p(z) dz+

∫
Ω

1
q(z)
|Du|q(z) dz−

∫
Ω

G(z,u)dz

for all u ∈W 1,p(z)
0 (Ω) .

Using (3.1) , we see that

ψ+ (u)≥ 1
p+

[
ρp (Du)+ρq (Du)

]
−C2 for some C2 > 0.

Hence, ψ+ (·) is coercive (see Proposition 2.1). Also, using the anisotropic Sobolev embedding
theorem (see Proposition 2.2), we infer that ψ+ (·) is sequentially weakly lower semicontinuous.
So, by the Weierstrass-Tonelli theorem, we can find u0 ∈W 1,p(z)

0 (Ω) such that

ψ+ (u0) = inf
{

ψ+ (u) : u0 ∈W 1,p(z)
0 (Ω)

}
. (3.2)

Let u ∈ int C+ and choose t ∈ (0,1) small, such that 0≤ tu(z)≤ δ for all z ∈Ω, with δ > 0 as
in hypothesis H1 (ii) . Clearly, we can always assume that δ < min{θ+,−θ−} . Using (3.1) and
hypothesis H1 (ii) , we have

ψ+ (tu)≤ tq−

q

[
ρp (Du)+ρq (Du)

]
− tτ+

τ+
C1ρτ (u)

≤C3tq−−C4tτ+ for some C3, C4 > 0.

Since τ+ < q− (see hypothesis H1 (ii)), choosing t ∈ (0,1) even smaller if necessary, we have
ψ+ (tu)< 0. Hence

ψ+ (u0)< 0 = ψ+ (0) (see (3.2) ).

Thus u0 6= 0. From (3.2) , we have〈
ψ
′
+ (u0) ,h

〉
= 0 for all h ∈W 1,p(z)

0 (Ω) .

Hence

〈V (u0) ,h〉=
∫

Ω

g+ (z,u0)hdz for all h ∈W 1,p(z)
0 (Ω) . (3.3)

Here V : W 1,p(z)
0 (Ω)→W−1,p(z) (Ω) is defined by

V (u) = Ap(z) (u)+Aq(z) (u) for all u ∈W 1,p(z)
0 (Ω) .
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On account of Proposition 2.3, V (·) is continuous, strictly monotone (thus maximal monotone,
too) and of type (S)+ . In (3.3) , we first choose the test function h = −u−0 ∈W 1,p(z)

0 (Ω) . We
obtain ρq

(
Du−0

)
≤ 0. Hence,

u0 ≥ 0, u0 6= 0

(see Proposition 2.1). Next, in (3.3) , we use test function h = [u0−θ+]
+ ∈W 1,p(z)

0 (Ω) . We
have 〈

V (u0) , [u0−θ+]
+〉= ∫

Ω

f (z,θ+) [u0−θ+]
+ dz (see (3.1) )

≤ 0 =
〈
V (θ+) , [u0−θ+]

+〉 .
Here we consider V (·) defined on W 1,p(z) (Ω) with values in W 1,p(z) (Ω)∗ and as such, V (·)
remains continuous and monotone (thus maximal monotone, too). So, we have u0 ≤ θ+. Thus

u0 ∈ [0,θ+] , u0 6= 0. (3.4)

From (3.4) , (3.1) and (3.3) , it follows that u0 ∈W 1,p(z)
0 (Ω)\{0} is a positive solution to prob-

lem (1.1) . From Fan [12], we know that u0 ∈ C+\{0} . Also, using hypothesis H1 (iii) , we
have

−4p(z)u0−4q(z)u0 + ξ̂ up(z)−1
0 ≥ 0 in Ω.

Using Proposition 4 of Papageorgiou-Qin-Radulescu [13], we obtain that u0 ∈ int C+. We have

−4p(z)u0−4q(z)u0 + ξ̂ up(z)−1
0

= f (z,u0)+ ξ̂ up(z)−1
0

≤ f (z,θ+)+ ξ̂ θ
p(z)−1
+ (see (3.4) and hypothesis H1 (iii) )

≤−4p(z)θ+−4q(z)θ++ ξ̂ θ
p(z)−1
+ .

We know that

f (z,θ+)≤−C0 < 0 for a.a. z ∈Ω (see hypothesis H1 (ii) ).

Then using Proposition 5 of Papageorgiou-Qin-Radulescu [13] , we infer that

0≤ u0 (z)< θ+ for all z ∈Ω.

For the negative solution, we start with the Carathéodory function g− (z,x) defined by

g− (z,x) =
{

f (z,θ−) if x≤ θ−
f (z,−x−) if θ− < x.

(3.5)

We set

G− (z,x) =
x∫

0

g− (z,s)ds

and consider the C1− functional ψ− : W 1,p(z)
0 (Ω)→ R defined by

ψ− (u) =
∫
Ω

1
p(z)
|Du|p(z) dz+

∫
Ω

1
q(z)
|Du|q(z) dz−

∫
Ω

G− (z,u)dz

for all u ∈W 1,p(z)
0 (Ω) .



72 S. AIZICOVICI, N. S. PAPAGEORGIOU, V. STAICU

Working with ψ− (u) as above, we obtain a negative solution v0 ∈−int C+ with θ− < v0 (z) for
all z ∈Ω. �

In fact, we can show that (1.1) has extremal constant sign solutions, that is, a smallest positive
solutions and a biggest negative solution (barrier solutions). We will use these solutions in order
to produce a nodal one (a sign-changing solution).

To this end, motivated by hypothesis H1 (ii), we consider the following auxiliary anisotropic
Dirichlet problem

−4p(z)u(z)−4q(z)u(z) =C1 |u(z)|τ(z)−2 u(z) in Ω, u |∂Ω= 0. (3.6)

Proposition 3.2. With τ ∈C
(
Ω
)

as in hypothesis H1 (ii) , problem (3.6) has a unique positive
solution u ∈ int C+, and since the problem is odd, v = −u ∈ −int C+ is the unique negative
solution to (3.6) .

Proof. Consider the C1− functional σ+ : W 1,p(z)
0 (Ω)→ R defined by

σ+ (u) =
∫
Ω

1
p(z)
|Du|p(z) dz+

∫
Ω

1
q(z)
|Du|q(z) dz−

∫
Ω

C1

τ (z)

(
u+
)τ(z) dz

for all u ∈W 1,p(z)
0 (Ω) .

We want to show the coercivity of σ+ (·) . So, we may assume that ‖u‖
τ(z)≥ 1 is large enough

(recall that W 1,p(z)
0 (Ω) ↪→ Lτ(z) (Ω) compactly, cf. Proposition 2.2). We have

σ+ (u)≥ 1
p+

ρp (Du)− C1

τ+
ρτ (u)

≥ 1
p+
‖u‖p−− C1

τ+
‖u‖τ+

τ(z) (see Proposition 2.1)

≥ 1
p+
‖u‖p−−C5 ‖u‖τ+ for some C5 > 0,

but τ+ < q+ < p+ (see hypotheses H0,H1 (ii)). It follows that

σ+ (·) is coercive.

Also, using Proposition 2.2 (the anisotropic Sobolev embedding theorem), we see that σ+ (·) is
sequentially weakly lower semicontinuous. So, we can find u ∈W 1,p(z)

0 (Ω) such that

σ+ (u) = inf
{

σ+ (u) : u0 ∈W 1,p(z)
0 (Ω)

}
. (3.7)

As in the proof of Proposition 3.1, since τ+ < q−, we have

σ+ (u)< 0 = σ+ (0) .

Hence,
u 6= 0. (3.8)

From (3.7) , we have 〈
σ
′
+ (u) ,h

〉
= 0 for all h ∈W 1,p(z)

0 (Ω) .

Hence,
〈V (u) ,h〉=

∫
Ω

C1 (u+)
τ(z)−1 hdz for all h ∈W 1,p(z)

0 (Ω) . (3.9)
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In (3.9) , we choose the test function h =−u− ∈W 1,p(z)
0 (Ω) . We obtain ρp (Du−)≤ 0. Hence,

u≥ 0, u 6= 0

(see Proposition 2.1 and (3.8)). From (3.9) , we see that u is a positive solution of (3.6) . From
Theorem 4.1 of Fan-Zhao [10] (see also [14]), it follows that u ∈ L∞ (Ω) . Then the anisotropic
regularity theory of Fan [12] and the anisotropic maximum principle of Papageorgiou-Radulescu-
Zhang [14] (Proposition A2) imply that u ∈ int C+.

Next, we prove the uniqueness of this positive solution. Suppose that ũ is another positive
solution to (3.6) . Again we show that ũ ∈ int C+. Using Proposition 4.1.22, p.274, of [11], we
conclude that

ũ
u
∈ L∞ (Ω) and

u
ũ
∈ L∞ (Ω) . (3.10)

We introduce the integral functional j : L1 (Ω)→ R= R∪{∞} defined by

j (u) =



∫
Ω

1
p(z)

∣∣∣Du
1

q−
∣∣∣p(z) dz+

∫
Ω

1
q(z)

∣∣∣Du
1

q−
∣∣∣q(z) dz

if u≥ 0, u
1

q− ∈W 1,p(z)
0 (Ω)

+∞ otherwise

Let
dom( j) =

{
u ∈ L1 (Ω) : j (u)< ∞

}
(the effective domain of j (·)). From Takǎc-Giacomoni ([15], Theorem 2.2), we know that j (·)
is convex. Let h = uq− − ũq− ∈W 1,p(z)

0 (Ω) . On account of (3.10) , we see that for t ∈ (0,1)
small, we have

uq−+ th ∈ dom( j) ,

ũq−+ th ∈ dom( j) .

Then the convexity of j (·) implies that the directional derivatives of j (·) at uq− and at vq− in
the direction h exists, and using the nonlinear Green’s identity, we have

j′ (uq−)(h) =
1

q−

∫
Ω

−4p(z)u−4q(z)u

uq−−1 hdz =
1

q−

∫
Ω

C1

uq−−τ(z)
hdz,

j′ (ũq−)(h) =
1

q−

∫
Ω

−4p(z)ũ−4q(z)ũ
ũq−−1 hdz =

1
q−

∫
Ω

C1

ũq−−τ(z)
hdz.

The convexity of j (·) implies the monotonicity of the directional derivative. Hence

0≤C1

∫
Ω

[
1

uq−−τ(z)
− 1

ũq−−τ(z)

]
(uq−− ũq−)dz≤ 0.

Thus
u = ũ (recall that τ+ < q−),

which proves the uniqueness of the positive solution of (3.6) . The equation is odd, therefore

v =−u ∈ −int C+

is the unique negative solution to (3.6) . �
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Having these unique constant sign solutions of (3.6) , we can generate the extremal (barrier)
solutions of problem (1.1) . In what follows, by S+ (resp. S−), we denote the set of positive
(resp. negative) solutions of problem (1.1) . We know that

∅ 6= S+∩ [0,θ+]⊆ int C+, ∅ 6= S−∩ [θ−,0]⊆−int C+.

Proposition 3.3. If hypotheses H0 and H1 hold, then problem (1.1) has a smallest positive
solution

u∗ ∈S+∩ [0,θ+]⊆ int C+,

and a biggest negative solution

v∗ ∈S−∩ [θ−,0]⊆−int C+.

Proof. As in Lemma 4.1 of Filippakis-Papageorgiou [16], we infer that S+∩ [0,θ+] is down-
ward directed (that is, if u1, u2 ∈ S+ ∩ [0,θ+], then we can find u ∈ S+ ∩ [0,θ+] such that
u ≤ u1, u ≤ u2). Then, Lemma 3.10, p. 178 of Hu-Papageorgiou [17] implies that we can
find {un}n∈N ⊆S+∩ [0,θ+] such that infS+ = infn∈N un. Evidently, {un}n∈N ⊆W 1,p(z)

0 (Ω) is
bounded. Then the anisotropic regularity theory (see [12]) implies that there exist α ∈ (0,1)
and C6 > 0 such that

un ∈C1,α
0
(
Ω
)
, ‖un‖C1,α

0 (Ω) ≤C6 for all n ∈ N. (3.11)

Recall that C1,α
0
(
Ω
)
↪→C1

0
(
Ω
)

compactly. Then by (3.11) , we may assume that

un→ u∗ in C1
0
(
Ω
)
. (3.12)

If u∗ = 0, it follows from (3.12) that we can find n0 ∈ N such that

0≤ un (z)≤ δ for all z ∈Ω, all n≥ n0

(here δ > 0 is as in hypothesis H1 (ii)). Therefore

C1un (z)
τ(z)−1 ≤ f (z,un (z)) for a. a. z ∈Ω, all n≥ n0 (3.13)

(see hypothesis H1 (ii)). Fix n≥ n0 and consider the Carathéodory function l+n (z,x) defined by

l+n (z,x) =

{
C1 (x+)

τ(z)−1 if x≤ un (z)
C1un (z)

τ(z)−1 if un (z)< x.
(3.14)

We set

L+
n (z,x) =

x∫
0

l+n (z,s)ds

and introduce the C1− functional µ+ : W 1,p(z)
0 (Ω)→ R defined by

µ+ (u) =
∫
Ω

1
p(z)
|Du|p(z) dz+

∫
Ω

1
q(z)
|Du|q(z) dz−

∫
Ω

L+
n− (z,u)dz

for all u ∈W 1,p(z)
0 (Ω) .
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From (3.14) and Proposition 2.1, it is clear that µ+ (·) is coercive. Also Proposition 2.2 (the
anisotropic Sobolev embedding theorem) implies that µ+ (·) is sequentially weakly lower semi-
continuous. So, we can find ũ ∈W 1,p(z)

0 (Ω) such that

µ+ (ũ) = inf
{

µ+ (u) : u0 ∈W 1,p(z)
0 (Ω)

}
. (3.15)

As before, since τ+ < q−, we have

µ+ (ũ)< 0 = µ+ (0) ,

therefore ũ 6= 0. From (3.15) , we have〈
µ
′
+ (ũ) ,h

〉
= 0 for all h ∈W 1,p(z)

0 (Ω) .

Hence,
〈V (ũ) ,h〉=

∫
Ω

l+n (z, ũ)hdz for all h ∈W 1,p(z)
0 (Ω) . (3.16)

In (3.16) , we use the test function h =−ũ− ∈W 1,p(z)
0 (Ω) . Then ρp (Dũ−)≤ 0. Thus

ũ≥ 0, ũ 6= 0

(see Proposition 2.1). Also, in (3.16) , we let h = [ũ−un]
+ ∈W 1,p(z)

0 (Ω) . We obtain〈
V (ũ) , [ũ−un]

+〉= ∫
Ω

C1un (z)
τ(z)−1 [ũ−un]

+ dz (see (3.14) )

≤
∫

Ω

f (z,un) [ũ−un]
+ dz (see (3.13) )

=
〈
V (un) , [ũ−un]

+〉 (since un ∈S+).

Thus ũ≤ un (see Proposition 2.3). So, we have proved that

ũ ∈ [0,un] , ũ 6= 0. (3.17)

Then (3.17) , (3.14) and (3.16) imply that ũ is a positive solution to (3.6) . Hence by Proposition
3.2, we have ũ = u. Consequently,

u≤ un for all n≥ n0 (see (3.17) ),

a contradiction to our assumption that u∗ = 0. Then u∗ 6= 0 and we have

〈V (u∗) ,h〉=
∫

Ω

f (z,u∗)hdz for all h ∈W 1,p(z)
0 (Ω) (see (3.12) ).

Hence,
u∗ ∈S+∩ [0,θ+]⊆ int C+ u∗ = infS+.

Similarly, we produce
v∗ ∈S−∩ [θ−,0]⊆−int C+

such that v ≤ v∗ for all v ∈S−. Note that the latter is upward directed (that is, if v1, v2 ∈S−,
then we can find v ∈S− such that v1 ≤ v, v2 ≤ v ). �

Using these extremal constant sign solutions, we can generate a nodal (sign changing) one.
The proof is based on the following idea. We look for nontrivial solutions of (1.1) in [v∗,u∗] .
Then any such nontrivial solution of (1.1) distinct from u∗ and v∗, will be nodal, since u∗ and
v∗ are extremal constant sign solutions of (1.1) . For this approach to work, we need to use
truncations and comparison arguments.
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Proposition 3.4. If hypotheses H0, H1 hold, then problem (1.1) admits a nodal solution

y0 ∈ [v∗,u∗]∩C1
0
(
Ω
)
.

Proof. With u∗ ∈ int C+ and v∗ ∈ −int C+ being the two extremal constant sign solutions of
(1.1) produced in Proposition 3.3, we introduce the following truncation of f (z, ·)

e(z,x) =


f (z,v∗ (z)) if x < v∗ (z)

f (z,x) if v∗ (z)≤ x≤ u∗ (z)
f (z,u∗ (z)) if u∗ (z)< x.

(3.18)

This is a Carathéodory function. We also consider the positive and the negative truncations of
e(z, ·) , namely the Carathéodory functions

e± (z,x) = e
(
z,±x±

)
. (3.19)

We set

E (z,x) =
x∫

0

e(z,s)ds, E± (z,x) =
x∫

0

e± (z,s)ds,

and consider the C1− functionals γ, γ± : W 1,p(z)
0 (Ω)→ R defined by

γ (u) =
∫
Ω

1
p(z)
|Du|p(z) dz+

∫
Ω

1
q(z)
|Du|q(z) dz−

∫
Ω

E (z,u)dz

γ± (u) =
∫
Ω

1
p(z)
|Du|p(z) dz+

∫
Ω

1
q(z)
|Du|q(z) dz−

∫
Ω

E± (z,u)dz

for all u ∈W 1,p(z)
0 (Ω) .

Using (3.18) , (3.19), and the anisotropic regularity theory, we can easily check that

Kγ ⊆ [v∗,u∗]∩C1
0
(
Ω
)
, Kγ+ ⊆ [0,u∗]∩C+, Kγ− ⊆ [v∗,0]∩ (−C+) .

The extremality of u∗ and v∗ implies that

Kγ ⊆ [v∗,u∗]∩C1
0
(
Ω
)
, Kγ+ = {0,u∗} , Kγ− = {0,v∗} . (3.20)

Claim: u∗ ∈ int C+ and v∗ ∈ −int C+ are local minimizers to γ (·) .
From (3.18) , (3.19) and Proposition 2.1, it is clear that γ+ (·) is coercive. Also, it is sequen-

tially weakly lower semicontinuous. So, we can find ũ∗ ∈W 1,p(z)
0 (Ω) such that

γ+ (ũ∗) = inf
{

γ+ (u) : u ∈W 1,p(z)
0 (Ω)

}
. (3.21)

Let u ∈ C+\{0} . Since u ∈ int C+, using Proposition 4.1.22, p. 274 of [11], we can find
t ∈ (0,1) such that tu ≤ u∗. Choosing t ∈ (0,1) even smaller if necessary, we can also insure
that tu(z)≤ δ for all z ∈Ω, with δ > 0 as in hypothesis H1 (ii) . Then using hypothesis H1 (ii)
and the fact that τ+ < q−, we obtain γ+ (tu)< 0. Hence,

γ+ (ũ∗)< 0 = γ+ (0) (see (3.21) ).

Thus
ũ∗ 6= 0. (3.22)
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From (3.21) we have ũ∗ ∈ Kγ+ and so, from (3.22) and (3.20) , it follows that

ũ∗ = u∗ ∈ int C+. (3.23)

From (3.18) , (3.19) we see that

γ |C+= γ+ |C+ .

Then from (3.23) and (3.21) , we infer that u∗ is a local C1
0
(
Ω
)

minimizer of γ (·) , therefore u∗
is a local W 1,p(z)

0 (Ω) minimizer of γ (·) (see Papageorgiou-Radulescu-Zhang [14], Proposition
A3). Similarly, for v∗ ∈ −int C+, using this time, the functional γ− (·) . This proves the Claim.
Without any loss of generality, we may assume that γ (v∗) ≤ γ (u∗) . The reasoning is similar
if the opposite inequality is true. Moreover, on account of (3.20) , we may assume that Kγ is
finite. Otherwise we already have an infinity of smooth nodal solutions and so, we are done.
Using Theorem 5.7.6, p. 449, of [11], we can find ρ ∈ (0,1) small such that

γ (v∗)≤ γ (u∗)
< inf{γ (u) : ‖u−u∗‖= ρ}= mρ ,

‖v∗−u∗‖> ρ.
(3.24)

The coercivity of γ (·) (see (3.18)) implies that

γ (·) satisfies the C− condition (3.25)

(see [11], p.369). Then (3.24) and (3.25) permit the use of the mountain pass theorem (see
[11], p.401).. So, we can find y0 ∈W 1,p(z)

0 (Ω) such that y0 ∈ Kγ and m≤ γ (y0) , therefore

y0 ∈ [v∗,u∗]∩C1
0
(
Ω
)

(see (3.20) ), y0 /∈ {v∗,u∗} (see (3.24) ). (3.26)

Since y0 is a critical point of γ (·) of mountain pass type, from Theorem 6.5.8, p.527, of [11],
we have

C1 (γ,y0) 6= 0. (3.27)

On the other hand, hypothesis H1 (ii) and Proposition 6 of Leonardi-Papageorgiou [18] imply
that

Ck (γ,0) = 0 for all k ∈ N0. (3.28)

Comparing (3.28) and (3.27) , we conclude that y0 6= 0. Thus y0 ∈C1
0
(
Ω
)

is a nodal solution to
(1.1) . �

Summarizing, we can state the following multiplicity theorem for problem (1.1) (three so-
lutions theorem). Note that we provide sign information for all the solutions, which are also
ordered.

Theorem 3.1. If hypotheses H0, H1 hold, then problem (1.1) has at least three nontrivial solu-
tions

u0 ∈ int C+, v0 ∈ −int C+, y0 ∈C1
0
(
Ω
)

nodal, with

v0 (z)≤ y0 (z)≤ u0 (z) for all z ∈Ω.
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4. INFINITELY MANY NODAL SOLUTIONS

In this section, by introducing a local symmetry condition for f (z, ·) , we produce a whole
sequence of distinct smooth nodal solutions which converges to zero in C1

0
(
Ω
)
. A similar result

can be found in Aizicovici-Papageorgiou-Staicu ([1], Theorem 3.6) for anisotropic Neumann
problems. However, in [1], the reaction satisfies a sign condition. In contrast, here f (z, ·) is
sign changing on each semiaxis.

The new hypotheses on f (z,x) are the following.
H′1 : f : Ω×R→R is a Carathéodory function such that, for a. a. z ∈Ω, f (z,0) = 0, and

(i) there exist θ− < 0 < θ+ and a0 ∈ L∞ (Ω) such that

f (z,θ+)≤−C0 < 0 <C0 ≤ f (z,θ−) for a. a. z ∈Ω,

| f (z,x)| ≤ a0 (z) for a. a. z ∈Ω, all |x| ≤ θ̂ := max{θ+,−θ−} ,
and for some ŝ ∈ (0,min{θ+,−θ−}) one has that for a. a. z ∈Ω, f (z, ·) |[−ŝ,ŝ] is odd;

(ii) there exist τ ∈C
(
Ω
)

with τ+ < q− and δ > 0 such that

C1 |x|τ(z) ≤ f (z,x)x for a. a. z ∈Ω, all |x| ≤ δ ;

(iii) there exists ξ̂ > 0 such that for a. a. z ∈Ω, the function

x→ f (z,x)+ ξ̂ |x|p(z)−2 x

is nondecreasing on
[
−θ̂ , θ̂

]
.

From Proposition 3.3, we know that problem (1.1) has extremal constant sign solutions

u∗ ∈ int C+ and v∗ ∈ −int C+.

Then
0 ∈ intC1

0(Ω) [v∗,u∗] 6=∅. (4.1)

Let V ⊆W 1,p(z)
0 (Ω)∩L∞ (Ω) be a finite dimensional subspace. Also, let k : Ω×R→R be the

Carathéodory function defined by

k (z,x) =


f (z,−ŝ) if x <−ŝ,
f (z,x) if −ŝ≤ x≤ ŝ,
f (z, ŝ) if ŝ < x.

(4.2)

We set

K (z,x) =
x∫

0

k (z,s)ds

and consider the C1− functional ψ0 : W 1,p(z)
0 (Ω)→ R defined by

ψ0 (u) =
∫
Ω

1
p(z)
|Du|p(z) dz+

∫
Ω

1
q(z)
|Du|q(z) dz−

∫
Ω

K. (z,u)dz

for all u ∈W 1,p(z)
0 (Ω) .
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Evidently ψ0 ∈C1
(

W 1,p(z)
0 (Ω)

)
, it is even (see hypothesis H′1 (i)) and on account of (4.2) and

Proposition 2.1, ψ0 (·) is coercive, and so it satisfies the C−condition.

Proposition 4.1. If hypotheses H0, H′1 hold, then there exists ρV > 0 such that

sup{ψ0 (u) : u ∈V,‖u‖= ρV}< 0.

Proof. Evidently, we can always assume that ŝ≤ δ . Since V is finite dimensional, all norms are
equivalent (see Papageorgiou-Winkert ([19], p.183). So we can find ρV ∈ (0,1) small such that

u ∈V, ‖u‖ ≤ ρV =⇒ |u(z)| ≤ ŝ for a.a. z ∈Ω.

Since W 1,p(z)
0 (Ω) ↪→ Lτ(z) (Ω) continuously (in fact compactly) and

W 1,p(z)
0 (Ω) ↪→W 1,q(z)

0 (Ω)

continuously, we can also have

‖u‖ ≤ ρV =⇒‖u‖
τ(z) ≤ 1, ‖u‖1,q(z) ≤ 1.

Then, for u ∈V with ‖u‖= ρV , it follows that

ψ0 (u)≤
1

q−

[
ρp (Du)+ρq (Du)

]
− C1

τ+
ρτ (u)

≤ 1
q−

[‖u‖p−+C7 ‖u‖q−]−C8 ‖u‖τ+

for some C7,C8 > 0. Here we have used once more that on V all the norms are equivalent. Since
τ+ < q−, we see that by taking ρV ∈ (0,1) even smaller if necessary, we will have

sup{ψ0 (u) : u ∈V,‖u‖= ρV}< 0.

�

Then we can prove the following multiplicity result for problem (1.1) .

Theorem 4.1. If hypotheses H0, H′1 hold, then problem (1.1) has a sequence {un}n∈N⊆C1
0
(
Ω
)

of nodal solutions such that un→ 0 in C1
0
(
Ω
)
.

Proof. On account of Proposition 4.1, we can use Theorem 1 of Kajikiya [20] and obtain
{un}n∈N ⊆ Kψ0 such that

un→ 0 in W 1,p(z)
0 (Ω) . (4.3)

The anisotropic regularity theory implies that there exist α ∈ (0,1) and C9 > 0 such that

un ∈C1,α
0
(
Ω
)
, ‖un‖C1,α

0 (Ω) ≤C9 for all n ∈ N. (4.4)

The compact embedding of C1,α
0
(
Ω
)

into C1
0
(
Ω
)
, (4.4) and (4.3) imply that

un→ 0 in C1
0
(
Ω
)
.

Hence
{un}n∈N ⊆ intC1

0(Ω) [v∗,u∗]∩ [−ŝ, ŝ] ,

and we conclude that {un}n∈N ⊆C1
0
(
Ω
)

are nodal solutions of problem (1.1) . �
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