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Abstract. In this paper, we consider the Krasnosel’skiı̆-Mann iteration for finding a fixed point of non-
expansive operators in real Hilbert spaces. By introducing new, concise, and self-contained techniques,
we propose new inertial factors with desirable upper bounds better than or comparable to existing ones.
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1. INTRODUCTION

The fixed point problem of non-expansive operators in real Hilbert spaces is a fundamental
problem in mathematics. The classical iterative scheme is the famous Banach iteration. It
requires the associate operator to be a strictly contractive mapping. To circumvent this, one may
resort to the Krasnosel’skiı̆-Mann (KM for short) iteration [1, 2, 3] whose next iterate is a convex
combination of the current iterate and its operator evaluation

xk+1 = (1−αk)xk +αkT (xk), k = 0,1, ...,

where the coefficient αk is in [0,1], the series ∑αk(1−αk) diverges. For recent pertinent
discussions, we refer to [4, 5, 6, 7, 8, 9] and the references cited therein.

In particular, inspired by a pioneering work on the proximal point algorithm [10], Maingé [4]
suggested adding an inertial term to the KM iteration in the following way

yk = xk + tk(xk− xk−1),

xk+1 = (1−αk)yk +αkT (yk), k = 0,1, ..., (1.1)

where tk ≥ 0 is termed an inertial factor. To prove the weak convergence of the inertial KM
iteration described by (1.1), Maingé [4] gave the following conditions on inertial factors, which
depend on the iterates:

0≤ tk ≤ t < 1, tk‖xk− xk−1‖2 is summable. (1.2)

In practical implementations, one may take

tk‖xk− xk−1‖2 ≤ c/(k+1)2, (1.3)

∗Corresponding author.
Email address: ydong@zzu.edu.cn
Received 22 October 2023; Accepted 29 November 22023; Published online 21 December 2023

c©2024 Applied Set-Valued Analysis and Optimization

103



104 YUNDA DONG1,∗, QIQI LUO2

where c≥ 0 is the control factor. From a different viewpoint, Boţ, Csetnek, and Hendrich [5]
proposed new conditions, which are free of iterates; see (2.1) below. In our opinion, they are
more desirable than (1.2) as how to choose the control factor c in (1.3) remains open. Recently,
Dong [6] improved these results (see (2.2) and (2.3) below), and Fierro, Maulén, and Peypouquet
[9] obtained better upper bounds of inertial factors by refining convergence analysis in [6]; see
(2.4) below. Notice that the seminal lemma [10, Lemma 2.3] was involved in [4, 5, 6] explicitly
and [9, Theorem 4] implicitly.

In this paper, we aim at taking advantage of some newly-developed mathematical techniques
[11] to introduce different assumptions regarding the inertial factors of the KM iteration. Further-
more, the resulting upper bounds are desirably larger than those [6] and comparable to the latest
results in [9, Theorem 4]. Unlike [4, 5, 6, 9] , our proof no longer relies on the above-mentioned
lemma and is new, concise, and self-contained.

2. PRELIMINARIES

In this section, we first give some basic definitions and then provide some auxiliary results for
later use.

Let H be a real Hilbert space, in which 〈x,y〉 stands for the usual inner product and ‖x‖ :=√
〈x,x〉 for the induced norm for any x,y ∈H .
Recall that an operator T : H →H is called non-expansive if and only if

‖T (x)−T (y)‖ ≤ ‖x− y‖, ∀ x, y ∈H .

Now we review the conditions on the inertial factors [5, 6, 9] in details. Specially speaking,
the conditions in [5] are that {tk} and {αk} satisfy

0≤ tk ≤ tk+1 ≤ t < 1,

0 < liminfαk ≤ αk ≤
δ (1− t2)− t2− t3− tσ
δ [1+ t(1+ t)+ tδ +σ ]

, with δ >
t2 + t3 + tσ

1− t2 , (2.1)

where δ > 0 and σ > 0. The conditions in [6] are

0≤ tk ≤ tk+1 ≤ 1, ε ≤ αk ≤ 1, (2.2)

where ε is any given sufficiently small positive number. Particularly, in the αk ∈ (0.5,1−ε] case,
it follows from [6, Theorem 3.1] that

tk+1 ≤ t(αk,αk+1,ε) :=
√

p2
k +qk− pk, (2.3)

where pk and qk are given by

pk :=
1
2

1
2− 1

αk+1

(
1

αk
+

1
αk+1

−1
)
, qk :=

1
2− 1

αk+1

(
1

αk
−1− ε

)
.

Finally, we give the conditions in [9]

0≤ tk ≤ tk+1 < 1,

tk(1+ tk)+(α−1
k −1)tk(1− tk)≤ (α−1

k−1−1)(1− tk−1)− ε, (2.4)

where ε ≥ 0. Obviously, they are distinct from (2.2)-(2.3) as tk can be bounded above by not
only αk−1, αk, and ε ≥ 0, but also tk−1.
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3. MAIN RESULTS

In this section, we study an inertial KM iteration. Under weaker assumptions on inertial
factors, we analyze its weak convergence.

First of all, we would like to point out that, by our numerical experiments in [6], αk in the KM
iteration is close to 1 for numerical efficiency in practice and weak convergence in theory. Thus,
we give a practical, inertial KM iteration —Algorithm 1.

Algorithm 1 A practical inertial KM iteration

Step 0 Choose x−1 = x0 ∈H . Choose ε = 10−9 and α ∈ [0.80,0.99]. Compute h2(α)
via (3.1) and denote by t̄+. Choose t−1 = 0. Set k := 0.
Step 1 Choose tk ∈ [tk−1, t̄+]. Compute

yk = xk + tk(xk− xk−1), xk+1 = (1−α)yk +αT (yk).

Set k := k+1.

To provide a better understanding of the practical inertial KM iteration, we define h1(α) and
h2(α) as follows

h1(α) := 1− ε−
(
1+0.9(α−1−1)

)−1
= 1− ε− (0.1+0.9α

−1)−1,

h2(α) := 0.5
−1+

√
1+4(9α−1−8)(0.9(α−1−1)− ε)

9α−1−8
( := t̄+), (3.1)

where ε = 10−9, and the graphs of h1(α) and h2(α) are plotted in Figure 1. Furthermore, in the
ε = 0 case, it is direct to check that

h1(α)> h2(α), α ∈ [0.80,0.99].

FIGURE 1. The graphs of h1(α) and h2(α)

Below, we consider the inertial KM iteration described by (1.1) in a general case of αk ∈
[ε,1− ε], for a given sufficiently small positive number ε . We assume that (i) the sequences
{αk} and {tk} satisfy

αk ∈ [ε,1− ε], 1≥ tk ≥ tk−1 ≥ 0; (3.2)
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(ii)

t+k := 0.5
−1+

√
1+4

(
(σ−1−1)(α−1

k −1)+1
)(

(1−σ)(α−1
k−1−1)− ε

)
(σ−1−1)(α−1

k −1)+1
,

tk ≤min
{

t+k ,1− ε−
(
1+(1−σ)(α−1

k−1−1)
)−1
}
, (3.3)

where σ is properly chosen in (0,1) in advance.
Obviously, for this inertial KM iteration, where {αk} and {tk} satisfy assumptions (3.2)-(3.3),

it reduces to Algorithm 1 provided that αk ≡ α and σ = 0.1.
Notice that we shall maximize the corresponding upper bound in (3.3), which is the function

with respect to σ ∈ (0,1); see Remark 3.2 and Figure 2 below for more details.
To prove the weak convergence for the inertial KM iteration (1.1) under above assumptions,

we introduce the following two lemmas, used in [11], to simplify the analysis.

Lemma 3.1. Let α > 0. If 4αβ ≥ γ2, then α‖a‖2 +β‖b‖2 + γ〈a,b〉 ≥ 0 for all a, b ∈H .

Proof. For any given a, b ∈H , the following inequality holds

α‖a‖2 +β‖b‖2 + γ〈a,b〉 ≥ (2
√

αβ −|γ|)‖a‖‖b‖.

Since 4αβ ≥ γ2, we have
α‖a‖2 +β‖b‖2 + γ〈a,b〉 ≥ 0.

The proof is complete. �

Lemma 3.2. [12] Let α > 0 and t ∈ R. If 4α > t2β , then, for all x,u ∈H ,

〈x,αx〉+ 〈u,βu〉− t〈x,βu〉 ≥ α +β −
√
(α−β )2 + t2β 2

2
(‖x‖2 +‖u‖2).

Using these lemmas, we can establish the weak convergence of the inertial KM iteration.

Theorem 3.1. If the assumptions (3.2)-(3.3) hold, then the sequence {xk} generated by the
inertial KM iteration (1.1) in the general case of αk ∈ [ε,1− ε], converges weakly to a fixed
point of T .

Proof. For any given fixed point z of T , i.e., T (z) = z, we obtain

‖xk+1− z‖2

= (1−αk)
2‖yk− z‖2 +α

2
k ‖T (yk)−T (z)‖2 +2(1−αk)αk〈yk− z,T (yk)−T (z)〉

= (1−αk)
2‖yk− z‖2 +α

2
k ‖T (yk)−T (z)‖2

+(1−αk)αk(‖T (yk)−T (z)‖2 +‖yk− z‖2−‖T (yk)− yk‖2)

= (1−αk)‖yk− z‖2 +αk‖T (yk)−T (z)‖2−αk(1−αk)‖T (yk)− yk‖2

≤ αk‖yk− z‖2 +(1−αk)‖yk− z‖2−αk(1−αk)‖T (yk)− yk‖2.

From (1.1), we have

αk(T (yk)− yk) = xk+1− yk = xk+1− xk− tk(xk− xk−1),

so
α

2
k ‖T (yk)− yk‖2 = ‖xk+1− xk‖2 + t2

k ‖xk− xk−1‖2−2tk〈xk+1− xk,xk− xk−1〉.
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Observe that

‖yk− z‖2

= (1+ tk)2‖xk− z‖2 + t2
k ‖xk−1− z‖2−2(1+ tk)tk〈xk− z,xk−1− z〉

= (1+ tk)2‖xk− z‖2 + t2
k ‖xk−1− z‖2− (1+ tk)tk(‖xk− z‖2 +‖xk−1− z‖2−‖xk− xk−1‖2)

= (1+ tk)‖xk− z‖2− tk‖xk−1− z‖2 + tk(1+ tk)‖xk− xk−1‖2.

Thus, we further have

‖xk+1− z‖2

≤ (1+ tk)‖xk− z‖2− tk‖xk−1− z‖2− (α−1
k −1)‖xk+1− xk‖2

+2(α−1
k −1)tk〈xk+1− xk,xk− xk−1〉+

(
tk(1+ tk)− (α−1

k −1)t2
k
)
‖xk− xk−1‖2.

From assumption (3.2), we have

‖xk+1− z‖2− tk+1‖xk− z‖2 +(1−σ)(α−1
k −1)‖xk+1− xk‖2

≤ ‖xk− z‖2− tk‖xk−1− z‖2 +(1−σ)(α−1
k−1−1)‖xk− xk−1‖2−∆k,

where σ ∈ (0,1) and ∆k is given by

∆k := σ(α−1
k −1)‖xk+1− xk‖2−2(α−1

k −1)tk〈xk+1− xk,xk− xk−1〉

+
(
(1−σ)(α−1

k−1−1)− tk(1+ tk)+(α−1
k −1)t2

k
)
‖xk− xk−1‖2. (3.4)

Set

ϕk := ‖xk− z‖2− tk‖xk−1− z‖2 +(1−σ)(α−1
k−1−1)‖xk− xk−1‖2.

Then

ϕk+1 ≤ ϕk−∆k. (3.5)

Next, we choose tk to guarantee that

ϕk ≥ ε‖xk−1− z‖2, ∆k ≥ ε‖xk− xk−1‖2.

Consider

ϕk :=‖xk− z‖2− tk‖xk−1− z‖2 +(1−σ)(α−1
k−1−1)‖xk− xk−1‖2

=‖xk−1− z‖2 +2〈xk−1− z,xk− xk−1〉+‖xk− xk−1‖2

− tk‖xk−1− z‖2 +(1−σ)(α−1
k−1−1)‖xk− xk−1‖2

=(1− tk)‖xk−1− z‖2 +2〈xk−1− z,xk− xk−1〉+
(
1+(1−σ)(α−1

k−1−1)
)
‖xk− xk−1‖2

=ε‖xk−1− z‖2 +(1− tk− ε)‖xk−1− z‖2 +2〈xk−1− z,xk− xk−1〉

+
(
1+(1−σ)(α−1

k−1−1)
)
‖xk− xk−1‖2.

Combining this with Lemma 3.1 and the assumption (3.3)

4 (1− ε− tk)
(
1+(1−σ)(α−1

k−1−1)
)
≥ 22

⇔ tk ≤ 1− ε−
(
1+(1−σ)(α−1

k−1−1)
)−1
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yields ϕk ≥ ε‖xk−1− z‖2. Similarly, it follows from (3.4)

∆k :=σ(α−1
k −1)‖xk+1− xk‖2−2(α−1

k −1)tk〈xk+1− xk,xk− xk−1〉

+
(
(1−σ)(α−1

k−1−1)− tk(1+ tk)+(α−1
k −1)t2

k
)
‖xk− xk−1‖2

=σ(α−1
k −1)‖xk+1− xk‖2−2(α−1

k −1)tk〈xk+1− xk,xk− xk−1〉+ ε‖xk− xk−1‖2

+
(
(1−σ)(α−1

k−1−1)− tk(1+ tk)+(α−1
k −1)t2

k − ε
)
‖xk− xk−1‖2.

By Lemma 3.1 and assumption (3.3)

4 σ(α−1
k −1)

(
(1−σ)(α−1

k−1−1)− tk(1+ tk)+(α−1
k −1)t2

k − ε
)
≥ 22 (α−1

k −1)2t2
k

⇔
(
(σ−1−1)(α−1

k −1)+1
)

t2
k + tk− (1−σ)(α−1

k−1−1)+ ε ≤ 0

⇔ tk ≤ 0.5
−1+

√
1+4

(
(σ−1−1)(α−1

k −1)+1
)(

(1−σ)(α−1
k−1−1)− ε

)
(σ−1−1)(α−1

k −1)+1
,

we can derive ∆k ≥ ε‖xk−xk−1‖2. Obviously, from the two relations and (3.5), we conclude that

lim ϕk exists ⇒ ‖xk−1− z‖ (thus ‖xk− z‖) is bounded in norm;

lim ∆k = 0 ⇒ lim ‖xk− xk−1‖= 0.

These facts indicate that {xk} is bounded in norm. Thus it has at least one weak cluster point,
say x∞, i.e., there exists some subsequence {xk j} converging weakly to x∞. Meanwhile, we have

(I−T )(xk + tk(xk− xk−1)) =
tk(xk− xk−1)− (xk+1− xk)

αk
,

so

‖tk(xk− xk−1)− (xk+1− xk)

αk
‖ ≤ tk‖xk− xk−1‖+‖xk+1− xk‖

αk
.

Note that {xk− xk−1} converges to zero in norm. Taking this into account and taking the limit
along k j yield

(I−T )(x∞) = 0 ⇐⇒ T (x∞) = x∞.

Here the fact that I−T is continuous and monotone is used. The proof of the uniqueness of the
weak cluster point is standard, thus the details are omitted [6]. �

Corollary 3.1. Since Algorithm 1 can be viewed as a special case of (1.1), with αk = α ∈
[0.80,0.99], the statement “Choose tk ∈ [tk−1, t̄+]” in Algorithm 1 corresponds to (3.2) and (3.3)
and σ = 0.1. As a direct consequence of Theorem 3.1, the sequence {xk} generated by Algorithm
1 converges weakly to a fixed point of T .

Remark 3.1. Next, we numerically demonstrate assumption (3.3) to some extent. For brevity,
we simply set

αk ≡ α, tk ≡ t, η(σ) := (1−σ)(α−1−1).

Then assumption (3.3) reduces to

t < min

{
0.5
−1+

√
1+4(σ−1η(σ)+1)η(σ)

σ−1η(σ)+1
,1− (1+η(σ))−1

}
= f (σ). (3.6)
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We can further obtain that the following inequality holds

1− (1+η(σ))−1 ≥ 0.5
−1+

√
1+4(σ−1η(σ)+1)η(σ)

σ−1η(σ)+1
.

From (3.6), we have

t < 0.5
−1+

√
1+4(σ−1η(σ)+1)η(σ)

σ−1η(σ)+1
:= f (σ). (3.7)

In contrast to (3.3), we no longer introduce the extra ε above because we turn to resort to Lemma
3.2. In addition, we have replaced ≤ there by < here. As in Appendix, if α ∈ (0.5,1), then

f ′(σ)< 0, σ ∈ [0.5,1].

This means that f (σ) is decreasing over [0.5,1].

FIGURE 2. The graph of f(σ ) for different α

Numerical demonstration of (3.7) is given in Table 1, where tnew stands for a slightly lower
approximation of the f ’s maximum in (3.7) with respect to σ . Meanwhile, We also provide the
values from [6, Table 2] for comparison and the corresponding data are given in Table 1, where
t(αk,αk+1,ε) is defined by (2.3).

TABLE 1. Numerical comparison between (3.7) and [6, Table 2]

α 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
tnew 0.304 0.275 0.246 0.216 0.186 0.155 0.121 0.086 0.046
σ 0.304 0.275 0.244 0.215 0.186 0.154 0.122 0.086 0.046

t(αk,αk+1,ε) 0.303 0.274 0.245 0.216 0.186 0.154 0.121 0.085 0.045

From Table 1, we can observe that our computed values of tnew are consistently larger than the
corresponding values from [6, Table 2] for each sampling point.

Here we compare our results with the latest ones in [9]. Their key condition on inertial factors
(see (2.4)) is

tk(1+ tk)+(α−1
k −1)tk(1− tk)≤ (α−1

k−1−1)(1− tk−1)− ε,
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where ε ≥ 0. So in the cases of tk ≡ t and ε = 0, we can further obtain the upper bound of the
inertial factors

t̂(αk,αk−1) := 0.5
−(α−1

k +α
−1
k−1−1)+

√
(α−1

k +α
−1
k−1−1)2 +4(2−α

−1
k )(α−1

k−1−1)

2−α
−1
k

.

As an instance, we take αk = 0.90 and list some comparison results in Table 2.

TABLE 2. Numerical comparison in the αk = 0.90 case

(αk,αk−1) (0.90,0.89) (0.90,0.90) (0.90,0.91) (0.90,0.95)
t̂(αk,αk−1) 0.09377 0.08558 0.07734 0.04376

tnew 0.09379 0.08556 0.07735 0.04413

Remark 3.2. For the KM iteration, choosing α close to 1 in its accelerated and inertial versions
[6] is generally a good strategy. In this case, it is noted that selecting σ to be equal to or close to
0.1 has been found to be a favorable choice; see Table 1 and Figure 2.

4. CONCLUSIONS

In this article, we considered the Krasnosel’skiı̆-Mann iteration for finding a fixed point of
non-expansive operators in real Hilbert spaces. Our main contribution is that we proposed
new inertial factors with desirable upper bounds better than or comparable to existing ones. It
deserves pointing out that our proof is concise and self-contained.

APPENDIX

Here, we prove that if α ∈ (0.5,1), then f (σ) defined in (3.7) is decreasing over the interval
[0.5,1]. To this end, we need to prove that f ′(σ) < 0, σ ∈ [0.5,1]. Setting s := α−1− 1, one
sees that s ∈ (0,1). It follows from (3.7) that

f (σ) = 0.5
−1+

√
1+4((σ−1−1)(α−1−1)+1)(1−σ)(α−1−1)

(σ−1−1)(α−1−1)+1

= 0.5
−1+

√
1+4s(sσ−1 +(s−1)σ −2s+1)

sσ−1− s+1
.

Denote by ∆ := 1+4s
(
sσ−1 +(s−1)σ −2s+1

)
. Obviously, we have

2s−1≤ sσ
−1− (1− s)σ ≤ 5

2
s− 1

2
,

which means 1≤ ∆≤ 2s2 +2s+1. Meanwhile, we also have

f (σ) =
−0.5

sσ−1− s+1
+

0.5
√

∆

sσ−1− s+1
,



ON AN INERTIAL KRASNOSEL’SKIĬ-MANN ITERATION 111

and its derivative f ′(σ) is

−0.5sσ−2

(sσ−1− s+1)2 +
s 1√

∆

(
−sσ−2 +(s−1)

)(
sσ−1− s+1

)
+0.5sσ−2

√
∆

(sσ−1− s+1)2

=
−0.5s

((1− s)σ + s)2 +
s
(
(s−1)σ2− s

)
((1− s)σ + s)+0.5sσ∆

√
∆σ ((1− s)σ + s)2 .

Thus f ′(σ)≤ 0 if and only if

s
(
(s−1)σ2− s

)
((1− s)σ + s)+0.5sσ∆≤ 0.5sσ

√
∆,

which must hold provided that s
(
(s−1)σ2− s

)
((1− s)σ + s)+0.5sσ∆≤ 0.5sσ due to ∆≥ 1.

Eliminating s on both sides yields(
(s−1)σ2− s

)
((1− s)σ + s)+2s2 +(2s2−2s)σ2 +(2s−4s2)σ ≤ 0.

Next, we only need to prove that if σ ∈ [0.5,1], then this inequality above is valid. In fact, by
rearranging all terms, we can derive

−(s−1)2
σ

3 +3s(s−1)σ2 + s(1−3s)σ + s2 ≤ 0.

Setting
g(σ) =−(s−1)2

σ
3 +3s(s−1)σ2 + s(1−3s)σ + s2,

we see that

g′(σ) =−3(s−1)2
σ

2 +6s(s−1)σ + s(1−3s),

g′′(σ) =−6(s−1)2
σ +6s(s−1).

Since g′′(σ) ≤ 0 whenever s ∈ (0,1) and σ ∈ [0.5,1], g′(σ) is decreasing over the interval
[0.5,1]. So, it is immediate that

g′(σ)≤ g′(0.5) =−3
4

s2− 1
2

s− 3
4
< 0, σ ∈ [0.5,1],

which implies that g(σ) is decreasing over the interval [0.5,1]. Finally, we have

g(σ)≤ g(0.5) =
1
8
(s2−1)< 0, σ ∈ [0.5,1].

The proof is complete.
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