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FORWARD-BACKWARD SPLITTING WITH DEVIATIONS FOR MONOTONE
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Abstract. We propose and study a weakly convergent variant of the forward-backward algorithm for
solving structured monotone inclusion problems. Our algorithm features a per-iteration deviation vector,
providing additional degrees of freedom. The only requirement on the deviation vector to guarantee
convergence is that its norm is bounded by a quantity that can be computed online. This approach offers
great flexibility and paves the way for the design of new forward-backward-based algorithms, while still
retaining global convergence guarantees. These guarantees include linear convergence under a metric
subregularity assumption. Choosing suitable monotone operators enables the incorporation of deviations
into other algorithms, such as the Chambolle-Pock method and Krasnosel’skiı̆–Mann iterations. We
propose a novel inertial primal-dual algorithm by selecting the deviations along a momentum direction
and deciding their size by using the norm condition. Numerical experiments validate our convergence
claims and demonstrate that even this simple choice of a deviation vector can enhance the performance
compared to, for instance, the standard Chambolle–Pock algorithm.
Keywords. Forward-backward splitting; Global convergence; Inertial primal-dual algorithm; Linear
convergence rate; Monotone inclusions.
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1. INTRODUCTION

Forward–backward (FB) splitting [6, 24, 26] has been extensively used to solve structured
monotone inclusion problems of finding x ∈H such that

0 ∈ Ax+Cx, (1.1)

where A : H → 2H is a maximally monotone operator, C : H →H is a cocoercive operator,
and H is a real Hilbert space. The algorithm sequentially performs a forward step with the
operator C followed by a backward step with A to arrive at the iteration

xn+1 = (Id+γnA)−1 ◦ (Id−γnC)xn, (1.2)

where γn > 0 is a step-size parameter. The FB method encompasses various well-established
methods as special instances. These include the gradient method, the proximal point algorithm
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[31], the proximal-gradient method [11], the Chambolle–Pock method [7], the Douglas–Rachford
method [15, 24], and the Krasnosel’skiı̆–Mann iteration [5, Section 5.2].

In this paper, we present a weakly convergent extension to the standard FB splitting method to
solve monotone inclusion (1.1). A simplified instance of our algorithm is given by

pn = (Id+γnA)−1 ◦ (Id−γnC)(xn +un)

xn+1 = pn−un
(1.3)

where un is a deviation vector. By letting un = 0, a step of (1.3) reduces to the standard FB step
in (1.2). The addition of un gives added flexibility that can be utilized to improve performance. In
order to ensure convergence of this algorithm, un has to satisfy the safeguarding norm condition

‖un‖2 ≤ (1− ε) (2−γn−1β )(2−γnβ )
4

∥∥∥pn−1− xn−1 +
γn−1β

2−γn−1β
un−1

∥∥∥2
, (1.4)

where ε ∈ [0,1) is arbitrary. The quantity to the right-hand side of the inequality is computable
online since the variables are known from previous iterations. This safeguarding condition plays
a different role than the ones in [20, 32, 36, 39] that employ different safeguarding conditions
to enable selection between a globally convergent method and a locally fast method while
maintaining global convergence. The overarching objective, however, is the same: to enable for
enhanced algorithm performance.

Our main algorithm (Algorithm 3.1) uses two deviation vectors and a safeguarding norm
condition involving both deviations. A similar algorithm with deviation vectors has been
proposed in [4] to extend the proximal gradient method for convex minimization. The fact that
we consider the more general monotone inclusion setting, allows us to apply our results, e.g.,
to the Chambolle–Pock [7] and Condat–Vũ [13, 38] methods—that both are preconditioned
FB methods [21]—as well as the Douglas–Rachford method [24] and the Krasnosel’skiı̆–Mann
iteration. To facilitate the derivation of some of these special cases, we derive our algorithm with
explicit preconditioning, such as in [10, 12, 16, 17, 18, 19, 27, 30].

Our algorithm is also related to inexact FB methods, which are studied in the framework
of monotone inclusions [29, 34, 35, 38] and in a convex optimization setting [13, 33, 37]. By
including error terms in the FB splitting algorithms, these works allow for inaccuracies in the
forward and backward step evaluations. The convergence of the algorithm is usually based on a
summability assumption on the error sequences and would therefore allow arbitrarily large errors
as long as they only happen for a finite number of iterations. The idea behind our method is in
stark contrast to these methods, as our method is designed for actively choosing the deviations
with the aim to improve performance.

We instantiate our general scheme in three special settings; the standard FB setting, the primal-
dual setting of Condat–Vũ, and the Krasnosel’skiı̆–Mann setting. We also propose a further
specialization of the primal-dual setting of Condat–Vũ in which we select the deviations in a
heavy-ball type [28] momentum direction. The resulting algorithm bears similarities with the
inertial FB methods [1, 2, 3, 9, 25] when applied in a primal-dual setting. Numerical experiments
show improved performance of our method compared to the Chambolle–Pock method and a
primal–dual version of the Lorenz–Pock method [25].

The organization of the paper is as follows. In Section 2, we provide notations and some
definitions. In Section 3, the proposed algorithm is introduced. In Section 4, we prove weak
convergence of the method and linear and strong convergence under a metric subregularity
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assumption. In Section 5, some special cases of the proposed algorithm are presented and
Section 6 further specializes one of these to arrive at a novel inertial primal–dual algorithm. We
conclude the paper by presenting the numerical results in Section 7.

2. PRELIMINARIES

Throughout the paper, the set of real numbers is denoted by R; H and K denote real Hilbert
spaces that are equipped with inner products and induced norms, which are denoted by 〈·, ·〉
and ‖·‖ =

√
〈·, ·〉, respectively. A bounded, self-adjoint, linear operator M : H →H is said

to be strongly positive if there exists some c > 0 such that 〈x,Mx〉 ≥ c‖x‖2 > 0 for all x ∈H .
We use the notation M (H ) to denote the set of bounded linear, self-adjoint, strongly positive
operators on H . For M ∈M (H ) and for all x,y ∈H , the M-induced inner product and norm
are denoted by 〈x,y〉M = 〈x,My〉 and ‖x‖M =

√
〈x,Mx〉, respectively.

Let M ∈M (H ), x ∈H , and S ⊂H be a nonempty closed convex set. The M-induced
projection of x onto the set S is defined as ΠM

S x = argminy∈S ‖x− y‖M, and the M-induced
distance from x to S is defined by distM(x,S) = infy∈S ‖x− y‖M which satisfies distM(x,S) =∥∥x−ΠM

S x
∥∥

M.
The notation 2H denotes the power set of H . A map A : H → 2H is characterized by

its graph gra(A) = {(x,u) ∈H ×H : u ∈ Ax}. An operator A : H → 2H is monotone if
〈u− v,x− y〉 ≥ 0 for all (x,u),(y,v) ∈ gra(A). A monotone operator A : H → 2H is maximally
monotone if there exists no monotone operator B : H → 2H such that gra(B) properly contains
gra(A).

Let M ∈M (H ). An operator T : H →H is said to be

(1) L-Lipschitz continuous (L≥ 0) w.r.t. ‖·‖M if

‖T x−Ty‖M−1 ≤ L‖x− y‖M for all x,y ∈H ;

(2) 1
β

-cocoercive (β > 0) w.r.t. ‖·‖M if

〈T x−Ty,x− y〉 ≥ 1
β
‖T x−Ty‖2

M−1 for all x,y ∈H ;

(3) nonexpansive if it is 1-Lipschitz continuous w.r.t. ‖·‖;
(4) firmly nonexpansive if

‖T x−Ty‖2 +‖(Id−T )x− (Id−T )y‖2 ≤ ‖x− y‖2 for all x,y ∈H .

By the Cauchy–Schwarz inequality, a 1
β

-cocoercive operator is β -Lipschitz continuous. The

resolvent of a maximally monotone operator A : H → 2H is denoted by JγA : H →H and
defined as JγA := (Id+γA)−1. JγA has full domain, is firmly nonexpansive [5, Corollary 23.8],
and is single-valued.

Let (xn)n∈N be a sequence in H , which is convergent to x?. Then the convergence is (i)
Q-linear if there exists q ∈ (0,1) such that ‖xn+1− x?‖ ≤ q‖xn− x?‖ for all n sufficiently large;
(ii) R-linear if there exists a sequence (cn)n∈N of nonnegative scalars such that ‖xn− x?‖ ≤ cn
and (cn)n∈N is Q-linearly convergent to zero.
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3. FORWARD-BACKWARD SPLITTING WITH DEVIATIONS

We consider structured monotone inclusion problems of the form

0 ∈ Ax+Cx, (3.1)

that satisfy the following assumptions.

Assumption 3.1. Assume that
(i) A : H → 2H is maximally monotone.

(ii) C : H →H is 1
β

-cocoercive with respect to ‖·‖M with M ∈M (H ).
(iii) The solution set zer(A+C) := {x ∈H : 0 ∈ Ax+Cx} is nonempty.

Observe that, as a cocoercive operator is maximally monotone [5, Corollary 20.28], and since
C has a full domain, the operator A+C is maximally monotone [5, Corollary 25.5].

We present and prove convergence for the following extended variant of FB splitting for
solving (3.1).

Algorithm 3.1
1: Input: initial point x0 ∈H , the sequences (ζn)n∈N, (λn)n∈N, and (γn)n∈N as per Assump-

tion 4.1, and the metric ‖·‖M with M ∈M (H ).
2: set: u0 = v0 = 0
3: for n = 0,1,2, . . . do
4: yn = xn +un

5: zn = xn +
(1−λn)γnβ

2−λnγnβ
un + vn

6: pn = (M+ γnA)−1(Mzn− γnCyn)
7: xn+1 = xn +λn(pn− zn)
8: choose un+1 and vn+1 such that

λn+1γn+1β

2−λn+1γn+1β
‖un+1‖2

M + λn+1(2−λn+1γn+1β )
4−2λn+1−γn+1β

‖vn+1‖2
M ≤ ζn`

2
n (3.2)

is satisfied, where

`2
n =

λn(4−2λn−γnβ )
2

∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un− 2(1−λn)

4−2λn−γnβ
vn

∥∥∥2

M
(3.3)

9: end for

The forward–backward step in Step 6 is unconventional in that it allows the points yn and zn
to be different. Algorithm 3.1 also allows for deviations un and vn, which can be seen as design
parameters of the algorithm. They can in general be chosen from a subset of H with non-empty
interior (if `2

n > 0 in Step 8), effectively equipping the algorithm with great flexibility. Also note
that the upper bound `2

n defined in (3.3) is computable at the time of selecting un+1 and vn+1.
Next, we present two special cases of our method. We defer a more detailed discussion on

special cases to Section 5.

Example 3.1. With the trivial choice of un+1 = vn+1 = 0, condition (3.2) is already satisfied,
and Algorithm 3.1 reduces to the relaxed preconditioned FB iteration

pn = (M+ γnA)−1(Mxn− γnCxn),

xn+1 = xn +λn(pn− xn).
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With M = Id and λn = 1 (n ∈ N), we recover (1.2).

Example 3.2. With M = Id, λn = 1, vn = un, and ζn = 1− ε (n ∈ N), we recover the simplified
version from (1.3) in the introduction.

Remark 3.1. Many works exist that allow for error terms in FB algorithms [13, 29, 38, 37].
Convergence is often based on a summability argument so that any summable sequence of
errors is allowed. The strength of our condition (3.2) is that it is iteration-wise; hence, arbitrary
large errors would not be accepted. A major difference is that our algorithm does not treat the
deviations as errors or inaccuracies in the computation. Instead, they are introduced to allow for
actively selecting the deviations with the aim to improve performance.

4. CONVERGENCE ANALYSIS

In this section, we provide a convergence analysis for Algorithm 3.1 that requires the parameter
sequences (ζn)n∈N, (λn)n∈N, and (γn)n∈N to satisfy the following assumption.

Assumption 4.1. Choose ε ∈
(

0,min
(

1, 4
3+β

))
, and assume that, for all n ∈ N, the following

conditions hold:

(i) 0≤ ζn ≤ 1− ε;
(ii) ε ≤ γn ≤ 4−3ε

β
;

(iii) ε ≤ λn ≤ 2− γnβ

2 −
ε

2 .

The sequence (ζn)n∈N relates the norm of the deviation vectors un+1 and vn+1 in (3.2) to its
maximum permissible value, (λn)n∈N can be seen as a sequence of relaxation parameters for
(xn)n∈N in Step 7 of Algorithm 3.1, and (γn)n∈N is a sequence of step-size parameters for the FB
step in Step 6 of Algorithm 3.1.

For the convergence analysis, we first introduce a Lyapunov inequality in Lemma 4.1, which
is later used to show weak convergence in Theorem 4.1 and strong and linear convergence under
a metric subregularity assumption in Theorem 4.2.

Lemma 4.1. Suppose that Assumption 3.1 and Assumption 4.1 hold. Let (xn)n∈N, (un)n∈N,
(vn)n∈N, (`2

n)n∈N be sequences generated by Algorithm 3.1 and x? be an arbitrary point in
zer(A+C). Then,

‖xn+1− x?‖2
M + `2

n ≤ ‖xn− x?‖2
M + λnγnβ

2−λnγnβ
‖un‖2

M + λn(2−λnγnβ )
4−2λn−γnβ

‖vn‖2
M (4.1)

and
‖xn+1− x?‖2

M + `2
n ≤ ‖xn− x?‖2

M +ζn−1`
2
n−1 (4.2)

hold for all n ∈ N.

Proof. Let n ∈ N be arbitrary. Step 6 in Algorithm 3.1 is equivalent to the inclusion

Mzn−Mpn

γn
−Cyn ∈ Apn. (4.3)

Since x? ∈ zer(A+C), we also have

−Cx? ∈ Ax?. (4.4)
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Using (4.3), (4.4), and the monotonicity of A gives

0≤
〈

Mzn−Mpn

γn
−Cyn +Cx?, pn− x?

〉
. (4.5)

By the 1/β -cocoercivity of C w.r.t. ‖·‖M we have
1
β
‖Cyn−Cx?‖2

M−1 ≤ 〈Cyn−Cx?,yn− x?〉. (4.6)

Adding (4.5) and (4.6) yields

0≤
〈

Mzn−Mpn

γn
, pn− x?

〉
+ 〈Cyn−Cx?,yn− pn〉− 1

β
‖Cyn−Cx?‖2

M−1.

Then, from the step 7 in Algorithm 3.1, we substitute zn− pn =
1
λn
(xn− xn+1) to obtain

0≤ 1
γnλn
〈xn− xn+1, pn− x?〉M + 〈Cyn−Cx?,yn− pn〉− 1

β
‖Cyn−Cx?‖2

M−1

= 1
2γnλn

(
‖xn− x?‖2

M +‖xn+1− pn‖2
M−‖xn− pn‖2

M−‖xn+1− x?‖2
M

)
+ 〈Cyn−Cx?,yn− pn〉− 1

β
‖Cyn−Cx?‖2

M−1

≤ 1
2γnλn

(
‖xn− x?‖2

M +‖xn+1− pn‖2
M−‖xn− pn‖2

M−‖xn+1− x?‖2
M

)
+ β

4 ‖yn− pn‖2
M

where we use the identity 2〈a−b,c−d〉M = ‖a−d‖2
M +‖b− c‖2

M−‖a− c‖2
M−‖b−d‖2

M for
all a,b,c,d ∈H and Young’s inequality 〈s,x〉 ≤ β

4 ‖x‖
2
M+ 1

β
‖s‖2

M−1 for all x,s∈H . Multiplying
both sides of the last inequality by 2γnλn and reordering the terms yield

‖xn+1− x?‖2
M−‖xn− x?‖2

M

≤ ‖xn+1− pn‖2
M−‖xn− pn‖2

M + λnγnβ

2 ‖yn− pn‖2
M

= ‖xn− pn +λn(pn− zn)‖2
M−‖xn− pn‖2

M + λnγnβ

2 ‖yn− pn‖2
M

= λ
2
n ‖pn− zn‖2

M +2λn〈xn− pn, pn− zn〉M + λnγnβ

2 ‖yn− pn‖2
M

=−λn(2−λn)‖pn− zn‖2
M +2λn〈pn− zn,xn− zn〉M + λnγnβ

2 ‖yn− pn‖2
M,

(4.7)

where we, once again, used the step 7 in Algorithm 3.1 to substitute back xn+1 = xn+λn(pn− zn)
into the expression to the right-hand side of the inequality. Now, using the definitions of yn and
zn in the steps 4 and 5 of Algorithm 3.1, we observe that

`2
n =

(
λn(2−λn)− λnγnβ

2

)∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un +

2(1−λn)
γnβ−2(2−λn)

vn

∥∥∥2

M
(4.8)

= λn(2−λn)‖pn− zn‖2
M +λn(2−λn)

∥∥∥ γnβ

2−λnγnβ
un− 2−γnβ

γnβ−2(2−λn)
vn

∥∥∥2

M

+2λn(2−λn)
〈

pn− zn,
γnβ

2−λnγnβ
un− 2−γnβ

γnβ−2(2−λn)
vn

〉
M

− λnγnβ

2 ‖pn− yn‖2
M−

λnγnβ

2

∥∥∥ 2
2−λnγnβ

un +
2(1−λn)

γnβ−2(2−λn)
vn

∥∥∥2

M

−λnγnβ

〈
pn− yn,

2
2−λnγnβ

un +
2(1−λn)

γnβ−2(2−λn)
vn

〉
M
.
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We can estimate the left-hand side of (4.1) by adding (4.7) and (4.8). Let us do this step by step.
First, let us look at the two inner products with pn− zn.

2λn

〈
pn− zn,xn− zn +(2−λn)

(
γnβ

2−λnγnβ
un− 2−γnβ

γnβ−2(2−λn)
vn

)〉
M

= 2λn

〈
pn− zn,

(
γnβ (2−λn)
2−λnγnβ

− (1−λn)γnβ

2−λnγnβ

)
un−

(
1+ (2−λn)(2−γnβ )

γnβ−2(2−λn)

)
vn

〉
M

= 2λn

〈
pn− zn,

γnβ

2−λnγnβ
un +

(1−λn)γnβ

γnβ−2(2−λn)
vn

〉
M
.

This can be combined with the last term in (4.8), so that we get

‖xn+1− x?‖2
M−‖xn− x?‖2

M + `2
n ≤ 2λnγnβ

〈
yn− zn,

1
2−λnγnβ

un +
(1−λn)

γnβ−2(2−λn)
vn

〉
M

+λn(2−λn)
∥∥∥ γnβ

2−λnγnβ
un− 2−γnβ

γnβ−2(2−λn)
vn

∥∥∥2

M

−2λnγnβ

∥∥∥ 1
2−λnγnβ

un +
(1−λn)

γnβ−2(2−λn)
vn

∥∥∥2

M
.

(4.9)

With yn− zn =
2−γnβ

2−λnγnβ
un− vn, the right-hand side of (4.9) is a quadratic expression in un and vn

alone:
‖xn+1− x?‖2

M−‖xn− x?‖2
M + `2

n

≤ 2λnγnβ

〈
1−γnβ

2−λnγnβ
un− γnβ−3+λn

γnβ−2(2−λn)
vn,

1
2−λnγnβ

un +
(1−λn)

γnβ−2(2−λn)
vn

〉
M

+λn(2−λn)
∥∥∥ γnβ

2−λnγnβ
un− 2−γnβ

γnβ−2(2−λn)
vn

∥∥∥2

M
.

In order to verify (4.1), it suffices to check the coefficients of ‖un‖2
M, ‖vn‖2

M, and 〈un,vn〉M on
the right-hand side. This results in

‖xn+1− x?‖2
M−‖xn− x?‖2

M + `2
n

≤ 2λnγnβ (1−γnβ )+λnγ2
n β 2(2−λn)

(2−λnγnβ )2 ‖un‖2
M

+ −2λnγnβ (γnβ−3+λn)(1−λn)+λn(2−λn)(2−γnβ )2

(γnβ−2(2−λn))
2 ‖vn‖2

M

+ 2λnγnβ (1−γnβ )(1−λn)−2λnγnβ (γnβ−3+λn)−2λnγnβ (2−λn)(2−γnβ )
(2−λnγnβ )(γnβ−2(2−λn))

〈un,vn〉M

= λnγnβ

2−λnγnβ
‖un‖2

M + λn(−2+λnγnβ )
(γnβ−2(2−λn))

‖vn‖2
M,

showing (4.1). Finally, (4.2) follows from inserting (3.2). �

The following theorem is the main convergence result of the paper that guarantees weak
convergence for the sequence of iterates obtained from Algorithm 3.1.

Theorem 4.1. Suppose that Assumption 3.1 and Assumption 4.1 hold. Let (xn)n∈N, (un)n∈N,
(vn)n∈N, and (`2

n)n∈N be generated by Algorithm 3.1. Then, the following conclusions hold:

(i) The sequence (`2
n)n∈N is summable and the sequences (un)n∈N and (vn)n∈N are conver-

gent to zero.
(ii) For all x? ∈ zer(A+C), the sequence (‖xn− x?‖M)n∈N converges.

(iii) The sequence (xn)n∈N converges weakly to a point in zer(A+C).
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Proof. We start by proving Item Theorem 4.1 (i) via a telescoping argument for (4.2). To this
end, let N ∈ N. We sum (4.2) for n = 1,2, . . . ,N to obtain

‖xN+1− x?‖2
M + `2

N +
N−1

∑
n=1

(1−ζn)`
2
n ≤ ‖x1− x?‖2

M +ζ0`
2
0.

Then, rearranging the terms gives
N

∑
n=1

(1−ζn)`
2
n ≤ ‖x1− x?‖2

M−‖xN+1− x?‖2
M−ζN`

2
N

≤ ‖x1− x?‖2
M +ζ0`

2
0.

Since the right hand side of the last inequality is independent of N, we conclude that
∞

∑
n=0

(1−ζn)`
2
n < ∞,

which, along with ζn ≤ 1− ε , implies from Assumption 4.1 that `2
n→ 0 as n→ ∞. Then, (3.2)

implies that un→ 0 and vn→ 0 as n→ ∞. This proves Theorem 4.1 (i).
The proof of Theorem 4.1 (ii) follows from the property that (4.2) defines a Lyapunov function:

since ζn ≤ 1, we obtain from (4.2) that

‖xn+1− x?‖2
M + `2

n ≤ ‖xn− x?‖2
M + `2

n−1,

i.e., the sequence
(
‖xn− x?‖2

M + `2
n−1

)
n∈N

is non-increasing. As it is also nonnegative, it is

convergent, say ‖xn− x?‖2
M + `2

n−1→ `x? ≥ 0 as n→ ∞. Moreover, `2
n→ 0 by Theorem 4.1 (i)

as n→ ∞, so ‖xn− x?‖2
M→ `x? , proving Theorem 4.1 (ii). For the proof of Theorem 4.1 (iii), let

us define

∆n :=
Mzn−Mpn

γn
− (Cyn−Cpn).

By (4.3), we have ∆n ∈ Apn +Cpn, meaning that (pn,∆n) ∈ gra(A+C) for all n ∈ N. Now, by
Assumption 4.1 (iii) we have λn(4−2λn−γnβ )

2 ≥ ε2/2 for all n ∈ N. By this and `n→ 0 as n→ ∞,
we have that

pn− xn +
λnγnβ

2−λnγnβ
un +

2(λn−1)
4−2λn−γnβ

vn→ 0.

Next, since 4−2λn− γnβ ≥ ε and

λnγnβ ≤
(
2− 1

2γnβ − 1
2ε
)
γnβ = 2− 1

2(2− γnβ )2− 1
2εγnβ ≤ 2− 1

2ε
2
β ,

from un→ 0 and vn→ 0, we conclude that pn− xn→ 0 as n→ ∞. Then,

‖∆n‖M−1 ≤ 1
γn
‖zn− pn‖M +‖Cyn−Cpn‖M−1

≤ 1
γn

(
‖xn− pn‖M + (1−λn)γnβ

2−λnγnβ
‖un‖M +‖vn‖M

)
+ 1

β
(‖xn− pn‖M +‖un‖M).

Hence, ∆n→ 0 as n→ ∞.
Now, from Theorem 4.1 (ii), we know that

(
‖xn− x?‖2

M

)
n∈N

is convergent, which implies

that (xn)n∈N is bounded. Therefore, the latter has at least one weakly convergent subsequence
(xkn)n∈N, say xkn ⇀ x?wc ∈H as n→ ∞. By the arguments above, we have pkn ⇀ x?wc and
∆kn → 0. Therefore, (x?wc,0) ∈ gra(A+C) by the weak–strong closedness of gra(A+C) [5,
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Proposition 20.38]. Then, Theorem 4.1 (iii) follows from [5, Lemma 2.47], and the proof is
complete.

�

4.1. Linear convergence. Next, we show the linear convergence of Algorithm 3.1 under the
following metric subregularity assumption.

Definition 4.1 (Metric Subregularity). A mapping T : H → 2H is called metrically subregular
at x̄ for ȳ if (x̄, ȳ) ∈ gra(T ) and there exists a κ ≥ 0 along with neighborhoods U of x̄ and V of
ȳ such that

distM(x,T−1(ȳ))≤ κ distM−1(ȳ,T (x)∩V ) (4.10)

for all x ∈U and some M ∈M (H ).

The definition above is equivalent to that in [14], but uses the M- and M−1-induced norm
distances instead of the standard canonical norm distance. Using this definition simplifies the
notation in the linear convergence analysis. Metric subregularity is an important notion in
numerical analysis. For a set-valued operator T and an input vector ȳ, it simply provides an
upper bound of how far a point x is from being a solution to inclusion problem ȳ ∈ T (x). This
upper bound is given by (4.10) in terms of the distance of T (x) from the input vector ȳ. For a
detailed discussion on this subject, see [14].

Prior to proceeding with the proof of the linear convergence result for Algorithm 3.1, we
provide a brief outline on how this is done. In Lemma 4.2, we show that the M-induced squared
distance of the iterate xn to the the solution set zer(A+C) can be bounded from above by a linear
combination of the quantities `2

n and `2
n−1. Lemma 4.3 shows that the sequence ‖xn+1− xn‖2

M
is also bounded from above by a linear combination of `2

n and `2
n−1. These lemmas are then

combined with Lemma 4.1 to prove local linear convergence results as well as strong convergence
of the sequence of iterates to a solution.

Lemma 4.2. Consider the monotone inclusion (3.1) along with Assumption 3.1. Let (xn)n∈N be
the sequence of iterates obtained from Algorithm 3.1, and let (pn,∆n) ∈ gra(A+C) with

∆n :=
Mzn−Mpn

γn
− (Cyn−Cpn).

Suppose that the following is satisfied for all n ∈ N

dist2M(pn,zer(A+C))≤ κ
2‖∆n‖2

M−1 . (4.11)

Then, for all n ∈ N, the following holds

dist2M(xn,zer(A+C))≤ 1
ψn
`2

n +ηnζn−1`
2
n−1, (4.12)

where `2
n is given in (3.3), and

ψn := λnγ2
n (4−2λn−γnβ )

12γ2
n+24κ2(1+γ2

n β 2)
,

ηn := max
(
(6λ 2

n γ2
n+60κ2)β

(2−λnγnβ )λnγn
,

24(λn−1)2γ2
n+12κ2((2−γnβ )2+4γ2

n β 2(λn−1)2)
(4−2λn−γnβ )γ2

n (2λn−λ 2
n γnβ )

)
.

(4.13)

are positive quantities for all n ∈ N.
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Proof. For all n ∈ N, we have

dist2M(xn,zer(A+C)) =
∥∥∥xn−Π

M
zer(A+C)xn

∥∥∥2

M
≤
∥∥∥xn−Π

M
zer(A+C)pn

∥∥∥2

M

≤ 2‖xn− pn‖2
M +2

∥∥∥pn−Π
M
zer(A+C)pn

∥∥∥2

M

= 2‖xn− pn‖2
M +2dist2M(pn,zer(A+C))

≤ 2‖xn− pn‖2
M +2κ

2‖∆n‖2
M−1, (4.14)

where the second inequality is implied by Young’s inequality, and the last inequality is given by
(4.11). For the first term on the right hand side of (4.14), we have

‖xn− pn‖2
M =

∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un +

2(λn−1)
2(2−λn)−γnβ

vn− λnγnβ

2−λnγnβ
un− 2(λn−1)

2(2−λn)−γnβ
vn

∥∥∥2

M

≤ 3
∥∥∥pn− xn +

λnγnβ

2−λnγnβ
un +

2(λn−1)
2(2−λn)−γnβ

vn

∥∥∥2

M

+
3λ 2

n γ2
n β 2

(2−λnγnβ )2‖un‖2
M + 12(λn−1)2

(2(2−λn)−γnβ )2‖vn‖2
M.

(4.15)

For the second term in the right hand side of (4.14), using the definition of ∆n, we obtain

‖∆n‖2
M−1

≤ 2
γ2

n
‖Mpn−Mzn‖2

M−1 +2‖Cpn−Cyn‖2
M−1

≤ 2
γ2

n
‖pn− zn‖2

M +2β
2‖pn− yn‖2

M

= 2
γ2

n

∥∥∥pn− xn− (1−λn)γnβ

2−λnγnβ
un− vn

∥∥∥2

M
+2β

2‖pn− xn−un‖2
M

= 2
γ2

n

∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un +

2(λn−1)
2(2−λn)−γnβ

vn

− ( (1−λn)γnβ

2−λnγnβ
+ λnγnβ

2−λnγnβ
)un− (1+ 2(λn−1)

2(2−λn)−γnβ
)vn

∥∥∥2

M

+2β
2
∥∥∥pn− xn +

λnγnβ

2−λnγnβ
un +

2(λn−1)
2(2−λn)−γnβ

vn− (1+ λnγnβ

2−λnγnβ
)un− 2(λn−1)

2(2−λn)−γnβ
vn

∥∥∥2

M

= 2
γ2

n

∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un +

2(λn−1)
2(2−λn)−γnβ

vn− γnβ

2−λnγnβ
un− 2−γnβ

2(2−λn)−γnβ
vn

∥∥∥2

M

+2β
2
∥∥∥pn− xn +

λnγnβ

2−λnγnβ
un +

2(λn−1)
2(2−λn)−γnβ

vn− 2
2−λnγnβ

un− 2(λn−1)
2(2−λn)−γnβ

vn

∥∥∥2

M

≤ 6+6γ2
n β 2

γ2
n

∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un +

2(λn−1)
2(2−λn)−γnβ

vn

∥∥∥2

M

+ 30β 2

(2−λnγnβ )2‖un‖2
M +

6(2−γnβ )2+24γ2
n β 2(λn−1)2

(2(2−λn)−γnβ )2γ2
n
‖vn‖2

M,

(4.16)

where in the first equality yn and zn are replaced by their equivalences from Algorithm 3.1, in the
second equality some suitable coefficients of un and vn are added and subtracted, and Young’s
inequality is used to obtain the last inequality. Then, from (4.15) and (4.16), we have

2‖xn− pn‖2
M +2κ

2‖∆n‖2
M−1

≤ 6γ2
n+12κ2(1+γ2

n β 2)
γ2

n

∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un +

2(λn−1)
2(2−λn)−γnβ

vn

∥∥∥2

M
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+
(6λ 2

n γ2
n+60κ2)β 2

(2−λnγnβ )2 ‖un‖2
M +

24(λn−1)2γ2
n+12κ2((2−γnβ )2+4γ2

n β 2(λn−1)2)
(2(2−λn)−γnβ )2γ2

n
‖vn‖2

M

=
6γ2

n+12κ2(1+γ2
n β 2)

γ2
n

∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un +

2(λn−1)
2(2−λn)−γnβ

vn

∥∥∥2

M

+
(6λ 2

n γ2
n+60κ2)β 2(2−λnγnβ )
(2−λnγnβ )2λnγnβ

λnγnβ

2−λnγnβ
‖un‖2

M

+
(24(λn−1)2γ2

n+12κ2((2−γnβ )2+4γ2
n β 2(λn−1)2))(4−2λn−γnβ )

(2(2−λn)−γnβ )2γ2
n (2λn−λ 2

n γnβ )
2λn−λ 2

n γnβ

4−2λn−γnβ
‖vn‖2

M

≤ 1
ψn
`2

n +ηn

(
λnγnβ

2−λnγnβ
‖un‖2

M +
2λn−λ 2

n γnβ

4−2λn−γnβ
‖vn‖2

M

)
≤ 1

ψn
`2

n +ηnζn−1`
2
n−1,

where in the equality above the terms involving ‖un‖M and ‖vn‖M are multiplied and divided
by some suitable coefficients, in the second to the last inequality ηn and ψn from (4.13) and `2

n
from (3.3) are substituted, and the last inequality follows from (3.2). Therefore, from the last
inequality and (4.14), we see that

dist2M(xn,zer(A+C))≤ 1
ψn
`2

n +ηnζn−1`
2
n−1

holds for all n ∈ N.
Now, using Assumption 4.1, it can be verified that, for all n ∈ N, ψn and ηn are positive

quantities. For ψn, using λn ≥ ε , γn ≥ ε , and 4− 2λn− γnβ ≥ ε (which is attained from
Assumption 4.1 (iii)), we have

ψn =
λn(4−2λn−γnβ )

12+24κ2(1/γ2
n+β 2)

≥ ε2

12+24κ2(1/ε2+β 2)
> 0,

for all n ∈ N, and for ηn, using 2−λnγnβ < 2, ε ≤ λn < 2, and ε ≤ γn < 4/β , for the first input
argument to max(·, ·) in the definition of ηn, (4.13), we have

(6λ 2
n γ2

n+60κ2)β
(2−λnγnβ )λnγn

> (6ε4+60κ2)β
2×2×4/β

> 0,

and thus, it is ensured that ηn is positive for all n ∈ N. Observe that the lower bounds above are
not the tight ones, as to attain them, we divided a lower bound of the numerator by an upper
bound of the denominator, which results into conservative lower bounds. By this, the proof is
complete.

�

Lemma 4.3. Consider Algorithm 3.1 under Assumption 3.1 and suppose that Assumption 4.1
holds. Let (xn)n∈N be the sequence generated by Algorithm 3.1. Then, for all n∈N, the following
holds

‖xn+1− xn‖2
M ≤ ϑn`

2
n +θnζn−1`

2
n−1, (4.17)

where `2
n is specified in (3.3), and

ϑn := 6λn
4−2λn−γnβn

,

θn := max( 3λnγnβ

2−λnγnβ
,

3λ 2
n (2−γnβ )2

(4−2λn−γnβ )(2−λnγnβ )λn
).

(4.18)

are positive and bounded quantities for all n ∈ N.
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Proof. Starting from the term in the left hand side of (4.17) and substituting xn+1 from Algo-
rithm 3.1, we have

‖xn+1− xn‖2
M = λ

2
n ‖pn− zn‖2

M

= λ
2
n

∥∥∥pn− xn− (1−λn)γnβ

2−λnγnβ
un− vn

∥∥∥2

M

= λ
2
n

∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un +

2(λn−1)
2(2−λn)−γnβ

vn− γnβ

2−λnγnβ
un− 2−γnβ

2(2−λn)−γnβ
vn

∥∥∥2

M

≤ 3λ
2
n

∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un +

2(λn−1)
2(2−λn)−γnβ

vn

∥∥∥2

M

+
3λ 2

n γ2
n β 2

(2−λnγnβ )2‖un‖2
M +

3λ 2
n (2−γnβ )2

(2(2−λn)−γnβ )2‖vn‖2
M,

where in the second equality above, zn is substituted by its update equation in Algorithm 3.1, in
the third equality coefficients of un and vn are added and subtracted, and the inequality follows
from Young’s inequality. Now, by substituting `2

n from (3.3), we have

‖xn+1− xn‖2
M ≤

6λn
4−2λn−γnβn

`2
n +

3λ 2
n γ2

n β 2

(2−λnγnβ )2‖un‖2
M +

3λ 2
n (2−γnβ )2

(2(2−λn)−γnβ )2‖vn‖2
M

= 6λn
4−2λn−γnβn

`2
n +

3λnγnβ

2−λnγnβ

λnγnβ

2−λnγnβ
‖un‖2

M

+
3λ 2

n (2−γnβ )2

(4−2λn−γnβ )(2−λnγnβ )λn

2λn−λ 2
n γnβ

4−2λn−γnβ
‖vn‖2

M

≤ ϑn`
2
n +θn

(
λnγnβ

2−λnγnβ
‖un‖2

M +
2λn−λ 2

n γnβ

4−2λn−γnβ
‖vn‖2

M

)
≤ ϑn`

2
n +θnζn−1`

2
n−1,

the equality above is attained by multiplying and dividing ‖un‖2
M and ‖vn‖2

M by some appropriate
coefficients, the second inequality follows from substitution of ϑn and θn from (4.18), and the
last inequality follows from (3.2). For the last part of the proof, using Assumption 4.1, we have
the following inequalities,

ε ≤ γn ≤ 4−3ε

β
< 4

β
,

ε ≤ λn ≤ 2− γnβ

2 − ε/2 < 2,

ε ≤ 4−2λn− γnβ < 4,
1
2βε

2 ≤ 2−λnγnβ < 2,

(4.19)

where the last one is given by

2 > 2−λnγnβ ≥ 2− (2− γnβ/2− ε/2)γnβ = 1
2(2− γnβ )2 + 1

2εγnβ ≥ 1
2βε

2.

Therefore, from (4.18) and by the inequalities above, we have ϑn ≥ 6ε

4 for all n ∈ N, and for θn,
since the first input argument to max(·, ·) in the definition of θn is

3λnγnβ

2−λnγnβ
≥ 3βε2

2 > 0,

it is ensured that θn > 0 for all n ∈N. For boundedness of ϑn and θn, again, from the inequalities
in (4.19), for all n ∈ N, we have

ϑn ≤ 6×2
ε

and θn ≤max(3×2
ε
, 3×22×4

ε×1
2 βε2×ε

),
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where, for the term (2− γnβ )2 in the second input argument of max(·, ·) in the definition of θn,
we used βε ≤ γnβ < 4, to obtain

−2 < 2− γnβ ≤ 2−βε ⇒ (2− γnβ )2 < 4.

Therefore, both ϑn and θn are bounded quantities for all n∈N. By this, the proof is complete. �

The following result shows linear convergence of the sequence of iterates obtained by Algo-
rithm 3.1, under a metric subregularity assumption. Similar results on linear convergence under
a metric subregularity assumption were given in [16, 23].

Theorem 4.2 (Linear Convergence). Consider the monotone inclusion problem (3.1) and suppose
that Assumption 3.1 holds, that A+C is metrically subregular at all x? ∈ zer(A+C) for 0, and that
either H is finite-dimensional or that in Definition 4.1 the neighborhood U at all x? ∈ zer(A+C)

is the whole space H . Let δ ∈ (0,min( 1−ζ

1+χζ
, 1

ψ
)) where ζ = sup

n>N
{ζn}, χ = sup

n>N
{ψnηn}, and

ψ = inf
n>N
{ψn} for a sufficiently large N ∈ N. Then,

(i) the sequence (dist2M(xn,zer(A+C))+ (1− δ )`2
n−1)n∈N converges to zero with a local

Q-linear rate of convergence.
(ii) the sequence (xn)n∈N, converges strongly to a point x̄ ∈ zer(A+C) with an R-linear

convergence rate.

Proof. We start by proving (i). From the metric subregularity of A+C at all x? ∈ zer(A+C) for
0, we obtain

distM(x,zer(A+C))≤ κ distM−1(0,(A+C)(x)∩Vx?)≤ κ‖ν‖M−1 (4.20)

for all x in a neighborhood U of zer(A+C) and (x,ν) ∈ gra(A+C) with ‖ν‖M−1 ≤ c for some
c > 0 and κ > 0.

Now, we recall from the proof of Theorem 4.1 that (pn,∆n) ∈ gra(A+C), where ∆n is given
by

∆n =
Mzn−Mpn

γn
− (Cyn−Cpn).

Using Young’s inequality along with linearity of M and β -Lipschitz continuity of C w.r.t. ‖·‖M,
we obtain

‖∆n‖2
M−1 =

∥∥∥ 1
γn
(Mzn−Mpn)− (Cyn−Cpn)

∥∥∥2

M−1

≤ 2
γ2

n
‖M(zn− pn)‖2

M−1 +2‖Cyn−Cpn‖2
M−1

≤ 2
γ2

n
‖pn− zn‖2

M +2β
2‖pn− yn‖2

M. (4.21)

From the proof of Theorem 4.1, we have pn− zn → 0 and pn− yn → 0 as n→ ∞. Thus, it
follows from (4.21) that ‖∆n‖M−1 → 0 as n→ ∞. Now, if H is finite-dimensional, since weak
convergence implies strong convergence in finite-dimensional Hilbert spaces, it follows from
Theorem 4.1 that there exists an N ∈ N such that, for all n > N, pn ∈U . Otherwise, in infinite-
dimensional setting, we have U = H . Thus, pn ∈U holds true for all n ∈ N. Therefore, from
(pn,∆n) ∈ gra(A+C) and (4.20), we conclude that

dist2M(pn,zer(A+C))≤ κ
2‖∆n‖2

M−1 . (4.22)
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for all n > N. Then, we have from Lemma 4.1 that

‖xn+1− x?‖2
M + `2

n ≤ ‖xn− x?‖2
M +ζn−1`

2
n−1. (4.23)

Now, define x?n as the projection of xn onto the solution set of the problem with respect to ‖·‖M,
namely, x?n := ΠM

zer(A+C)(xn). Then, from the inequality above, we obtain

dist2M(xn+1,zer(A+C))+ `2
n ≤ ‖xn+1− x?n‖

2
M + `2

n

≤ ‖xn− x?n‖
2
M +ζn−1`

2
n−1

= dist2M(xn,zer(A+C))+ζn−1`
2
n−1. (4.24)

Next, let δ ∈ (0,1) and subtract δ`2
n from both sides of the inequality above to obtain

dist2M(xn+1,zer(A+C))+(1−δ )`2
n ≤ dist2M(xn,zer(A+C))+ζn−1`

2
n−1−δ`2

n.

Now, by (4.22), we have that the requirements of Lemma 4.2 hold for all n > N. By using (4.12)
in the last inequality for all n > N, we have

dist2M(xn+1,zer(A+C))+(1−δ )`2
n

≤ (1−δψn)dist2M(xn,zer(A+C))+(1+δψnηn)ζn−1`
2
n−1

≤ (1−δψ)dist2M(xn,zer(A+C))+ (1+δ χ)ζ
1−δ

(1−δ )`2
n−1

where ζ = sup
n>N
{ζn}, χ = sup

n>N
{ψnηn}, and ψ = inf

n>N
{ψn} (we have ψ > 0 by Lemma 4.2). Thus,

from the inequalities above, we obtain

dist2M(xn+1,zer(A+C))+(1−δ )`2
n ≤ ρ

(
dist2M(xn,zer(A+C))+(1−δ )`2

n−1
)
, (4.25)

which shows a Q-linear rate of convergence with the convergence factor

ρ = max(1−δψ, (1+δ χ)ζ
1−δ

).

To ensure that ρ ∈ [0,1), we have the following requirement on δ

0 < δ < min( 1−ζ

1+χζ
, 1

ψ
)

which is implied by (4.25). It follows from Assumption 4.1 and Lemma 4.2 that χζ > 0.
Therefore, the upper bound on δ is some positive value less than one. Thus, the existence of such
a δ and the local linear convergence factor, ρ ∈ [0,1), is guaranteed, proving (i). For the proof
of (ii), define V0 := ρ−N(dist2M(xN ,zer(A+C))+(1−δ )`2

N−1). For all n > N, from (4.25), we
obtain

dist2M(xn+1,zer(A+C))+(1−δ )`2
n ≤ ρ

n+1V0.

Then, it follows from the inequality above and Lemma 4.3 that

‖xn+1− xn‖2
M ≤ ϑn`

2
n +θnζn−1`

2
n−1

≤ ρϑn+θnζn−1
1−δ

V0ρ
n ≤V0sup

n>N

{
ρϑn+θnζn−1

1−δ

}
ρ

n.

As (ϑn)n∈N and (θn)n∈N are bounded by Lemma 4.3 and (ζn)n∈N is bounded by Assumption 4.1,
the supremum above exists and is finite. Therefore, since ρ < 1, as n→ ∞ the sequence
(‖xn+1− xn‖2

M)n∈N and consequently (‖xn+1− xn‖M)n∈N, converge R-linearly to zero. This
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entails that there are constants r ∈ (0,1) and G > 0, such that ‖xn+1− xn‖M ≤ rnG for all n > N.
For arbitrary indices m and k such that N < m < k, we have

‖xk− xm‖M ≤
k−1

∑
i=m
‖xi+1− xi‖M ≤

k−1

∑
i=m

Gri

≤ Grm
k−m−1

∑
i=0

ri = G1−rk−m

1−r rm

(4.26)

which leads to the sequence (‖xk− xm‖M)n∈N converging to zero as m→ ∞. Therefore, (xn)n∈N
is a Cauchy sequence, and thus, it converges strongly to a point x̄ ∈H . From Theorem 4.1,
(xn)n∈N is weakly convergent and by uniqueness of the weak limit, we have x̄ = x? ∈ zer(A+C).
The linear rate of convergence is obtained by letting k→ ∞ in (4.26), which concludes the proof
of Theorem 4.2. �

5. SPECIAL CASES

In this section, we present some special cases of our algorithm.

5.1. Primal-dual splitting with deviations. We are concerned with the primal inclusion prob-
lem of finding x ∈H such that

0 ∈ Ax+L∗B(Lx)+Cx (5.1)

under the following assumption.

Assumption 5.1. We assume that
(i) A : H → 2H is a maximally monotone operator;

(ii) B : K → 2K is a maximally monotone operator;
(iii) L : H →K is a bounded linear operator;
(iv) C : H →H is a 1

β
-cocoercive operator with respect to ‖ · ‖;

(v) the solution set zer(A+L∗BL+C) := {x ∈H : 0 ∈ Ax+L∗B(Lx)+Cx} is nonempty.

Problem (5.1) can be translated to a primal–dual problem [21]: x ∈H is a solution to (5.1) if
and only if there exists µ ∈ B(Lx) (the dual variable) such that

0 ∈ Ax+L∗µ +Cx,

0 ∈ −Lx+B−1
µ.

(5.2)

Define the primal–dual pair w := (x,µ) ∈H ×K . Then, (5.2) can be restated as

0 ∈A w+C w, (5.3)

where (with slight abuse of notation)

A =

[
A L∗

−L B−1

]
, C =

[
C 0
0 0

]
. (5.4)

The operator A is maximally monotone by [5, Proposition 26.32] and C is 1/β -cocoercive with
respect to the metric ‖·‖M, with

M =

[
I −τL∗

−τL τσ−1I

]
, (5.5)
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where σ ,τ > 0 such that στ‖L‖2 < 1.
The translation of (5.1) to (5.3) via the two operators A and C shows that Algorithm 3.1 using

the metric M can be used to solve problem (5.1). We present this special case in Algorithm 5.1,
along with the subsequent result on its convergence.

Algorithm 5.1
1: Input: (x0,µ0)∈H ×K , the sequences (λn)n∈N and (ζn)n∈N as defined in Assumption 4.1,

and σ ,τ > 0 such that στ‖L‖2 < 1.
2: set: ux,0 = vx,0 = 0, vµ,0 = 0.
3: for n = 0,1,2, . . . do
4: x̃n = xn +ux,n

5:

[
x̂n
µ̂n

]
=

[
xn
µn

]
+

[
(1−λn)τβ

2−λnτβ
ux,n + vx,n

vµ,n

]
6:

[
px,n
pµ,n

]
=

[
JτA (x̂n− τL∗µ̂n− τCx̃n)

JσB−1 (µ̂n +σL(2px,n− x̂n))

]
7:

[
xn+1
µn+1

]
=

[
xn
µn

]
+λn

([
px,n
pµ,n

]
−
[

x̂n
µ̂n

])
8: choose un+1 = (ux,n+1,uµ,n+1) and vn+1 = (vx,n+1,vµ,n+1) such that

λn+1τβ

2−λn+1τβ

∥∥ux,n+1
∥∥2

+ λn+1(2−λn+1τβ )
4−2λn+1−τβ

∥∥∥∥[vx,n+1
vµ,n+1

]∥∥∥∥2

M

≤ ζn
λn(4−2λn−τβ )

2

∥∥∥∥∥
[

px,n
pµ,n

]
−
[

xn
µn

]
+ λnτβ

2−λnτβ

[
ux,n
0

]
− 2(1−λn)

4−2λn−τβ

[
vx,n
vµ,n

]∥∥∥∥∥
2

M

(5.6)

9: end for

Corollary 5.1. Consider monotone inclusions (5.3) and suppose that Assumption 5.1 holds. Let
(xn)n∈N and (µn)n∈N denote the primal and the dual sequences, respectively, that are obtained
from Algorithm 5.1. Then (xn)n∈N converges weakly to a point in zer(A+ L∗BL+C), and
(µn)n∈N converges weakly to a point in the solution set of the dual problem.

Proof. In Algorithm 3.1, replace A by A and C by C as devised by (5.4), and substitute
(xn,µn) in place of xn, and also set pn = (px,n, pµ,n), yn = (x̃n,µn), zn = (x̂n, µ̂n), un = (ux,n,0),
vn = (vx,n,vµ,n), M as is in (5.5), and γn = τ (n ∈ N). These changes, along with the update
formula

pn = (px,n, pµ,n) = (M+ τA )−1(Mzn− τC yn)

=

[
I + τA 0
−2τL τσ−1I + τB−1

]−1[x̂n− τL∗µ̂n− τCx̃n
−τLx̂n + τσ−1µ̂n

]
=

[
(I + τA)−1(x̂n− τL∗µ̂n− τCx̃n)

(I +σB−1)−1(µ̂n +σL(2px,n− x̂n))

]
=

[
JτA (x̂n− τL∗µ̂n− τCx̃n)

JσB−1 (µ̂n +σL(2px,n− x̂n))

]
,
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result in Algorithm 5.1. Therefore, Algorithm 5.1 is a special instance of Algorithm 3.1; and the
corollary is an immediate consequence of Theorem 4.1. �

Remark 5.1. In Algorithm 5.1, it might be expected that we get µ̃n = µn +uµ,n, which is the
dual counterpart of x̃n = xn +ux,n, but we do not. That is because the corresponding part of µ̃n of
the operator C in (5.4), i.e. its second column, is zero, and thus, there is no need to define the
dual counterpart of x̃n.

Remark 5.2. In Algorithm 5.1, letting all deviations ux,n, vx,n, vµn (n ∈ N) be zero and λn = 1
give

xn+1 = JτA (xn− τL∗µn− τCxn) ,

µn+1 = JσB−1 (µn +σL(2xn+1− xn)) .

This is the Condat–Vũ algorithm in its basic form [13, 38], which, together with C = 0, reduces
to the basic form of the Chambolle–Pock primal–dual method [7].

Remark 5.3. By letting C = 0, β = 0, and ux,n = 0 for all n ∈ N in Algorithm 5.1, we arrive at
a Chambolle–Pock method with deviations and the condition (5.6) reduces to∥∥∥∥[vx,n+1

vµ,n+1

]∥∥∥∥2

M
≤ ζn

(2−λn+1)(2−λn)λn
λn+1

∥∥∥∥[ px,n
pµ,n

]
−
[

xn
µn

]
− 1−λn

2−λn

[
vx,n
vµ,n

]∥∥∥∥2

M
.

5.2. Krasnosel’skiı̆–Mann iteration with deviations. Consider the fixed-point problem

x = T x, (5.7)

where T : H →H is a nonexpansive operator. Then, by [5, Remark 4.34, Corollary 23.9], there
is a maximally monotone operator A : H → 2H for which JγA = 1

2 Id+1
2T , with γ > 0. This

correspondence suggests that Algorithm 3.1 can be used to solve (5.7). Letting C = 0, β = 0,
M = Id, and un = 0 for all n ∈N in Algorithm 3.1 results in Algorithm 5.2, which can be used to
solve problem (5.7). Weak convergence of Algorithm 5.2 is shown in Corollary 5.2.

Corollary 5.2. Consider the fixed-point problem (5.7) and suppose that its solution set is
nonempty and let JγA = 1

2 Id+1
2T . Then, the sequence (xn)n∈N, which is generated by Algo-

rithm 5.2, converges weakly to a point in the solution set of the problem.

Algorithm 5.2
1: Input: x0 ∈H , and the sequences (λn)n∈N, (γn)n∈N, and (ζn)n∈N according to Assump-

tion 4.1.
2: set: v0 = 0
3: for n = 0,1, . . . do
4: zn = xn + vn
5: pn =

1
2(Id+T )(xn + vn)

6: xn+1 = (1−λn)xn +λn(pn− vn)
7: choose vn+1 such that

‖vn+1‖2 ≤ ζn
λn(2−λn)(2−λn+1)

λn+1

∥∥∥pn− xn +
λn−1
2−λn

vn

∥∥∥2
(5.8)

8: end for
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Setting vn = 0 for all n ∈ N in Algorithm 5.2 results in

xn+1 = (1− λn
2 )xn +

λn
2 T (xn),

which is the standard Krasnosel’skiı̆–Mann iteration [5, Corollary 5.17].

6. A NOVEL INERTIAL PRIMAL–DUAL SSPLITTING ALGORITHM

In this section, we present a novel inertial primal–dual method to solve the problem (5.1) with
C = 0. We construct this algorithm from Algorithm 5.1 by considering a special structure for the
deviation vector. We preset the deviation vector direction at the n-th iteration to be aligned with
the momentum direction, i.e., vn = an(xn− xn−1,µn−µn−1), and use the bound on the norm of
deviations to compute an. Since this algorithm is an instance of Algorithm 5.1, its convergence
is guaranteed by Corollary 5.1.

Algorithm 6.1
1: Input: (x0,µ0) ∈H ×K , and the sequences (λn)n∈N and (ζn)n∈N as stated in Assump-

tion 4.1.
2: set: a0 = 0
3: for n = 0,1,2, . . . do

4:

[
x̂n
µ̂n

]
=

[
xn
µn

]
+an

[
xn− xn−1
µn−µn−1

]
5:

[
px,n
pµ,n

]
=

[
JτA (x̂n− τL∗µ̂n)

JσB−1 (µ̂n +σL(2px,n− x̂n))

]
6:

[
xn+1
µn+1

]
=

[
xn
µn

]
+λn

([
px,n
pµ,n

]
−
[

x̂n
µ̂n

])
7: choose an+1 such that

a2
n+1

∥∥∥∥[ xn+1− xn
µn+1−µn

]∥∥∥∥2

M
≤ ζn

λn(2−λn)(2−λn+1)
λn+1

∥∥∥∥∥
[

px,n− xn
pµ,n−µn

]
+ λn−1

2−λn
an

[
xn− xn−1
µn−µn−1

]∥∥∥∥∥
2

M

(6.1)

8: end for

Remark 6.1. Even though Algorithm 6.1 has similarities with translations of the algorithms of
[1, 2, 3, 9, 25] to a primal–dual framework, to the best of our knowledge, the former and the
latter cannot be derived from each other, and thus, are essentially different.

6.1. Efficient evaluation of the norm condition. In order to compute the bound on the coeffi-
cients an using (6.1), one needs to compute some M-induced norms, which involves evaluating
L and L∗. Depending on the complexity of evaluating L and L∗, these evaluations may be
computationally expensive. However, by scrutinizing Algorithm 6.1, it is observed that some of
the previous evaluations can be reused to keep the additional computational cost low compared
to the standard Chambolle–Pock algorithm. In what follows, we provide more details on how to
compute the required scaled norm of the vector quantities in a computationally efficient manner.

As seen in the line 7 of Algorithm 6.1, at each iteration one of each L and L∗ evaluations are
performed. Similar operations take place at each iteration of, e.g., the Chambolle–Pock algorithm.
However, in our algorithm, we have other operations involving evaluations of L and L∗. Those
are due to verification of the norm condition in line 8 of Algorithm 6.1. More specifically, since
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the kernel M is given by (5.5) for each evaluation of ‖·‖M, we have one more evaluation each of
L and L∗. This can lead to a substantially higher computational cost. However, except for the
first iteration, the extra L and L∗ evaluations can be computed from the computations which are
already available from previous iterations. That is possible due to the relations

Lx̂n = Lxn +bn(Lxn−Lxn−1),

L∗µ̂n = L∗µn +bn(L∗µn−L∗µn−1),

Lxn+1 = Lxn +λn(Lpx,n−Lx̂n),

L∗µn+1 = L∗µn +λn(L∗pµ,n−L∗µ̂n),

(6.2)

which are derived from the lines 5 and 7 of Algorithm 6.1. In the relations above, for n > 0, all
quantities to the right hand side are already computed and can be reused, except for Lpx,n and
L∗pµ,n that need to be computed via direct evaluation.

Table 1 provides the list of evaluations involving L and L∗ that we need to perform at the first
three iterations. It reveals that at the first iteration, we need to perform six different evaluations
involving L or L∗, of which four might be computationally heavy and two can be done cheaply.
After that, i.e. for n > 0, we only need to perform two such heavy evaluations per iteration;
namely, Lpx,n and L∗pµ,n. The rest of the L and L∗ evaluations can be done efficiently by
exploiting previously computed quantities and (6.2). This keeps the computational per-iteration
cost of our algorithm basically the same as that of the Chambolle–Pock algorithm.

n Expensive evaluations Cheap evaluations
0 Lx0, L∗µ0, Lpx,0, L∗pµ,0 Lx1, L∗µ1
1 Lpx,1, L∗pµ,1 Lx̂2, Lx2, L∗µ̂2, L∗µ2
2 Lpx,2, L∗pµ,2 Lx̂3, Lx3, L∗µ̂3, L∗µ3

TABLE 1. List of evaluations that involve L and L∗ for the first three iterations.
The second column shows direct and potentially expensive evaluations and the
third column shows evaluations that can be done cheaply via the relations in (6.2).

7. NUMERICAL EXPERIMENTS

We solve an l1-norm regularized SVM problem for classification of the form

minimize
x

f (Lx)+g(x), (7.1)

given a labeled training data set {θi,φi}N
i=1, where θi ∈ Rd and φi ∈ {−1,1} are training data

and labels, respectively, and with

f (Lx) = 1T max(0,1−Lx) , g(x) = ξ‖ω‖1, L =

φ1θ T
1 φ1

...
...

φNθ T
N φN

 ,
where 0 = (0, . . . ,0)T , 1 = (1, . . . ,1)T , x = (ω,b) is the decision variable with b∈R and ω ∈Rd ,
max(·, ·) acts element-wise, and ξ ≥ 0 is the regularization parameter.

A point x? is a solution to (7.1) if and only if it satisfies

0 ∈ L∗∂ f (Lx?)+∂g(x?).
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This holds, since f and g are proper, closed, and convex functions with full domains, and thus,
∂ f and ∂g are maximally monotone and L is a linear operator [5, Proposition 16.42]. This
monotone inclusion problem is an instance of (5.1) with A = ∂g, B = ∂ f , and C = 0. As in
Section 5.1, we transform the problem into a primal–dual problem and solve it with primal–dual
algorithms.

We compare our inertial primal–dual method, Algorithm 6.1, to the standard Chambolle–Pock
(CP) [7], and to the inertial primal–dual algorithm of Lorenz–Pock (LP) [25]. In all experiments,
we set the primal and the dual step-sizes to τ = σ = 0.99/‖L‖, the regularization parameter of
problem (7.1) to ξ = 0.1, and ζn is, for each n ∈ N, sampled from a uniform distribution on
[0,1− 10−6]. The experiments are done using the liver disorders data-set [8] which has 145
samples and 5 features. The solution (x?,µ?) is found by running the standard Chambolle–Pock
algorithm until the residual gets smaller than 10−15.

For the l1-norm regularized SVM problem, since f and g are piece-wise linear, the resulting
(primal–dual) monotone operator

A =

[
∂g L∗

−L ∂ f ∗

]
is metrically subregular at any point in the solution set of the problem for 0, see [22, Lemma
IV.4]. It therefore follows from Theorem 4.2 that the algorithm exhibits local linear convergence,
see Fig. 1 and Fig. 3. The figures reveal that our method needs about half the number of iterations
to reach the same accuracy as the other two methods. This improvement comes at essentially no
extra computational cost.

FIGURE 1. Distance to the solution vs. iteration number for the l1-norm reg-
ularized SVM (7.1) with ξ = 0.1, on the liver disorders data-set [8] with 145
samples and 5 features. Solved using Chambolle–Pock primal–dual algorithm
(CP), Lorenz–Pock inertial primal–dual method (LP), and Algorithm 6.1 with
λ = 1.0. The primal and dual step-sizes are set to τ = σ = 0.99/‖L‖ for all
algorithms.

Figure 2 shows the first one thousand scaling factors an of Algorithm 6.1 for the same
implementation as in Fig. 1. The correction factor attains mostly values close to one.

In Fig. 3, the impact of the relaxation parameter λ is investigated. In the sense of convergence
rate, it interestingly seems that λ = 1.0 yields the best performance in this example.
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;

FIGURE 2. Scaling factor an of Algorithm 6.1 in the experiment shown in Fig. 1
vs. iteration number for the first 1000 iterations.

FIGURE 3. Distance to the solution vs. iteration number for the l1-norm reg-
ularized SVM (7.1) with ξ = 0.1, on the liver disorders data-set [8] with 145
samples and 5 features. Solved using Algorithm 6.1 for some values of λ with
τ = σ = 0.99/‖L‖.
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