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Abstract. In this paper, we present the fractional backward differentiation formulas for the numerical
solutions of two-term fractional differential Sylvester matrix equations in the Caputo derivative sense,
which includes the celebrated two-term fractional differential Lyapunov matrix equations. We give two
applications in a two-term time-fractional telegraph equation with illustrative examples. In addition, we
also consider two examples to illustrate the effectiveness of the proposed approaches.
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1. INTRODUCTION

The fractional derivatives (FD), which acted as a generalization of classical derivatives and
dated back to the 17th century, recently gained great interest due to their wide real-world appli-
cations, such as, psychology [2], epidemiology [27], biology [6], engineering [18, 20], econom-
ics [16], and so on [5, 26, 31]. There are several definitions for the FD. Two of them are the Ca-
puto and Riemann-Liouville fractional operators [2, 3, 6, 8, 15, 16, 18, 20] which are employed
in this work. The fractional differential Sylvester matrix equation (FSE) plays an important role
in theory control, filter design theory, and model reduction; see, e.g., [1, 21, 22, 24, 28, 29, 30].
The methods of backward differentiation formulas (BDF) gained popularity due to their large
absolute stability regions which made them competitive for the treatment of stiff problems [4].
In [9, 14], some authors proposed a method of fractional backward differentiation formu-
las (FBDF) for solving FDE with delay. In [23], the author proposed the FBDF method for
solving the two-term FSE; see [23] for more details.

In this paper, we present the FBDF method order r ∈ {2,3} to solve two-term FSE’s and two-
term fractional differential Lyapunov matrix equations (FLE’s). Let α,β ∈R+ and nα ,nβ ∈N∗
such that nα−1 < α < nα and nβ −1 < β < nβ . We consider the two-term FSE on the interval
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[t0,T ] of the form {
P(α)(t)+P(β )(t) = A(t)P(t)+P(t)C(t)+Q(t),

P(k)(t0) = Pk, k ∈
{

0,1, . . . ,max
{

nβ ,nα

}
−1
}
,

(1.1)

where C(t) ∈ Rp×p, A(t) ∈ Rn×n, Q(t) ∈ Rn×p, P(t) ∈ Rn×p is unknown matrix function, and
P(α)(t) and P(β )(t) are the Caputo derivative (CD) of the matrix function P(t) with order α

and β , respectively. In particular,

• If α = 1 and β = 1, then the two-term FSE is called the differential Sylvester matrix
equation (see [21]).
• If C(t) = AT (t) (AT denotes the transpose of the matrix A), then the two-term FSE is

called the two-term FLE.

This paper is organized in this form. In Section 2, we present basic concepts, which are
needed in the following sections. We discuss the FBDF method order r for solving the two-
term FSE in Section 3. In Sections 4 and 5, we develop the FBDF method order 2 and 3,
respectively, for solving the two-term FSE’s. In Section 6, we study the error analysis and
the convergence. Finally, Section 7 is devoted to numerical experiments for demonstrating the
effectiveness of the proposed methods.

2. BASIC CONCEPTS

This section provides some important definitions that are useful in obtaining our findings.
Let β ∈ R+ and nβ ∈ N∗ such that nβ − 1 < β < nβ . The Riemann-Liouville derivative

(R-LD) and Caputo derivative of order β for function P(t) are defined by

RL
t0 Dβ

t P(t) :=
1

Γ(nβ −β )

(
d
dt

)nβ
∫ t

t0

P(τ)

(t− τ)β−nβ+1 dτ,

and

P(β )(t) :=
1

Γ(nβ −β )

∫ t

t0

P(nβ )(η)

(t−η)β−nβ+1 dη ,

respectively, where the Euler’s gamma function Γ]0,+∞[7−→ R is defined by (see [19]),

Γ(x) :=
∫

∞

0
e−ttx−1 dt.

Lemma 2.1. [11] The relation between CD and the R-LD of function P(t) is

P(β )(t) = RL
t0 Dβ

t

(
P(t)−

nβ−1

∑
k=0

P(k)(t0)
k!

(t− t0)k
)
, (2.1)

where nβ −1 < β < nβ with nβ ∈ N∗.
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3. FBDF METHOD ORDER r

In this section, we present the FBDF method order r for solving the two-term FSE. From the
relation (2.1) at t = t j, we have

P(α)(t j) =
RL
t0 Dα

t P(t j)− RL
t0 Dα

t

(nα−1

∑
k=0

P(k)(t0)
k!

(t j− t0)k
)

= RL
t0 Dα

t P(t j)−
nα−1

∑
k=0

P(k)(t0)
Γ(k−α +1)

(t j− t0)k−α ,

where N ∈ N∗, step size h = T−t0
N , and

P(β )(t j) =
RL
t0 Dβ

t P(t j)−
nβ−1

∑
k=0

P(k)(t0)
Γ(k−β +1)

(t j− t0)k−β ,

with t j = t0 + jh for j = 0,1, . . . ,N. From (1.1), we obtain the matrix equation

RL
t0 Dα

t P(t j)−
nα−1

∑
k=0

P(k)(t0)
Γ(k−α +1)

( jh)k−α +RL
t0 Dβ

t P(t j)

−
nβ−1

∑
k=0

P(k)(t0)
Γ(k−β +1)

( jh)k−β = A(t j)P(t j)+P(t j)C(t j)+Q(t j).

The Grünwald approximation ([19]) of RL
t0 Dα

t P
(
t j
)

and RL
t0 Dβ

t P
(
t j
)

at t j are

RL
t0 Dα

t P
(
t j
)
= h−α

j

∑
k=0

ϖ
r
k,αP

(
t j− kh

)
,

RL
t0 Dβ

t P
(
t j
)
= h−β

j

∑
k=0

ϖ
r
k,β P

(
t j− kh

)
,

where ϖ r
k,· is determined by the generating function W r

β
for FBDF method order r

W r
β
(ξ ) =

∞

∑
k=0

ϖ
r
k,β ξ

k. (3.1)

The generating functions for FBDF of order r ∈ {2,3} are given below ([14])

W 2
β
(ξ ) :=

(
3
2
−2ξ +

1
2

ξ
2
)β

, (3.2)

W 3
β
(ξ ) :=

(
6
11
−3ξ +

3
2

ξ
2− 1

3
ξ

3
)β

. (3.3)
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It follows that

h−α

j

∑
k=0

ϖ
r
k,αP

(
t j− kh

)
−

nα−1

∑
m=0

P(m)(t0)
Γ(m−α +1)

( jh)m−α

+h−β

j

∑
k=0

ϖ
r
k,β P

(
t j− kh

)
−

nβ−1

∑
m=0

P(m)(t0)
Γ(m−β +1)

( jh)m−β

= A(t j)P(t j)+P(t j)C(t j)+Q(t j).

Let n1 := min{nα ,nβ} and n2 := max{nα ,nβ}. Thus

h−α

j

∑
k=0

ϖ
r
k,αP

(
t j− kh

)
−

n1−1

∑
m=0

(
( jh)m−α

Γ(m−α +1)
+

( jh)m−β

Γ(m−β +1)
)P(m)(t0)

+h−β

j

∑
k=0

ϖ
r
k,β P

(
t j− kh

)
−

n2−1

∑
m=n1

( jh)m−α

Γ(m−α∗+1)
P(m)(t0)

= A(t j)P(t j)+P(t j)C(t j)+Q(t j),

where α∗ = α and β whenever n2 = nα and n2 = nβ , respectively. Thus

h−α

j

∑
k=0

ϖ
r
k,αPj−k +h−β

j

∑
k=0

ϖ
r
k,β Pj−k−

n1−1

∑
m=0

b j,mP(m)(t0)−
n2−1

∑
m=n1

c j,mP(m)(t0)

= A(t j)P(t j)+P(t j)C(t j)+Q(t j), j = i+1, i+2, . . . ,

where Pj−k = P(t j− kh) and

b j,m :=
( jh)m−α

Γ(m−α +1)
+

( jh)m−β

Γ(m−β +1)
, c j,m :=

( jh)m−α

Γ(m−α∗+1)
.

It follows that

(h−α
ϖ

r
0,α +h−β

ϖ
r
0,β )Pi+1 +

i+1

∑
k=1

(h−α
ϖ

r
k,α +h−β

ϖ
r
k,β )Pi+1−k

=
n1−1

∑
m=0

bi+1,mP(m)(t0)+
n2−1

∑
m=n1

ci+1,mP(m)(t0)

+A(ti+1)P(ti+1)+P(ti+1)C(ti+1)+Q(ti+1), (3.4)

where ϖ r
k,· is the coefficient of FBDF with order r. For calculating ϖ r

k,· in (3.4), we need the
following Lemma.

Lemma 3.1. [34] Let ϕ(z) := 1+∑
∞
k=1 akzk. Then (ϕ(z))β =∑

∞
k=0 ω

(β )
k zk, where the coefficients

ω
(β )
k are recursively evaluated by

ω
(β )
0 = 1 ω

(β )
k =

k

∑
j=1

(
(β +1) j

k
−1
)

a jω
(β )
k− j.

Next, we describe the steps for calculating the coefficients ϖ r
k,·.
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Algorithm 1 Calculation of the coefficients ϖ r
k,..

(1) Let W r
β
(z) = dβ (ϕ(z))β .

(2) From Lemma 3.1, we obtain

W r
β
(z) = dβ

(
∞

∑
k=0

ω
(β )
k zk

)
.

(3) ϖ r
k,β = dβ ω

(β )
k , (by equation (3.1)).

4. FBDF METHOD ORDER 2

In this section, we apply the FBDF method of second order to solve the two-term FSE. Let
the approximation Pi+1 of P(ti+1) obtained at step i+ 1 by FBDF method order 2. The next
result shows that Pi+1 is the solution to a Sylvester matrix equation (SME).

Theorem 4.1. Let α,β ∈R+ and nα ,nβ ∈N∗ such that nα−1 < α < nα and nβ −1 < β < nβ .
Let n1 := min{nα ,nβ} and n2 := max{nα ,nβ}. Let P(t) be the solution to the FSE (1.1). Then
the approximation Pi+1 of P(ti+1) satisfies the following SME:

Mi+1Pi+1 +Pi+1Li+1 +Ei+1 = 0, (4.1)

where

Mi+1 = A(ti+1)−
1
2

(
h−α

ϖ
2
0,α +h−β

ϖ
2
0,β

)
In×n,

Li+1 =C(ti+1)−
1
2

(
h−α

ϖ
2
0,α +h−β

ϖ
2
0,β

)
Ip×p, (4.2)

with In×n being n×n the identity matrix and

Ei+1 = Q(ti+1)−
i+1

∑
k=1

(h−α
ϖ

2
k,α +h−β

ϖ
2
k,β )Pi+1−k

+
n1−1

∑
m=0

bi+1,mP(m)(t0)+
n2−1

∑
m=n1

ci+1,mP(m)(t0), (4.3)

where ϖ r
k,α and ϖ r

k,β are the coefficients of FBDF with order r.

Proof. At each ti+1, let Pi+1 be of the approximation of P(ti+1), and FBDF with order 2 be
defined as(

h−α
ϖ

r
0,α +h−β

ϖ
r
0,β

)
Pi+1 +

i+1

∑
k=1

(
h−α

ϖ
r
k,α +h−β

ϖ
r
k,β

)
Pi+1−k

=
n1−1

∑
m=0

bi+1,mP(m)(t0)+
n2−1

∑
m=n1

ci+1,mP(m)(t0)

+A(ti+1)P(ti+1)+P(ti+1)C(ti+1)+Q(ti+1).



142 L. SADEK

Therefore (
A(ti+1)−

1
2
(h−α

ϖ
2
0,α +h−β

ϖ
2
0,β )In×n

)
Pi+1 +Pi+1

(
C(ti+1)

− 1
2
(h−α

ϖ
2
0,α +h−β

ϖ
2
0,β )Ip×p

)
+Q(ti+1)

−
i+1

∑
k=1

(
h−α

ϖ
2
k,α +h−β

ϖ
2
k,β

)
Pi+1−k

+
n1−1

∑
m=0

bi+1,mP(m)(t0)+
n2−1

∑
m=n1

ci+1,mP(m)(t0) = 0.

We find the following SME Mi+1Pi+1 +Pi+1Li+1 +Ei+1 = 0. �

We can directly compute the SME (4.1) by using the well-known function sylvester in
MATLAB. Then, we give the Algorithm 1 of ϖ2

k in (4.2) and (4.3), we can give an explicit
representation of the coefficients of FBDF method order 2 in next Lemma 4.1.

Lemma 4.1. The coefficients of the FBDF method order 2 are obtained explicitly

ϖ
2
k,β =

(
3
2

)β

ω
(β )
k , k = 0,1, . . . ,

where ω
(β )
0 = 1, ω

(β )
1 =−4

3β , and

ω
(β )
k =

4
3

(
1− β +1

k

)
ω

(β )
k−1 +

1
3

(
2(1+β )

k
−1
)

ω
(β )
k−2, k = 2,3, . . . .

Proof. From (3.2) and Algorithm 1, we can give the coefficients of the FBDF method order 2
immediately. �

Corollary 4.1. Let α,β ∈R+ and nα ,nβ ∈N∗ be such that nα−1 < α < nα and nβ −1 < β <
nβ . Let n1 := min{nα ,nβ} and n2 := max{nα ,nβ}. Let P(t) be the solution to the FLE:{

P(α)(t)+P(β )(t) = A(t)P(t)+P(t)AT (t)+Q(t),

P(k)(t0) = Pk, k ∈ {0,1, . . . ,n2−1}.
Then the approximation Pi+1 of P(ti+1) satisfies the following Lyapunov matrix equation (LME):

Mi+1Pi+1 +Pi+1MT
i+1 +Ei+1 = 0, (4.4)

where
Mi+1 = A(ti+1)−

1
2

(
h−α

ϖ
2
0,α +h−β

ϖ
2
0,β

)
In×n,

and

Ei+1 = Q(ti+1)−
i+1

∑
k=1

(
h−α

ϖ
2
k,α +h−β

ϖ
2
k,β

)
Pi+1−k

+
n1−1

∑
m=0

bi+1,mP(m)(t0)+
n2−1

∑
m=n1

ci+1,mP(m)(t0).

Note Theorem 4.1 for C(t) = AT (t). We can directly compute the LME (4.4) by using the
well-known function lyap in MATLAB.
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5. FBDF METHOD ORDER 3

In this section, we apply the FBDF method order 3 to solve the FSE. Let the approximation
Pi+1 of P(ti+1) be obtained at step i+1. Theorem 5.1 shows that the matrix Pi+1 is the solution
of a SME.

Theorem 5.1. Let α,β ∈R+ and nα ,nβ ∈N∗ be such that nα−1 < α < nα and nβ −1 < β <
nβ . Let n1 := min{nα ,nβ} and n2 := max{nα ,nβ}. Let P(t) be the solution to the FSE (1.1).
Then the approximation Pi+1 of P(ti+1) satisfies the following SME:

Mi+1Pi+1 +Pi+1Li+1 +Ei+1 = 0, (5.1)

where 

Mi+1 = A(ti+1)−
1
2

(
h−α

ϖ
2
0,α +h−β

ϖ
2
0,β

)
In×n,

Li+1 =C(ti+1)−
1
2

(
h−α

ϖ
2
0,α +h−β

ϖ
2
0,β

)
Ip×p,

Ei+1 = Q(ti+1)−
i+1

∑
k=1

(
h−α

ϖ
2
k,α +h−β

ϖ
2
k,β

)
Pi+1−k

+
n1−1

∑
m=0

bi+1,mP(m)(t0)+
n2−1

∑
m=n1

ci+1,mP(m)(t0),

(5.2)

with the coefficients of FBDF method order 3 being obtained explicitly

ϖ
3
k,γ =

(
11
6

)γ

ω
(γ)
k , k = 0,1, . . . , (5.3)

where 

ω
(γ)
0 = 1,

ω
(γ)
1 =−18

11γ,

ω
(γ)
2 =

9
11

γ +

(
18
11

)2
γ(γ−1)

2
,

ω
(γ)
k =

18
11

(
1− γ +1

k

)
ω

(γ)
k−1 +

9
11

(
2(1+ γ)

k
−1
)

ω
(γ)
k−2

+
2

11

(
1− 3(γ +1)

k

)
ω

(γ)
k−3, k = 3,4, . . . ,

(5.4)

with γ ∈ {α,β}.

Proof. In order to prove (5.1), we follow the proof of (4.1) in Theorem 4.1. For the coeffi-
cients of FBDF method order 3 in (5.3) and (5.4), the generating function of FBDF method
order 3 is (3.3). Applying Algorithm 1, we can give an explicit representation of the coef-
ficients of FBDF method order 3. Hence, the coefficients of the FBDF method order 3 are
obtained explicitly by

ϖ
3
k,γ =

(
11
6

)γ

ω
(γ)
k , k = 0,1, . . . ,
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where ω
(γ)
0 = 1, ω

(γ)
1 =−18

11γ ,

ω
(γ)
2 =

9
11

γ +

(
18
11

)2
γ(γ−1)

2
,

ω
(γ)
k =

18
11

(
1− γ +1

k

)
ω

(γ)
k−1 +

9
11

(
2(1+ γ)

k
−1
)

ω
(γ)
k−2

+
2

11

(
1− 3(γ +1)

k

)
ω

(γ)
k−3,

for k = 3,4, . . . . �

Corollary 5.1. Let α,β ∈R+ and nα ,nβ ∈N∗ be such that nα−1 < α < nα and nβ −1 < β <
nβ . Let n1 := min{nα ,nβ} and n2 := max{nα ,nβ}. Let P(t) be the solution to the FLE. Then
the approximation Pi+1 of P(ti+1) satisfies the following LME:

Mi+1Pi+1 +Pi+1MT
i+1 +Ei+1 = 0, (5.5)

where
Mi+1 = A(ti+1)−

1
2

(
h−α

ϖ
2
0,α +h−β

ϖ
2
0,β

)
In×n,

and

Ei+1 = Q(ti+1)−
i+1

∑
k=1

(
h−α

ϖ
2
k,α +h−β

ϖ
2
k,β

)
Pi+1−k

+
n1−1

∑
m=0

bi+1,mP(m)(t0)+
n2−1

∑
m=n1

ci+1,mP(m)(t0).

From the Theorem 5.1 with C(t) = AT (t), we have the desired result immediately.
Next, we summarize the steps of the FBDF method order r for solving the two-term FSE.

Algorithm 2 The FBDF method order r for solving the two-term FSE

Inputs: A(t), C(t), Q(t), P(k) for k = 0, . . . ,n2−1, and t0,T .
(1) Choose h.
(2) N = T−t0

h .
(3) For i = 1 : N, compute:
(4) ϖ r

k,α and ϖ r
k,β ,

(5) Mi+1 = A(ti+1)− 1
2

(
h−αϖ2

0,α +h−β ϖ2
0,β

)
In×n,

(6) Li+1 = A(ti+1)− 1
2

(
h−αϖ2

0,α +h−β ϖ2
0,β

)
Ip×p,

(7)

Ei+1 = Q(ti+1)−
i+1

∑
k=1

(
h−α

ϖ
2
k,α +h−β

ϖ
2
k,β

)
Pi+1−k

+
n1−1

∑
m=0

bi+1,mP(m)(t0)+
n2−1

∑
m=n1

ci+1,mP(m)(t0).

(8) Solve the SME Mi+1Pi+1 +Pi+1Li+1 +Ei+1 = 0.
(9) End for i.



THE METHODS OF FRACTIONAL BACKWARD DIFFERENTIATION FORMULAS 145

Next, we summarize the steps of the FBDF method order r for solving the two-term FLE.

Algorithm 3 The FBDF method order r to solve the two-term FLE
Inputs: A(t), Q(t), P(k) for k = 0, . . . ,n2−1, and t0,T .

(1) Choose h.
(2) N = T−t0

h .
(3) For i = 1 : N, compute:
(4) ϖ r

k,α and ϖ r
k,β ,

(5) Mi+1 = A(ti+1)− 1
2

(
h−αϖ2

0,α +h−β ϖ2
0,β

)
In×n,

(6)

Ei+1 = Q(ti+1)−
i+1

∑
k=1

(
h−α

ϖ
2
k,α +h−β

ϖ
2
k,β

)
Pi+1−k

+
n1−1

∑
m=0

bi+1,mP(m)(t0)+
n2−1

∑
m=n1

ci+1,mP(m)(t0).

(7) Solve the LME Mi+1Pi+1 +Pi+1MT
i+1 +Ei+1 = 0.

(8) End for i.

6. THE ERROR ANALYSIS

In this section, we present the error analysis of the error analysis for FBDF method order r.
We consider the error e j =P(t j)−Pj between the exact solution P(t j) and the numerical solution
Pj.

Lemma 6.1. [12, 13, 14] Let β ∈ R+. Then

h−β

j

∑
k=0

ϖ
r
k P(t j−k)−

nβ−1

∑
m=0

b j,mP(m)(t0)−P(β )(t) = O(hr) , (6.1)

and ϖ r
k = O( j−β−1).

Lemma 6.2. [12] Let M1,M2 > 0 and {λi} satisfy

|λl| ≤M1 +M2h
l−1

∑
i=0
|λi| , l = k,k+1, . . . , lh≤ T.

Then |λl| ≤ eM1T (M1 +M2khδ ), for l ≥ k, lh≤ T , where δ = max{|λ0| , |λ1| , . . . , |λk−1|}.

Lemma 6.3. Let the matrix function F, where F(P) = A(t)P+PC(t)+Q(t). Then

‖F(P1)−F(P2)‖ ≤ L‖P1−P2‖, ∀P1,P2 ∈ Rn×p, (6.2)

where

M = max
ς∈[t0,T ]

‖A(ς)‖+ max
ς∈[t0,T ]

‖C(ς)‖.
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Proof. Letting P1,P2 ∈ Rn×p, we have

F(P1)−F(P2) = A(t)P1 +P1C(t)+Q(t)− (A(t)P2 +P2C(t)+Q(t))

= A(t)(P1−P2)+(P1−P2)C(t),

so

‖F(P1)−F(P2)‖ ≤ max
η∈[t0,T ]

‖A(η)‖‖P1−P2‖+ max
η∈[t0,T ]

‖C(η)‖‖P1−P2‖

≤
(

max
η∈[t0,T ]

‖A(η)‖+ max
η∈[t0,T ]

‖C(η)‖
)
‖P1−P2‖.

�

Theorem 6.1. Let α,β ∈R+ and nα ,nβ ∈N∗ be such that nα−1 < α < nα and nβ −1 < β <
nβ . Let the following two-term FSE be given{

P(α)(t)+P(β )(t) = A(t)P(t)+P(t)C(t)+Q(t),

P(k)(t0) = Pk, k ∈
{

0,1, . . . ,max
{

nβ ,nα

}
−1
}
.

(6.3)

Then, the FBDF method order r is convergent, and ‖e j‖= O(hr).

Proof. From (6.3) and (6.1) in Lemma 6.1, we have

h−α

j

∑
k=0

ϖ
r
k,αP(t j−k)+h−β

j

∑
k=0

ϖ
r
k,β P(t j−k)−

n1−1

∑
m=0

bi+1,mP(m)(t0)

−
n2−1

∑
m=n1

ci+1,mP(m)(t0)−C jhr = F(P(t j)).

In view of (3.4), we obtain

h−α

j

∑
k=0

ϖ
r
k,αPj−k +h−β

j

∑
k=0

ϖ
r
k,β Pj−k−

n1−1

∑
m=0

bi+1,mP(m)(t0)

−
n2−1

∑
m=n1

ci+1,mP(m)(t0) = F(Pj),

for j = i+1, i+2, . . . ,. Observe that

b je0−h−α

j

∑
k=0

ϖ
r
k,αe j−k−h−β

j

∑
k=0

ϖ
r
k,β e j−k +C jhr =−(F(P(t j))−F(Pj)).

It follows that

b je0−h−α
ϖ

r
0,αe j−h−β

ϖ
r
0,β e j−h−α

ϖ
r
j,αe0−h−β

ϖ
r
j,β e0

−h−α

j−1

∑
k=1

ϖ
r
k,αe j−k−h−β

j−1

∑
k=1

ϖ
r
k,β e j−k +C jhr

=−(F(P(t j))−F(Pj)).
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Hence, we have (
h−α

ϖ
r
0,α +h−β

ϖ
r
0,β

)
e j =−

(
h−α

ϖ
r
j,α +h−β

ϖ
r
j,β −b j

)
e0

−
j−1

∑
k=1

(
h−α

ϖ
r
k,α +h−β

ϖ
r
k,β

)
e j−k

+C jhr +
(
F(P(t j))−F(Pj)

)
and (

h−α
ϖ

r
0,α +h−β

ϖ
r
0,β

)
‖e j‖ ≤

∣∣∣h−α
ϖ

r
j,α +h−β

ϖ
r
j,β −b j

∣∣∣‖e0‖

+
j−1

∑
k=1

(
h−α

ϖ
r
k,α +h−β

ϖ
r
k,β

)∥∥e j−k
∥∥

+‖C j‖hr +‖F(P(t j))−F(Pj)‖.
Letting ‖C j‖ ≤ K for any j and using inequality (6.2), we have(

h−α
ϖ

r
0,α +h−β

ϖ
r
0,β

)
‖e j‖ ≤

∣∣∣h−α
ϖ

r
j,α +h−β

ϖ
r
j,β −b j

∣∣∣‖e0‖

+
j−1

∑
k=1

(
h−α

ϖ
r
k,α +h−β

ϖ
r
k,β

)
‖e j−k‖+Khr +M‖e j‖.

Now, we estimate e j. Observe that

‖e j‖ ≤
Khr

h−αϖ r
0,α +h−β ϖ r

0,β −M
+

j−1

∑
k=1

(
h−αϖ r

k,α +h−β ϖ r
k,β

)
h−αϖ r

0,α +h−β ϖ r
0,β −M

‖e j−k‖

+

∣∣∣h−αϖ r
j,α +h−β ϖ r

j,β −b j

∣∣∣
h−αϖ r

0,α +h−β ϖ r
0,β −M

‖e0‖.

It follows that

‖e j‖ ≤
Khr

h−αϖ r
0,α +h−β ϖ r

0,β −M
+

j−1

∑
k=0

ρk‖e j−k‖,

where

ρk = max


(

h−αϖ r
k,α +h−β ϖ r

k,β

)
h−αϖ r

0,α +h−β ϖ r
0,β −M

,

∣∣∣h−αϖ r
j,α +h−β ϖ r

j,β −b j

∣∣∣
h−αϖ r

0,α +h−β ϖ r
0,β −M

 ,

Thus ‖e j‖ ≤ K̂hr +∑
j−1
k=0 ρk‖e j−k‖. Using Lemma 6.2, we can prove that e j = O(hr). �

7. NUMERICAL ILLUSTRATIONS

In this section, four examples are considered ([7, 10, 17, 32, 33]) to illustrate the effectiveness
of the approaches using MATLAB software.

Example 7.1. Consider the following two-term FSE:{
P(α)(t)+P(β )(t) = A(t)P(t)+P(t)C(t)+Q(t), α,β ∈]0,1],
P(0) = P0,

(7.1)
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with

A(t) =
(

0 −t
1 t

)
, C(t) =

(
0 0
t 1

)
, P0 =

(
0 0
0 0

)
,

and 

Q11(t) =
Γ(6β +1)

Γ(6β +1−α)
t6β−α − Γ(5)

Γ(5−α)
t4−α +

Γ(6β +1)
Γ(5β +1)

t5β

− Γ(5)
Γ(5−β )

t4−β − t3 + t2,

Q12(t) =
Γ(3)

Γ(3−α)
t2−α − Γ(2)

Γ(2−α)
t1−α +

Γ(3)
Γ(3−β )

t2−β

− Γ(2)
Γ(2−β )

t1−β + t3β+1− t4− t2 + t,

Q21(t) =−t6β +2t4 + t3β+1,

Q22(t) =
Γ(3β +1)

Γ(3β +1−α)
t3β−α − Γ(4)

Γ(4−α)
t3−α +

Γ(3β +1)
Γ(2β +1)

t2β

− Γ(4)
Γ(4−β )

t3−β ,−t3β+1− t3β + t4 + t3− t2 + t.

The exact solution of Eq. (7.1) is

P(t) =
(

t6β − t4 t2− t
0 t3β − t3

)
.

In Figure 1, the solutions P11(t), P21(t), and P22(t) of FSE (7.1) for α = 0.7 and β = 0.3 using
the FBDF method order 2 (FBDF2) and FBDF method order 3 (FBDF3) for t ∈ [0,1]. In Table 1,
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FIGURE 1. The numerical solutions P11(t), P21(t) and P22(t) of FSE (7.1) for
α = 0.7,β = 0.3 and h = 0.001.

a comparison of the absolute errors at some selected points with h = 0.001 are shown.
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TABLE 1. Absolute errors at some selected points with h = 0.001.

t FBDF2 method FBDF3 method

0.2 9.41381e−05 9.35997e−05
0.4 8.06323e−05 7.99089e−05
0.6 7.97658e−05 7.87751e−05
0.8 8.48741e−05 8.35704e−05
1.0 9.46905e−05 9.30039e−05

Example 7.2. Consider the two-term FLE:{
P(α)(t)+P(β )(t) = A(t)P(t)+P(t)AT (t)+Q(t), α ∈]0,1],β ∈]1,2],

P(0) = P(1)(0) = P0,
(7.2)

with A(t) =
(

0 −t
t 0

)
, P0 =

(
0 0
0 0

)
, and

Q(t) =

(
2

Γ(3−α)t
2−α + 2

Γ(3−β )t
2−β −t4− t3

−t3− t4 − 6
Γ(4−α)t

3−α − 6
Γ(4−β )t

3−β

)
.

The exact solution of Eq. (7.2) is

P(t) =
(

t2 0
0 −t3

)
.

Figure 2 shows the solutions P11(t) and P22(t) by using methods of FBDF2, FBDF3 and exact
solution in functions for t ∈ [0,1], whenever α = 0.7 and β = 1.5. In Table 2, we show a
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FIGURE 2. 2D plots of solution P11(t) and P22(t) vs t with α = 0.7 and β = 1.5
and h = 0.001.

comparison of the absolute errors at some selected points for h = 0.001.
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TABLE 2. Absolute errors at some selected points for h = 0.001.

t FBDF2 method FBDF3 method

0.1 3.79945e−06 4.70783e−06
0.2 5.28709e−06 6.12612e−06
0.3 6.20277e−06 6.97825e−06
0.4 6.83201e−06 7.54641e−06
0.5 7.28863e−06 7.94300e−06
0.6 7.63194e−06 8.22669e−06
0.8 8.10886e−06 8.58514e−06
1.0 8.43033e−06 8.79147e−06

Example 7.3. Consider the following time-fractional telegraph equation:

∂ β v(x,y, t)
∂ tβ

+
∂ β−1v(x,y, t)

∂ tβ−1 + v(x,y, t)

= ∆v(x,y, t)+(
24t−β

Γ(5−β )
+

24t1−β

Γ(6−β )
)t4xy(1− x)(1− y)

+2x(1− x)t4 +2y(1− y)t4 + xy(1− x)(1− y)t4, (7.3)

with β ∈]1,2], the board conditions v(0,y, t)= v(1,y, t)= v(x,0, t)= v(x,1, t)= 0, and the initial
conditions

∂v(x,y,0)
∂ t

= v(x,y,0) = 0,

where (x,y) ∈ Ω := [0,1]× [0,1] and t ∈ [0,1]. The exact solution of Eq. (7.3) is v(x,y, t) =
xy(1− x)(1− y)t4. Let us discretize as follows: (xi,y j) = (ihΩ, jhΩ) for 1 ≤ i, j ≤ n with
hΩ = 1

n+1 . Let Pi j(t) = v(xi,y j, t). Using the central difference discretization defined by:

P(β )
i j (t)+P(β−1)

i j (t) =
P(i−1) j(t)−2Pi j(t)+P(i+1) j(t)

h2
Ω

+
Pi( j−1)(t)−2Pi j(t)+Pi( j+1)(t)

h2
Ω

−Pi j(t)+Qi j(t), (7.4)

where

Qi j(t) =

(
24t−β

Γ(5−β )
+

24t1−β

Γ(6−β )

)
t4xiy j(1− xi)(1− y j)

+2x(1− xi)t4 +2y j(1− y j)t4 + xiy j(1− xi)(1− y j)t4,

we obtain from system (7.4) that
P(β )(t)+P(β−1)(t) = AP(t)+P(t)C+Q(t), β ∈]1,2],

P(0) = P(1)(0) = P0,



THE METHODS OF FRACTIONAL BACKWARD DIFFERENTIATION FORMULAS 151

with

A = tridiag
(

1
h2

Ω

,
−2
h2

Ω

,
1

h2
Ω

)
∈ Rn×n, C = tridiag

(
1

h2
Ω

,
−2
h2

Ω

−1,
1

h2
Ω

)
∈ Rn×n,

and P0 = 0. In Figure 3, the solutions v for Equation (7.3) using the FBDF2 method, FBDF3
method and exact solution at t = 1 and in Figure 4, the solution P11(t) with β = 1.7,h = 0.01
and n = 200, we can observe that the solutions are identical. We compare the results obtained

(A) FBDF2 method (B) FBDF3 method (C) Exact solution

FIGURE 3. 3D plots of numerical and exact solutions at t = 1 with β = 1.7,
h = 0.01 and n = 200.
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FIGURE 4. 2D plot of numerical P11(t) and exact solutions for β = 1.7, h= 0.01
and n = 200.

from the FBDF2 method and FBDF3 method. In Table 3, we give the obtained runtimes in
seconds and the absolute error norms (Abs.error) at t = 1, which is the difference between the
exact solution and the approximated solution.
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TABLE 3. The absolute error norms at t = 1 and runtimes in seconds with h = 0.01 and β = 1.7.

FBDF2 method FBDF3 method

n CPU time Abs.error CPU time Abs.error

200 2.376019 6.1096e−04 1.736881 1.3292e−06
300 6.442860 9.1491e−04 4.575444 1.9905e−06
400 13.370125 0.0012 12.358612 2.6519e−06

Example 7.4. Consider the following time-fractional telegraph equation [17]:

∂ β v(x,y, t)
∂ tβ

+
∂ β−1v(x,y, t)

∂ tβ−1

= ∆v(x,y, t)+(
24t−β

Γ(5−β )

+
24t1−β

Γ(6−β )
)t4xy(1− x)(1− y)+2x(1− x)t4 +2y(1− y)t4, (7.5)

where (x,y) ∈ [0,1]× [0,1], t ∈ [0,1], β ∈]1,2], the board conditions

v(0,y, t) = v(1,y, t) = v(x,0, t) = v(x,1, t) = 0,

and the initial conditions
∂v(x,y,0)

∂ t
= v(x,y,0) = 0.

The exact solution of Eq. (7.5) is v(x,y, t) = xy(1− x)(1− y)t4. Let us discretize as follows:
(xi,y j) = (ihx, jhy) for 1 ≤ i, j ≤ n with hx = hy =

1
n+1 . Let Pi j(t) = v(xi,y j, t). Using the

central difference discretization defined by

P(β )
i j (t)+P(β−1)

i j (t) =
P(i−1) j(t)−2Pi j(t)+P(i+1) j(t)

h2
x

+
Pi( j−1)(t)−2Pi j(t)+Pi( j+1)(t)

h2
x

+Qi j(t), (7.6)

with

Qi j(t) = (
24t−β

Γ(5−β )
+

24t1−β

Γ(6−β )
)t4xiy j(1− xi)(1− y j)

+2x(1− xi)t4 +2y j(1− y j)t4 + xiy j(1− xi)(1− y j)t4,

we obtain from the system (7.6) that{
P(β )(t)+P(β−1)(t) = AP(t)+P(t)A+Q(t), β ∈]1,2],

P(0) = P(1)(0) = P0,

where A = 1
h2

x
tridiag(1,−2,1) ∈ Rn×n and P0 = 0. In Figure 5, the solutions v(x,y, t) for

Eq. (7.5) using new approaches and exact solution at t = 1 and in Figure 6, the solution P11(t)
with β = 1.7, h = 0.01 and n = 200, we can observe that the solutions are identical. We
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(A) FBDF2 method (B) FBDF3 method (C) Exact solution

FIGURE 5. 2D plots of numerical and exact solutions at t = 1 with β = 1.7,
h = 0.01 and n = 200.
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FIGURE 6. 2D plots of numerical and exact solution of P11(t) with β = 1.7,
h = 0.01 and n = 200.

compare the results obtained from the FBDF2 method and FBDF3 method. In Table 4, we give
the obtained runtimes in seconds and the absolute error norms (Abs.error) at t = 1, which is the
difference between the exact solution and the approximated solution. If the matrices A, C, and
Q are constants and large-scale, then Krylov subspaces methods are more efficient and fast; see,
e.g., [21, 25, 28, 29, 30].

CONCLUSION

In this paper, we presented the FBDF method of order 2 and 3 for solving the two-term FSEs
in the Caputo derivative sense of fractional order. We introduced some theoretical results about
convergence, and absolute error norms. We demonstrated the efficiency and accuracy of the
proposed method by applying it to four typical examples. It is found that the approximate
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TABLE 4. Numerical results of absolute error norms at t = 1 and runtimes in seconds for h = 0.01.

FBDF2 method FBDF3 method

n CPU time Abs.error CPU time Abs.error

200 2.350459 6.4614e−04 1.787854 1.2440e−06
300 7.439960 9.6760e−04 6.478860 1.8629e−06
400 12.736567 0.0013 9.232403 2.4819e−06

solutions produced by our methods are in complete agreement with the corresponding exact
solutions. Moreover, these approaches are applicable to other types of two-term fractional
differential matrix equations.
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