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Abstract. Hybrid stochastic differential equations (HSDEs) have wide range of real-world applications.
In this paper, we study a new kind of nonlinear delayed neutral stochastic differential equations with
Markovian switched noises (NHSDE-MSN). Under the assumption that this type of equations satisfies
the locally Lipschitz condition and general condition of monotonicity, the existence and uniqueness of
global solutions are established. Then, based on the Lyapunov function, M-matrix theory, stochastic
analysis techniques, and Barbalat lemma, taking into account the delay as a bounded function, different
decay stabilities of solutions are investigated. Finally, a numerical example is given to illustrate the utility
of the main results.
Keywords. Decay stability; Markovian switching; Neutral-type systems; Random delays; Switched
noises.
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1. INTRODUCTION

Stochastic differential equations have attracted the attention of numerous researchers from
various fields due to their usefulness in modeling phenomena in the real world. Many important
subclasses of stochastic differential equations have been extensively studied, especially hybrid
stochastic differential equations (HSDEs), which are useful in modeling systems from various
areas. Moreover, practical experiences have shown that even the subsystems of a hybrid system
are stable, and the stability of the switching system is not always guaranteed [1].

In several fields, such as industrial automation, distributed networks, chemical, control, pop-
ulation dynamics, finance, and thermodynamics, almost all the models existing in reality are
subject to randomness; see [2, 3, 4]. Researchers are interested in the study of these types
of systems with random commutations; see [5, 6, 7, 8]. In dynamical models, delay effects
are often formulated by means of external sources and/or nonlinear diffusion, perturbing the
natural evolution of related systems; see, e.g., [9, 10, 11, 12]. In [13], Zouine, Bouzahir, and
Imzegouan studied a nonlinear stochastic differential equation embodying Markovian jumps
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and Lévy noise, and it did not satisfy linear growth condition. Based on the Lyapunov func-
tional, they set some sufficient criteria to guarantee that stability depends on the factor of delay,
as asymptotic and H∞-stability in Lp. In [14], Xie and Zhang investigated nonlinear delayed
and Markovian switched stochastic differential equations when the delay’s derivative is strictly
less than 1. The authors cited some criteria for moment exponential stability and asymptotic
boundness. Recently, Zhand and Chen in [15] investigated the pth-moment and the almost sure
stability characterized by a general decay of solution, when the terms of equations are under
locally Lipschitz condition and the monotonicity condition, and when the time-varying delay
remains a bounded measurable function; see, e.g., [16, 17].

In some areas such as market fluctuations, the importance of Lévy noise could be on its
use in modelling the risk management and the option pricing purposes. Therefore, employing
Lévy noise is quite different than Gaussian noise [18]. Moreover, Lévy noise is suitable for
the model that counts the number of incoming phone calls in a period [19]. Over past few
decades, qualitative and quantitative properties of stochastic equations with Lévy noise were
extensively studied. In [20], for instance, Wan, Hu, and Chen investigated neutral delayed
stochastic differential equations with Lévy noise. More precisely, they established the existence
and uniqueness of solutions. They also showed the exponential and almost surely asymptotic
stabilities based on the works in [21, 22]. On the other hand, various new results were obtained
on the qualitative behaviors of solutions of certain integro-differential equations in [24, 25, 26,
27, 28, 29, 30] recently. Note that random switching, Gaussian noise, time-delays, and Lévy
noise are characters that disturb the equilibrium point stability of a dynamical system. So, we
can say that a system affected by all these parasites can be more representative of a real system.
In this work, we try to adapt the studied model to the phenomena which may not be affected
by any noises, but sometimes they can be affected by Gaussian noises like wind, strong heat....
And suddenly, they can also be affected by Levy noises like lightning. And other times, they
can be affected by both types of noise. For this reason, we created a random regulator that
adapts the model to the type of phenomena that we have discussed. Stimulated by the above
discussion, this work focuses on the study of a nonlinear delayed neutral hybrid system taking
into account that the model is in noise-free conditions, but it is suddenly influenced some time
by a Gaussian noise, some time by Lévy noise, and sometimes by both, in which, we consider
the random regulator subjected to a homogeneous Markov process allowing the system to vary
randomly, which is never treated in this way. The main points in this work are listed as follows:

• Existence and uniqueness of global solutions to the system is obtained.
• Based on Lyapunov’s method, Barbalat lemma, and some stochastic calculation tech-

niques, decay stability of moment and almost surely decay stability of nonlinear delayed
NHSDE-MSN are shown.
• The almost surely decay stability and in pth moment are established by using M-matrix

theory.

The rest of this paper is structured as follows. Backgrounds, description of the model, and
preliminaries which are used in the main results are introduced in Section 2. The main results
are introduced in Section 3 and are divided into three subsections. Subsection 3.1 contains the
proof of existence and uniqueness of solutions. Subsection 3.2 contains the proof of general
decay stability. Subsection 3.3 contains decay stability by M-matrix theory. Finally, Section 4
presents a numerical example illustrating our theoretical results.
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2. NOTATION AND PRELIMINARIES

Let Rn be the n-dimensional real Euclidean space with norm ‖ · ‖. Thus, for any vector
x = (x1,x2, ...,xn)

T in Rn, we present ‖x‖ =
√

∑
n
i=1 |xi|2. The complete probability space with

filtration {Ft}t≥0 which satisfies the usual conditions is (Ω,F ,{Ft}t≥0,P). E denotes the ex-
pectation operator and if S⊂Ω, and its indicator function is denoted by 1A. C([−ι ,0],Rn)(ι >
0) represents the family of all continuous Rn-valued functions φ on [−ι ,0] equipped with norm
‖φ‖= sup

−ι≤[≤0
|φ([)|, and, for a,b ∈ R, a∨b = max{a,b}.

The Ft-adapted m−dimensional Brownain motion on (Ω,F ,{Ft}t≥0,P) is denoted by w(t).
Let N(t,y) = Ñ(dt,dy)+π(dy)dt be a Ft-adapted Poisson process on [0,+∞)×Rn with char-
acteristic measure π(dy) satisfies π(Y ) < ∞, where Y ⊂ Rn, and Ñ(t,y) is the compensator
measure satisfies.

Let {,ρ(t),℘(t), t ≥ 0} be two Markov chains on (Ω,F ,{Ft}t≥0,P), with values in S2 ={
1,2, ...,N

}
and S1 =

{
1,2,3,4

}
, respectively. Their generators are Γ = (γi j)N×N and Φ =

(ϕ`ς )4×4 given as follows

P{ρ(t +∆) = j|ρ(t) = i}=

{
γi j∆+o(∆), if i 6= j,
1+ γii∆+o(∆), if i = j,

P{℘(t +∆) = ς |℘(t) = `}=

{
ϕ`ς ∆+o(∆), if ` 6= ς ,

1+ϕ``∆+o(∆), if `= ς ,

where γi j ≥ 0 is the transition rate from i to j for any i 6= j, and γii = − ∑
j 6=i

γi j. ϕ`ς has the

same meaning and ∆ > 0. We further assume in this paper that ρ(t),℘(t),w(t), and N(t,y) are
independent. Let h̄2(t) = δ1(t)δ2(t) and h̄3(t) = δ1(t)δ3(t), with

δ1(t) =
(4−℘(t))℘(t)−1

(℘(t)−1)3−℘(t)+(3−℘(t))℘(t)−1
,

δ2(t) = (℘(t)−1)3−℘(t),

δ3(t) = (2−℘(t))2.

Now, we consider the following n-dimensional nonlinear delayed hybrid stochastic system
with switched noises on t ≥ 0

d
[
u(t)−D

(
u(t−σt,ρ(t)),ρ(t)

)]
= f
(
t,u(t),u(t−σt,ρ(t)),ρ(t)

)
dt

+ h̄2(t)g
(
t,u(t),u(t−σt,ρ(t)),ρ(t)

)
dw(t)

+ h̄3(t)
∫

Y
h
(
t,u(t),u(t−σt,ρ(t)),y,ρ(t)

)
N(dt,dy), (2.1)

where u(t) =
(
u1(t),u2(t), ...,un(t)

)
∈ Rn is the state vector with {u([) : −ι ≤ [ ≤ 0} = ξ ∈

C([−ι ,0],Rn), and ℘(0) =℘0 ∈ S1 and ρ(0) = ρ0 ∈ S2 are the initial value. The time delay
σ : R+ −→ [0, ι ] is a bounded function, the functions: D : Rn× S2 → Rn is the neutral item,
f : R+×Rn×Rn×S2→ Rn is the drift term vector, g : R+×Rn×Rn×S2→ Rn×m is the dif-
fusion term matrix, and h : R+×Rn×Rn×Y ×S2→ Rn is the jump term vector. They are all
assumed Borel measurable functions. An obvious and simple checking gives us the following
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different cases:
If ℘(t) = 1, then, h̄2(t) = 0 and h̄3(t) = 1,
if ℘(t) = 2, then, h̄2(t) = 1 and h̄3(t) = 0,
if ℘(t) = 3, then, h̄2(t) = 1 and h̄3(t) = 1,
and if ℘(t) = 4, then, h̄2(t) = 0 and h̄3(t) = 0.

Remark 2.1. When process ℘(t) randomly takes its value from S1, the system also changes its
nature into four different types of systems.

It is known that the local Lipschitz condition and the linear growth condition are essential
to the classical conditions for the existence and uniqueness of a global solution (see [20]). In
this article, the local Lipschitz condition is kept, while the linear growth condition is dropped
since we consider the highly nonlinear equation (2.1) generally unsatisfying of the linear growth
condition. This paper, therefore, starts from these conditions as an assumption in use.

Assumption 2.1. Let u1,u2,v1,v2 ∈Rn with |u1|∨|u2|∨|v1|∨|v2| ≤ b. For any b∈N, t ∈R+,
i ∈ S2, there exists a positive constant κb such that∣∣ f (t,u1,v1, i)− f (t,u2,v2, i)

∣∣2∨ ∣∣g(t,u1,v1, i)−g(t,u2,v2, i)
∣∣2

∨
∫
R

∣∣h(t,u1,v1,y, i)−h(t,u2,v2,y, i)
∣∣2π(dy)

≤ κb
(∣∣u1−u2

∣∣2 + ∣∣v1− v2
∣∣2).

Assumption 2.1 only guarantees the fact that equation (2.1) has a unique maximal solution;
the latter explodes to infinity at a given finite time. To avoid such an explosion, we have to
impose one more condition with Lyapunov functions. For this purpose, we need to define some
additional notations.

Let C1,2(R+×Rn×S1×S2,R+
)

denote the family of all nonnegative functions V (t,u, `, i)
defined on R+×Rn×S1×S2, which are continuously once differentiable in t and twice differ-
entiable in u. To simplify, let us denote ũ(t) = u(t)−D

(
u(t−σt,ρ(t)),ρ(t)

)
. Hence, for each

V ∈C1,2(R+×Rn×S1×S2,R+
)
, we define an operator LV : R+×Rn×Rn×S1×S2→ R

by
LV (t,u,v, `, i) = Vt(t, ũ, `, i)+Vu(t, ũ, `, i) f (t,u,v, i)

+
1
2
(
h̄2(t)

)2trace
(
gT (t,u,v, i)Vuu(t, ũ, `, i)g(t,u,v, i)

)
+
∫
R

[
V
(
t, ũ+ h̄3(t)h(t,u,v,y, i), `, i

)
−V (t, ũ, `, i)

]
π(dy)

+
4

∑
ς=1

ϕ`ςV (t, ũ,ς , i)+
N

∑
j=1

γi jV (t, ũ, `, j),

where Vt(t,u, i) =
∂V (t,u,i)

∂ t , Vuu(t,u, i) =
(

∂ 2V (t,u,i)
∂uk∂ul

)
n×n

, and

Vu(t,u, i) =
(

∂V (t,u, i)
∂u1

,
∂V (t,u, i)

∂u2
, ...,

∂V (t,u, i)
∂un

)
.

Now, we present the following definitions.
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Definition 2.1. A function ϒ : R→ (0,∞) is said to be of ϒ−type if it satisfies the following
three conditions:

(i) ϒ is a continuous and nondecreasing function in R and it is differentiable in R+;
(ii) ϒ(0) = 1,ϒ(∞) = ∞ and ϒ′(t)

ϒ(t) is nonincreasing in R+;
(iii) ϒ(t)≤ ϒ(s)ϒ(t− s), for any s, t ≥ 0.

Definition 2.2. Let ϒ∈C(R+,R+) be a ϒ−type function. Then, the system with initial data ξ is
said to be stable in pth (p≥ 2) moment with decay ϒ(t) of order µ̃ > 0 if limsup

t→∞

logE|u(t)|p
logϒ(t) ≤−µ̃ .

Moreover, the system with initial data ξ is said to be stable with decay ϒ(t) of order µ̃

p > 0

almost surely or only a.s. if, there is no ambiguity, limsup
t→∞

log |u(t)|
logϒ(t) ≤−

µ̃

p a.s.

Remark 2.2. When ϒ(t) is equal to et or 1+ t, we are in front of the exponential and the usual
polynomial stability, respectively. Therefore, we have free choice for ϒ-type functions, which
gives the generality of our results.

Now we are able to state the following assumptions.

Assumption 2.2. There exists a real number k ∈ (0,1) such that
∣∣D(u, i)−D(v, i)

∣∣ ≤ k|u− v|,
for (u,v, i) ∈ Rn×Rn×S2.

Assumption 2.3. There exist a pair of functions V ∈ C1,2(R+×Rn× S1× S2,R+
)

, K ∈
C
(
Rn,R+

)
and positive numbers a1,a2,c3, c4 and k1 > 1,k2 > 1 such that

K (ũ)≤ k1
(
K (u)+ kK (v)

)
, K (u)≤ kK (v)+ k2K (ũ), (2.2)

a1K (u)≤ V (t,u, `, i)≤ a2K (u), (2.3)

lim
|u|→∞

K (u) = +∞, (2.4)

and

LV (t,u,v, `, i)≤
(
− c3K (u)+ c4K (v)

)ϒ′(t)
ϒ(t)

(2.5)

for (t,u,v, `, i) ∈ R+×Rn×Rn×S1×S2.

We also need the following lemma.

Lemma 2.1. [20] If g is nonnegative, uniformly continuous, and Lebesgue integrable function
on [0,∞), then lim

t→∞
g(t) = 0.

3. MAIN RESULTS

Under the assumptions in Section 2, we now introduce the following lemma.

Lemma 3.1. Let Assumptions 2.1, 2.2 and 2.3 be satisfied. If λ := c3
k1a2

> 1 and

c4 <
a1

kk2
ϒ
−(λ+1)(ι)− kk1c3 (3.1)

hold, then

h̄(ε) :=
∫ +∞

0
ϒ

ε(t) sup
−ι≤[≤0

EK
(
u(t + [)

)
ϒ
′(t)dt < ∞, (3.2)
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where ε ∈ (0,ε0) with ε0 ∈ (0,λ −1) being the unique solution of the algebraic equation

kϒ
ε+1(ι)+

m2

λ − ε−1
ϒ

λ (ι)−1 = 0, (3.3)

where m2 := k2(kk1c3+c4)
a1

.

Proof. Define the function F(ε) := kϒε+1(ι) + m2
λ−ε−1ϒλ (ι)− 1. It can seen from (3.1) that

F(0) < 0 and F(λ − 1) > 0. In addition, F(ε) is a strictly increasing function on (0,λ − 1).
Thus there exists a real ε0 ∈ (0,λ − 1) with F(ε0) = 0. It follows that µ(ε) := kϒε+1(ι) +

m2
λ−ε−1ϒλ (ι) ∈ (0,1), where ε ∈ (0,ε0). By using Assumption 2.3, the generalised Itô formula
allows us to write for t ≥ 0

ϒ
λ (t)EV (t, ũ(t),℘(t),ρ(t))

= EV (0, ũ(0),℘0,ρ0)+E
∫ t

0
λϒ

λ (s)
ϒ′(s)
ϒ(s)

V
(
s, ũ(t),℘(s),ρ(t)

)
ds

+E
∫ t

0
ϒ

λ (s)LV
(
s,u(s),u(s−σs,ρ(s)),℘(s),ρ(t)

)
ds

≤ a2EK (ũ(0))+
c3

k1
E
∫ t

0
ϒ

λ (s)K
(
ũ(s)

)ϒ′(s)
ϒ(s)

ds

− c3E
∫ t

0
ϒ

λ (s)K
(
u(s)

)ϒ′(s)
ϒ(s)

ds+ c4E
∫ t

0
ϒ

λ (s)K
(
u(s−σs,ρ(s))

)ϒ′(s)
ϒ(s)

ds.

(3.4)

Recall that the delay σ : R+→ [0, ι ] is a bonded noncontinuous function. It follows from (3.4)
and Assumption 2.3 that

ϒ
λ (t)EK

(
ũ(t)

)
≤ a2

a1
EK (ũ(0))+

(kk1c3 + c4)

a1
E
∫ t

0
ϒ

λ (s) sup
−ι≤r≤0

K
(
u(s+ r)

)ϒ′(s)
ϒ(s)

ds.

In view of (2.2), we can derive

ϒ
λ (t)EK

(
u(t)

)
≤ kϒ

λ (t)EK
(
u(t−σt,ρ(t))

)
+

k2a2

a1
EK (ũ(0))

+
k2(kk1c3 + c4)

a1
E
∫ t

0
ϒ

λ (s) sup
−ι≤r≤0

K
(
u(s+ r)

)ϒ′(s)
ϒ(s)

ds.

Thus

EK
(
u(t)

)
≤ m1ϒ

−λ (t)+ kEK
(
u(t−σt,ρ(t))

)
+m2ϒ

−λ (t)E
∫ t

0
ϒ

λ (s) sup
−ι≤r≤0

K
(
u(s+ r)

)ϒ′(s)
ϒ(s)

ds,

where m1 =
k2a2
a1

EK (ũ(0)). For any t ≥ ι and [ ∈ [−ι ,0], we can write

EK
(
u(t + [)

)
≤ m1ϒ

−λ (t + [)+ kE sup
−ι≤r≤0

K
(
u(t + [+ r)

)
+m2ϒ

−λ (t + [)E
∫ t+[

0
ϒ

λ (s) sup
−ι≤r≤0

K
(
u(s+ r)

)ϒ′(s)
ϒ(s)

ds. (3.5)
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We can easily prove that ϒ−λ (t + [)≤ ϒλ (ι)ϒ−λ (t) and ϒ(s− [)≤ ϒ(s)ϒ(ι). Multiplying both
sides of (3.5) by ϒ′(t)ϒε(t), for ε ∈ (0,λ −1) and integrating on [ι ,T ], (T > ι), we have

∫ T

ι

ϒ
ε(t)EK

(
u(t + [)

)
ϒ
′(t)dt

≤ m1ϒ
λ (ι)

∫ T

ι

ϒ
ε−λ (t)ϒ′(t)dt + k

∫ T

ι

ϒ
ε(t) sup

−ι≤r≤0
EK

(
u(t + [+ r)

)
ϒ
′(t)dt

+m2ϒ
λ (ι)

∫ T

ι

ϒ
ε−λ (t)ϒ′(t)

∫ t+[

0
ϒ

λ (s) sup
−ι≤r≤0

EK
(
u(s+ r)

)ϒ′(s)
ϒ(s)

dsdt

:= m1ϒ
λ (ι)J1 + kJ2 +m2ϒ

λ (ι)J3,

(3.6)

where

J1 :=
∫ T

ι

ϒ
ε−λ (t)ϒ′(t)dt =

1
ε−λ +1

[
ϒ

ε−λ+1(t)
]
≤ ϒε−λ+1(ι)

λ − ε−1
. (3.7)

Recall that ϒ′(s)
ϒ(s) is nonincreasing for all s≥ 0. Thus we obtain that

J2 :=
∫ T

ι

ϒ
ε(t) sup

−ι≤r≤0
EK

(
u(t + [+ r)

)
ϒ
′(t)dt

≤
∫ T

0
ϒ

ε(s− [) sup
−ι≤r≤0

EK
(
u(s+ r)

)
ϒ
′(s− [)ds

≤ ϒ
ε+1(ι)

∫ T

0
ϒ

ε+1(s) sup
−ι≤r≤0

EK
(
u(s+ r)

)ϒ′(s)
ϒ(s)

ds

≤ ϒ
ε+1(ι)

∫ T

0
ϒ

ε(s) sup
−ι≤r≤0

EK
(
u(s+ r)

)
ϒ
′(s)ds. (3.8)

Integrating by parts and using the non-decreasing property of the function ϒ on R+, we can
derive that

J3 :=
∫ T

ι

ϒ
ε−λ (t)ϒ′(t)

∫ t+[

0
ϒ

λ−1(s) sup
−ι≤r≤0

EK
(
u(s+ r)

)
ϒ
′(s)dsdt

=
1

ε−λ +1

[
ϒ

ε−λ+1(t)
∫ t+[

0
ϒ

λ−1(s) sup
−ι≤r≤0

EK
(
u(s+ r)

)
ϒ
′(s)ds

]
− 1

ε−λ +1

∫ T

ι

ϒ
ε−λ+1(t)ϒλ−1(t + [) sup

−ι≤r≤0
EK

(
u(t + [+ r)

)
ϒ
′(t + [)dt

≤ ϒε−λ+1(ι)

λ − ε−1

∫
ι

0
ϒ

λ−1(s) sup
−ι≤r≤0

EK
(
u(s+ r)

)
ϒ
′(s)ds

+
1

λ − ε−1

∫ T

0
ϒ

ε(s) sup
−ι≤r≤0

EK
(
u(s+ r)

)
ϒ
′(s)ds. (3.9)
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Substituting (3.7)-(3.9) into (3.6), we obtain that∫ T

0
ϒ

ε(t) sup
−ι≤[≤0

EK
(
u(t + [)

)
ϒ
′(t)dt ≤M+

(
kϒ

ε+1(ι)+
m2ϒλ (ι)

λ − ε−1

)∫ T

0
ϒ

ε(t)

sup
−ι≤r≤0

EK
(
u(t + r)

)
ϒ
′(t)dt,

where

M :=
ϒε+1(ι)

λ − ε−1

(
m1 +m2

∫
ι

0
ϒ

λ−1(s) sup
−ι≤r≤0

EK
(
u(s+ r)

)
ϒ
′(s)ds

)
+
∫

ι

0
ϒ

ε(s) sup
−ι≤[≤0

EK
(
u(s+ [)

)
ϒ
′(s)ds.

In view of µ(ε)< 1, one has∫ T

0
ϒ

ε(t) sup
−ι≤[≤0

EK
(
u(t + [)

)
ϒ
′(t)dt ≤ M

1−µ(ε)
< ∞,

which implies that

h̄(ε) =
∫

∞

0
ϒ

ε(t) sup
−ι≤[≤0

EK
(
u(t + [)

)
ϒ
′(t)dt < ∞.

This completes the proof. �

3.1. Existence and uniqueness of solutions.

Theorem 3.1. Let all the conditions of Lemma 3.1be satisfied. Then, for all ξ ∈C
[
− ι ,0],Rn),

equation (2.1) admits a unique global solution u(t) on [−ι ,∞).

Proof. We divide the proof into two steps as follows.
Step 1. We prove that equation (2.1) has a unique maximal local solution u(t).
For any initial value ξ ∈C([−ι ,0],Rn), one sees that there exists a positive real c̃ such that
‖ξ‖ ≤ c̃, almost surly. Then, for each integer q≥ c̃, we define

f q (t,u1,u2,ρ(t)) = f
(

t,
|u1|∧q
|u1|

u1,
|u2|∧q
|u2|

u2,ρ(t)
)
,

where |ui|∧q
|ui| = 0 if ui = 0 (i= 1,2). Similarly, we define gq (t,u1,u2,ρ(t)) and hq(t,u1,u2,y,ρ(t)

)
.

Consider the following equation

d
[
uq(t)−D

(
uq(t−σt,ρ(t)),ρ(t)

)]
= f q(t,uq(t),uq(t−σt,ρ(t)),ρ(t)

)
dt

+ h̄2(t)gq(t,uq(t),uq(t−σt,ρ(t)),ρ(t)
)
dw(t)

+ h̄3(t)
∫
R

hq(t,uq(t),uq(t−σt,ρ(t)),y,ρ(t)
)
N(dt,dy).

(3.10)

Using the property that ρ(t) and ℘(t) are right continuous Markov processes, we have two
random constant sequences of stopping times {αk}k≥0 and {ιk∗}k∗≥0, with ℘(t) =℘(αk) on
t ∈ [αk,αk+1), and ρ(t) = ρ(ιk∗) on t ∈ [ιk∗, ιk∗+1), where {αk}k≥0 and {ιk∗}k∗≥0 are random
constants respectively on every interval [αk,αk+1), and [ιk∗, ιk∗+1) for any k,k∗ ≥ 0.
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Firstly, taking equation (3.10) on [a∗0,a
∗
1) = [α0,α1)∩ [ι0, ι1), we see that

d
[
uq(t)−D

(
uq(t−σt,ρ0),ρ0)

)]
= f q(t,uq(t),uq(t−σt,ρ0),ρ0

)
dt

+ h̄0
2gq(t,uq(t),uq(t−σt,ρ0),ρ0

)
dw(t)

+ h̄0
3

∫
R

hq(t,uq(t),uq(t−σt,ρ0),y,ρ0
)
N(dt,dy), (3.11)

with initial data ξ ,℘(t) =℘0,ρ(t) = ρ0. Here, h̄0
2 and h̄0

3 are the initial values of h̄2(t) and h̄3(t),
respectively. By Assumption 2.1, f q(t,uq(t),uq(t−σt,ρ0),ρ0

)
, gq(t,uq(t),uq(t−σt,ρ0),ρ0

)
and

hq(t,uq(t),uq(t−σt,ρ0),y,ρ0
)

satisfy the global Lipschitz and linear growth conditions. There-
fore, [23, Theorem 3.1] allows us to conclude that equation (3.11) has a unique global solution
uq(t) on t ∈ [a∗0,a

∗
1).

Secondly, without loss of generality, we suppose that ι1 < α1 and set [a∗1,a
∗
2) = [α0,α1)∩

[ι1, ι2). Therefore, taking equation (3.10), on t ∈ [a∗1,a
∗
2), one has

d
[
uq(t)−D

(
uq(t−σt,ρ1),ρ1)

)]
= f q(t,uq(t),uq(t−σt,ρ1),ρ1

)
dt

+ h̄0
2gq(t,uq(t),uq(t−σt,ρ1),ρ1

)
dw(t)

+ h̄0
3

∫
R

hq(t,uq(t),uq(t−σt,ρ1),y,ρ1
)
N(dt,dy), (3.12)

with initial conditions uq(t) on t ∈ [a∗0,a
∗
1), ℘0 and ρ1. Again, [23, Theorem 3.1] shows that

equation (3.12) has a unique global solution uq(t) in [a∗1,a
∗
2).

We repeat this procedure such that equation (3.10) admits a unique global solution uq(t) on
t ≥ −ι . Now, letting Oq = inf{t ≥ 0; |uq(t)| ≥ q}, one sees that |uq(t)| ∨ |uq(t−σt,ρt )| ≤ q for
0≤ t ≤ Oq. Thus

f q(t,uq(t),uq(t−σt,ρ(t)),ρ(t)
)
= f q+1(t,uq(t),uq(t−σt,ρ(t)),ρ(t)

)
,

gq(t,uq(t),uq(t−σt,ρ(t)),ρ(t)
)
= gq+1(t,uq(t),uq(t−σt,ρ(t)),ρ(t)

)
,

and

hq(t,uq(t),uq(t−σt,ρ(t)),y,ρ(t)
)
= hq+1(t,uq(t),uq(t−σt,ρ(t)),y,ρ(t)

)
are satisfied for any t ∈ [0,Oq]. Hence, uq(t) = uq+1(t) for t ∈ [0,Oq]. Note thatOq is increasing
with respect to q from its definition. Also let us define u(t) on [−ι ,O∞) with u(t) = uq(t), where
O∞ = lim

q→∞
Oq. Hence, equation (2.1) has a unique maximal local solution u(t).

Step 2. Let ν0 > 0 be sufficiently large such that ‖ξ‖ = sup
−ι≤[≤0

|ξ ([)| ≤ ν0. For all ν ≥

(1+k)ν0, we define the stopping time ιν = inf
{

t ∈ [0,O∞) : |ũ(t)| ≥ ν
}
, inf /0 = ∞. It is obvious

that ιν is increasing. Define ι∞ = lim
r→∞

ιν , whence ι∞ ≤ O∞. The fact that ι∞ = ∞ almost surely

gives O∞ = ∞ almost surely means that the solution {u(t), t ∈ [−ι ,∞)} of equation (2.1) does
not explode in finite time.

Now, we prove that ι∞ = ∞ almost surely. It is equivalent to P(ιν ≤ t)−→ 0 as ν −→ ∞ for
any t ≥ 0. Recall that 1{ιν≤t} is the indicator function. From the generalised Itô formula and
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conditions (2.3) and (2.5), we obtain

E
(

1{ιν≤t}V
(
ιν , ũ(ιν),℘(ιν),ρ(ιν)

))
≤ EV

(
t ∧ ιν ,u(t ∧ ιν),℘(t ∧ ιν),ρ(t ∧ ιν)

)
= EV (0, ũ(0),℘0,ρ(0))+E

∫ t∧ιν

0
LV

(
s,u(s),u(s−σs,ρ(s)),℘(s),ρ(s)

)
ds

≤ a2EK (ũ(0))+ c4E
∫ t∧ιν

0
sup
−ι≤[≤0

K
(
u(s+ [)

)ϒ′(s)
ϒ(s)

ds.

The definition of ϒ allows us to write 1
ϒ(s) ≤ 1 for all s≥ 0, which implies that

a1E(1{ιν≤t}K (ũ(ιν))≤E
(

1{ιν≤t}V
(
ιν , ũ(ιν),℘(ιν),ρ(ιν)

))
≤a2EK (ũ(0))+ c4

∫ t∧ιν

0
sup
−ι≤[≤0

EK
(
u(s+ [)

)
ϒ
′(s)ds

≤ a2EK (ũ(0))+ h̄(0) = cst <+∞. (3.13)

From the definition of ιν , we have ũ(ιν) = ν . Further, for each ν ≥ 0, we define

χ(ν) := inf
{

K (u) : u ∈ Rn, with |u| ≥ ν

}
.

Employing (3.13), we can write

a1χ(ν)P
(
ιν ≤ t

)
≤ a1E(1{ιν≤t}K (ũ(ιν))≤ cst.

Thus
P
(
ιν ≤ t

)
≤ cst

a1χ(ν)
.

By using condition (2.4), we note that lim
ν→∞

χ(ν) = ∞. Then lim
ν→∞

P(ιν ≤ t) = 0. Since t > 0 is

arbitrary, then P(ι∞ = ∞) = 1. Thus equation (2.1) admits a unique global solution u(t) for any
t ≥−ι . �

3.2. General decay stability. In this section, we present and prove the general decay stability
of the system under consideration.

Theorem 3.2. Let the conditions required by Lemma 3.1 be satisfied. Then, the global solutions
u(t) of equation (2.1) satisfies

limsup
t→∞

logEK (u(t))
logϒ(t)

≤−ε1, for any initial data ξ ∈C([−ι ,0],Rn),

with ε1 = ε̃ ∧ (ε +1), where ε̃ ∈ (0, ϑ̄) such that ϑ̄ = inf
t≥ι

−t log(k)
ι logϒ(t)

and ε is defined in Lemma

3.1.

Proof. For any t ≥ ι and [ ∈ [−ι ,0], it yields from (3.5) together with any ε(0,λ −1) that

EK
(
u(t + [)

)
≤ m1ϒ

−(ε+1)(t + [)+ kE sup
−ι≤r≤0

K
(
u(t + [+ r)

)
+m2ϒ

−λ (t + [)E
∫ t+[

0
ϒ

λ−1(s) sup
−ι≤r≤0

K
(
u(s+ r)

)
ϒ
′(s)ds.



GENERAL DECAY STABILITY 167

Since ϒλ−1−ε(s) is non-decreasing for s≥ 0, one sees that

EK
(
u(t + [)

)
≤ m1ϒ

−(ε+1)(t + [)+ k sup
−ι≤r≤0

EK
(
u(t + [+ r)

)
+m2ϒ

−λ (t + [)ϒλ−1−ε(t + [)
∫ t+[

0
ϒ

ε(s) sup
−ι≤r≤0

EK
(
u(s+ r)

)
ϒ
′(s)ds

≤ m1ϒ
−(ε+1)(t + [)+ k sup

−ι≤r≤0
EK

(
u(t + [+ r)

)
+m2ϒ

−(ε+1)(t)ϒε+1(ι)h̄(ε),

where the value of h̄(ε) is determined by Lemma 3.1, and ε ∈ (0,ε0) with ε0 ∈ (0,λ −1). For
t ≥ ι , we have

EK (u(t + [))≤ ϒ
(ε+1)(ι)

(
m1 +m2h̄(ε)

)
ϒ
−(ε+1)(t)+ kEK

(
u(t + [−σt+[,ρ(t+[))

)
.

For any t, [, there exists q[ ∈ [0, ι ] such that σt+[,ρ(t+[) = q[. Since q[ ∈ [0, ι ], then there exists
α[ ∈ [0,1] such that q[ = α[ι . It follows that

EK
(
u(t + [)

)
≤ ϒ

(ε+1)(ι)
(
m1 +m2h̄(ε)

)
ϒ
−(ε+1)(t)+ kEK

(
u(t + [−α[ι)

)
≤ L(ε)ϒ−(ε+1)(t)+ kEK

(
u(t + s)

)
,

where L(ε) := ϒ(ε+1)(ι)
(
m1 +m2h̄(ε)

)
and −2ι ≤ s = [−α[ι ≤ 0. We separate via two cases

i): If α[ = 0 for any [, then we can derive that

EK
(
u(t + [)

)
≤ L(ε)

1− k
ϒ
−(ε+1)(t)).

ii): If α[ ∈ (0,1] for any [ ∈ [−ι ,0], then, for any t ≥ ι ,

sup
−ι≤[≤0

EK
(
u(t + [)

)
≤ L(ε)ϒ−(ε+1)(t)+ k sup

−ι≤[≤0
EK

(
u(t− ι + [)

)
. (3.14)

Now, for any t ≥ 2ι , we have from (3.14) that

sup
−ι≤[≤0

EK
(
u(t− ι + [)

)
≤ L(ε)ϒ−(ε+1)(t− ι)+ k sup

−ι≤[≤0
EK

(
u(t−2ι + [)

)
≤ L(ε)ϒ−(ε+1)(t)ϒε+1(ι)+ k sup

−ι≤[≤0
EK

(
u(t−2ι + [)

)
. (3.15)

Substituting (3.15) into (3.14), we obtain for any t ≥ 2ι that

sup
−ι≤[≤0

EK
(
u(t + [)

)
≤ L(ε)ϒ−(ε+1)(t)

(
1+ kϒ

ε+1(ι)
)
+ k2 sup

−ι≤[≤0
EK

(
u(t−2ι + [)

)
.

Similarly, for any t ≥ ι , we can check that

sup
−ι≤[≤0

EK
(
u(t + [)

)
≤ L(ε)ϒ−(ε+1)(t)

n−1

∑
j=0

(
kϒ

ε+1(ι)
) j
+ kn sup

−ι≤[≤0
EK

(
u(t−nι + [)

)
,
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where n ∈ N-{0} such that nι ≤ t < (n+ 1)ι . From Lemma 3.1, we have kϒε+1(ι) ∈
(0,1). Therefore

sup
−ι≤[≤0

EK
(
u(t + [)

)
≤ L(ε)

1− kϒε+1(ι)
ϒ
−(ε+1)(t)+ kn sup

−ι≤[≤0
EK

(
u(t−nι + [)

)
≤ L(ε)

1− kϒε+1(ι)
ϒ
−(ε+1)(t)+ k

t
ι
−1M

≤ L(ε)
1− kϒε+1(ι)

ϒ
−(ε+1)(t)+ϒ

−ε̃(t)
M
k
,

where ε̃ ∈ (0, ϑ̄) with ϑ̄ = inf
t≥ι

−t log(k)
ι logϒ(t)

. Moreover, sup−ι≤[≤0EK
(
u(t+[)

)
≤M1ϒ−ε1(t),

t ≥ ι , where M1 =
L(ε)

1− kϒε+1(ι)
+

M
k

> 0, and ε1 = ε̃ ∧ (ε +1). Further, we see from

(3.5) that, for any 0≤ t ≤ ι sup−ι≤[≤0EK
(
u(t + [)

)
≤M2ϒ−ε1(t). Thus, for any t ≥ 0,

EK
(
u(t)

)
≤max{M1,M2}ϒ−ε1(t),

which yields our desired result.

�

Lemma 3.2. Let the assumptions of Lemma 3.1 be fulfilled. Then∫
∞

0
ϒ

ε(t) sup
−ι≤[≤0

K
(
u(t + [)

)
ϒ
′(t)dt < ∞, a.s,

where ε ∈ (0,ε0) with ε0 being determined in Lemma 3.1.

Proof. The detailed proof consists of four steps which are as follows.
Step 1. By following a method similar to the above and using conditions (2.2) and (2.3), for

any t ≥ ι and [ ∈ [−ι ,0], it follows (T ≥ t) that∫ T

ι

ϒ
ε(t)EV

(
t + [, ũ(t + [),℘(t + [),ρ(t + [)

)
ϒ
′(t)dt

≤ a2k1

∫ T

ι

ϒ
ε(t)EK

(
u(t + [)

)
ϒ
′(t)dt

+a2k1k
∫ T

ι

ϒ
ε(t)E sup

−ι≤r≤0
K
(
u(t + [+ r)

)
ϒ
′(t)dt

≤ a2k1

∫ T

ι

ϒ
ε(t) sup

−ι≤[≤0
EK

(
u(t + [)

)
ϒ
′(t)dt

+a2k1kϒ
ε+1(ι)

∫ T

0
ϒ

ε(s) sup
−ι≤r≤0

EK
(
u(s+ r)

)
ϒ
′(s)ds

≤
(
a2k1 +a2k1kϒ

ε+1(ι)
)
h̄(ε)< ∞,

where h̄(ε) is given in (3.2). Furthermore, Lemma 3.1 allows us to write∫
∞

ι

ϒ
ε(t)EV

(
t + [, ũ(t + [),℘(t + [),ρ(t + [)

)
ϒ
′(t)dt < ∞. (3.16)
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Step 2. Note that sup
s≥0

ϒ′(s)
ϒ(s) = ϒ′(0). Applying Itô formula, Assumption 2.3 and Theorem 3.2,

for any [ ∈ [−ι ,0] and t2 > t1 ≥ ι , we obtain that

EV
(
t1 + [, ũ(t1 + [),℘(t1 + [),ρ(t1 + [)

)
−EV

(
t2 + [, ũ(t2 + [),℘(t2 + [),ρ(t2 + [)

)
=
∫ t2+[

t1+[
LV

(
s,u(s),u(s−σs,ρ(s)),℘(s),ρ(s)

)
ds

≤ c4

∫ t2+[

t1+[
sup
−ι≤r≤0

EK
(
u(s+ r)

)ϒ′(s)
ϒ(s)

ds

≤ c4L1ϒ
′(0)(t2− t1)ϒ−ε(t1 + [),

where L1 = max{M1,M2}. Consequently, using the definition of ϒ, and applying to it the finite-
increments formula on [t1, t2], we have∣∣∣ϒε(t2)EV

(
t1 + [, ũ(t1 + [),℘(t1 + [),ρ(t1 + [)

)
−ϒ

ε(t1)EV
(
t2 + [, ũ(t2 + [),℘(t2 + [),ρ(t2 + [)

)∣∣∣
≤ (a2ε + c4)ϒ

′(0)L1|t2− t1|,

which implies that

lim
t2→t1

ϒ
ε(t2)EV

(
t2 + [, ũ(t2 + [),℘(t2 + [),ρ(t2 + [)

)
ϒ
′(t2)

= ϒ
ε(t1)EV

(
t1 + [, ũ(t1 + [),℘(t1 + [),ρ(t1 + [)

)
ϒ
′(t1).

Using Lemma 2.1, for any [ ∈ [−ι ,0], we have

lim
t→∞

ϒ
ε(t)EV

(
t + [, ũ(t + [),℘(t + [),ρ(t + [)

)
ϒ
′(t) = 0. (3.17)

Step 3. From (3.16), (3.17) and the Fubini theorem [31], for any [ ∈ [−ι ,0], we conclude

E
{∫ ∞

ι

ϒ
ε(t)V

(
t + [, ũ(t + [),℘(t + [),ρ(t + [)

)
ϒ
′(t)dt

}
< ∞.

Therefore, by employing the Chebyshev inequality, one has

P
(∫ ∞

ι

ϒ
ε(t)V

(
t + [, ũ(t + [),℘(t + [),ρ(t + [)

)
ϒ
′(t)dt = ∞

)
= 0. (3.18)

Now, for any [ ∈ [−ι ,0], we derive from (2.3) and (3.18) that∫
∞

ι

ϒ
ε(t)K

(
ũ(t + [)

)
ϒ
′(t)dt < ∞, a.s. (3.19)

Step 4. From (2.2) and the definition of ϒ, we can derive, for any [ ∈ [−ι ,0] and T > 2ι , that∫ T

ι

ϒ
ε(t)K

(
u(t + [)

)
ϒ
′(t)dt

≤ k
∫ T

ι

ϒ
ε(t) sup

−ι≤r≤0
K
(
u(t + [+ r)

)
ϒ
′(t)dt + k2

∫ T

ι

ϒ
ε(t)K

(
ũ(t + [)

)
ϒ
′(t)dt

≤ kϒ
ε+1(ι)

∫ T

0
ϒ

ε(s) sup
−ι≤r≤0

K
(
u(s+ r)

)
ϒ
′(s)ds+ k2

∫ T

ι

ϒ
ε(t)K

(
ũ(t + [)

)
ϒ
′(t)dt.
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It follows from (3.3) that kϒε+1(ι) ∈ (0,1). Using condition (3.19), we have∫ T

ι

ϒ
ε(t) sup

−ι≤[≤0
K
(
u(t + [)

)
ϒ
′(t)dt

≤ kϒε+1(ι)

1− kϒε+1(ι)

∫
ι

0
ϒ

ε(t) sup
−ι≤[≤0

K
(
u(t + [)

)
ϒ
′(t)dt

+
k2

1− kϒε+1(ι)

∫ T

ι

ϒ
ε(t)K

(
ũ(t + [)

)
ϒ
′(t)dt < ∞. (3.20)

Taking T → ∞ in (3.20), we conclude that
∫

∞

0 ϒε(t) sup
−ι≤[≤0

K
(
u(t + [)

)
ϒ′(t)dt < ∞ a.s. Thus,

the proof is completed. �

Theorem 3.3. Let the assumptions of Lemma 3.1 be satisfied. Then, for any initial data ξ ∈
C([−ι ,0],Rn), the global solution u(t) of equation (2.1) obeys

limsup
t→∞

logK (u(t))
logϒ(t)

≤−ε1, a.s.,

where ε1 is defined in Theorem 3.2.

Proof. For any ε ∈ (0,ε0), we have, for any t ≥ 0,

ϒ
ε+1(t)V

(
t, ũ(t),℘(t),ρ(t)

)
= V

(
0, ũ(0),℘(0),ρ(0)

)
+
∫ t

0

[
(ε +1)ϒε(s)ϒ′(s)V

(
s, ũ(s),℘(s),ρ(s)

)
+ϒ

ε+1(s)LV
(
s,u(s),u(s−σs,ρ(s)),℘(s),ρ(s)

)]
ds+Mt ,

(3.21)

where Mt :=
∫ t

0
ϒ

ε+1(s)dGs with Gt being defined by

Gt =
∫ t

0
Vu(s, ũ(s),℘(s),ρ(s)).h̄2(s)g

(
s,u(s),u(s−σs,ρ(s)),ρ(s)

)
dw(s)

+
∫ t

0

∫
Y

[
V
(
s, ũ(s)+ h̄3(s)h

(
s,u(s),u(s−σs,ρ(s)),y,ρ(s)

)
,℘(s),ρ(s)

)
−V (s, ũ(s),℘(s),ρ(s))

]
Ñ(ds,dy)

+
∫ t

0

∫
R

[
V
(
s, ũ(s),℘0 + c̄1(℘(s),u),ρ(s)

)
−V

(
s, ũ(s),℘(s),ρ(t)

)]
µ1(ds,dx)

+
∫ t

0

∫
R

[
V
(
s, ũ(s),℘(s),ρ0 + c̄2(ρ(s),u)

)
−V

(
s, ũ(s),℘(s),ρ(t)

)]
µ2(ds,dx),

where µ1(ds,dx),µ2(ds,dx) are two martingale measures (see [15] for more details on the func-
tions µ1,µ2, c̄1, and c̄2). We can easily prove that Gt is a local martingale with G0 = 0. There-
fore, by using Assumptions 2.3 and (3.21), we conclude

a1ϒ
ε+1(t)K

(
ũ(t)

)
≤a2K

(
ũ(0)

)
+
∫ t

0

[(
k1a2(ε +1)− c3

)
ϒ

ε(s)K
(
u(s)

)
ϒ
′(s)

+
(
(ε +1)kk1a2 + c4

)
ϒ

ε(s)K
(
u(s−σs,ρ(s))

)
ϒ
′(s)
]
ds+Mt .
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From Lemma 3.1, one has ε ∈ (0,ε0) with ε0 ∈ (0,λ − 1). It is not difficult to check that
k1a2(ε +1)− c3 < 0. Thus it yields that

ϒ
ε+1(t)K

(
ũ(t)

)
≤a2

a1
K
(
ũ(0)

)
+

(ε +1)kk1a2 + c4

a1

∫ t

0
ϒ

ε(s)K
(
u(s−σs,ρ(s))

)
ϒ
′(s)ds+Mt

≤H0 +A (t)+Mt , (3.22)

where H0 := a2
a1

K
(
ũ(0)

)
is a nonnegative bounded F0-measurable random variable,

A (t) :=
(ε +1)kk1a2 + c4

a1

∫ t

0
ϒ

ε(s) sup
−ι≤[≤0

K
(
u(s+ [)

)
ϒ
′(s)ds, a.s.,

and Mt is a local martingale with M0 = 0. Using the nonnegative semi-martingale conver-
gence theorem [15], we see from Lemma 3.2 and (3.22) that limsup

t→∞

ϒε+1(t)K
(
ũ(t)

)
< ∞

a.s. Therefore, there exists a finite positive random variable H1 such that, for any t ≥ 0,
K
(
ũ(t)

)
≤H1ϒ−(ε+1)(t) a.s. From (2.2), we can deduce that

K
(
u(t)

)
≤ k2H1ϒ

−(ε+1)(t)+ kK
(
u(t−σt,ρ(t))

)
, a.s.

Similar to the proof of Theorem 3.2, we obtain that K
(
u(t)

)
≤H2ϒ−ε1(t), where ε1 is given

in Theorem 3.2 and H2 is a finite positive random variable dependent on H1, which follows
that

limsup
t→∞

logK (u(t))
logϒ(t)

≤−ε1, a.s.

The proof is completed. �

3.3. Decay stability with M-matrix theory. In this section, an M-matrix method is used to
prove the decay stability of the system.

Assumption 3.1. Assume that there exist bounded functions c`1i : [0,+∞[−→R and c`2i,β
`
1i,β

`
2i :

[0,+∞[−→ [0,+∞[, and bounded functions h`i (·) such that

ũT f (t,u,v, i)+
p−1

2
(
h̄2(t))2|g(t,u,v, i)|2 ≤ c`1i(t)|u|2 + c`2i(t)|v|2 (3.23)

and ∣∣ũ+ h̄3(t)h(t,u,v,y, i)
∣∣p ≤ h`i (y)

(
β
`
1i(t)|u|p +β

`
2i(t)|v|p

)
, (3.24)

where `× i ∈ S1×S2 and p≥ 2.

Assumption 3.2. For (`, i) ∈ S1×S2, let η`
i =

∫
Y h`i (y)π(dy)< ∞,

ϖ
`
1i(t) = η

`
i β

`
1i(t)− (1− k)p−1

π(Y ), ϖ
`
2i(t) = η

`
i β

`
2i(t)+ k(1− k)p−1

π(Y ),

e`i =
[
(1+ k)p−1(p−2)+2

]
c`1i(t)+(1+ k)p−1(p−2)c`2i(t), Γ̃ =

(∣∣γi j
∣∣)

N×N ,

and

m`
i = k(1+ k)p−1(p−2)c`1i(t)+

[
k(1+ k)p−1(p−2)+2

]
c`2i(t)+ϖ

`
2i(t).
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Assume that A ` :=−diag
(
e`1,e

`
2, ...,e

`
N
)
−(1+k)p−1Γ̃ is a nonsingular M-matrix, for all `∈ S1.

Moreover, let [ := ([1, ..., [N)
T =

(
A `
)−1~1 > 0 with~1 = (1,1, ...,1)T . Suppose that, for each

(`, i) ∈ S1×S2, there exist pair positive numbers c`3i,c
`
4i such that

1−ϖ
`
1i(t)min

i∈S2
([i) = c`3i

ϒ′(t)
ϒ(t)

and
(
m`

i − ke`i
)

max
i∈S2

([i)− k = c`4i
ϒ′(t)
ϒ(t)

.

Theorem 3.4. Let Assumptions 2.1, 2.2, 3.1, and 3.2 hold, and assume that

λ
`
i =

c`3i
k1 maxi∈S2([i)

> 1 (3.25)

and

c`4i <
ϒ−(λ

`
i +1)(ι)

kk2
min
i∈S2

([i)− kk1c`3i for any (`, i) ∈ S1×S2. (3.26)

Then, for any initial data ξ ∈C
(
[−ι ,0],R

)
, there exists a unique global solution u(t) of equa-

tion (2.1) on t ∈ [−ι ,∞). Furthermore, the unique solution has the properties

lim
t→∞

sup
logE|u(t)|p

logϒ(t)
≤−ε1

and

lim
t→∞

sup
log |u(t)|p

logϒ(t)
≤−ε1 a.s,

where ε1 is given in Theorem 3.2.

Proof. Consider the function V
(
t, ũ(t),℘(t),ρ(t)

)
= [ρ(t)|ũ|p, and let a1 =min

i∈S2
{[i}, a2 =max

i∈S2
{[i}.

Compute the operator LV as follows, for (`, i) ∈ S1×S2,

LV
(
t,u,v, `, i

)
= p[i|ũ|p−2ũT f (t,u,v, i)+

p
2
[i|ũ|p−2(h̄2(t)

)2|g(t,u,v, i)|2

+
p(p−2)

2
[i|ũ|p−4(h̄2(t)

)2|ũT g(t,u,v, i)|2 +
N

∑
j=1

γi j[ j|ũ|p

+
∫

Y

[
[i
∣∣ũ+ h̄3(t)h(t,u,v, i,y)

∣∣p− [i|ũ|p
]
π(dy)

≤ p[i|ũ|p−2ũT f (t,u,v, i)+ p[i
p−1

2
|ũ|p−2(h̄2(t)

)2|g(t,u,v, i)|2

+
N

∑
j=1

γi j[ j|ũ|p + [i

∫
Y

[∣∣ũ+ h̄3(t)h(t,u,v, i,y)
∣∣p−|ũ|p]π(dy)

≤ p[i|ũ|p−2
(

ũT f (t,u,v, i)+
p−1

2
(
h̄2(t)

)2|g(t,u,v, i)|2
)

+
N

∑
j=1

γi j[ j|ũ|p + [i

∫
Y

[∣∣ũ+ h̄3(t)h(t,u,v, i,y)
∣∣p−|ũ|p]π(dy).
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By employing the inequality (3.23) of Assumption 3.1, we have

LV
(
t,u,v, `, i

)
≤ p[i|ũ|p−2c`1i(t)|u|2 + p[i|ũ|p−2c`2i(t)|v|2

+
N

∑
j=1

γi j[ j|ũ|p + [i

∫
Y

[∣∣ũ+ h̄3(t)h(t,u,v, i,y)
∣∣p−|ũ|p]π(dy). (3.27)

For any p≥ 2, one has

|u|p−2|v|2 ≤ p−2
p
|u|p + 2

p
|v|p,

∣∣ũ∣∣p ≤ (1+ k)p−1(|u|p + k|v|p
)
,

and

−|ũ|p ≤−(1− k)p−1|u|p + k(1− k)p−1|v|p.

Therefore, the first term of (3.27) is optimized as follows:

p[ic`1i(t)|ũ|p−2|ũ|2

≤
(
(1+ k)p−1(p−2)+2

)
[ic`1i(t)|u|p + k(1+ k)p−1(p−2)[ic`1i(t)|v|p.

(3.28)

An upper bound of the second term of (3.27) is

p[ic`2i(t)|ũ|p−2|v|2

≤ (1+ k)p−1(p−2)[ic`2i(t)|u|p +
(

k(1+ k)p−1(p−2)+2
)
[ic`2i(t)|v|p.

(3.29)

In view of k ∈ (0,1), the third term has the following upper bound

N

∑
j=1

γi j[ j|ũ|p ≤ (1+ k)p−1
N

∑
j=1
|γi j|[ j|u|p + k(1+ k)p−1

N

∑
j=1
|γi j|[ j|v|p. (3.30)

From inequality (3.24) and Assumption 3.2, one has

[i

∫
Y

[∣∣ũ+ h̄3(t)h(t,u,v, i,y)
∣∣p−|ũ|p]π(dy)

≤
(

η
`
i β

`
1i(t)− (1− k)p−1

π(Y )
)
[i|u|p +

(
η
`
i β

`
2i(t)+ k(1− k)p−1

π(Y )
)
[i|v|p

= ϖ
`
1i(t)[i|u|p +ϖ

`
2i(t)[i|v|p.

(3.31)
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Substituting (3.28)-(3.31) into (3.27) and employing Assumption 3.2, we obtain that

LV
(
t,u,v, `, i

)
≤

{[(
(1+ k)p−1(p−2)+2

)
c`1i(t)+(1+ k)p−1(p−2)c`2i(t)+ϖ

`
1i(t)

]
[i

+(1+ k)p−1
N

∑
j=1
|γi j|[ j

}
|u|p

+

{[
k(1+ k)p−1(p−2)c`1i(t)+

(
k(1+ k)p−1(p−2)+2

)
c`2i(t)+ϖ

`
2i(t)

]
[i

+ k(1+ k)p−1
N

∑
j=1
|γi j|[ j

}
|v|p

≤

{
e`i [i +(1+ k)p−1

N

∑
j=1
|γi j|[ j + [iϖ

`
1i(t)

}
|u|p

+

{
m`

i [i + k(1+ k)p−1
N

∑
j=1
|γi j|[ j

}
|v|p

=
[
[iϖ

`
1i(t)−1

]
|u|p +

[(
m`

i − ke`i
)
[i− k

]
|v|p =

(
− c`3i|u|p + c`4i|v|p

)
ϒ′(t)
ϒ(t)

.

Hence, from conditions (3.25) and (3.26), we derive that all the conditions of Lemma 2.1 are
satisfied. From Theorems 3.2 and 3.3, one has

lim
t→∞

sup
logE|u(t)|p

logϒ(t)
≤−ε1 and lim

t→∞
sup

log |u(t)|p

logϒ(t)
≤−ε1 a.s.

where ε1 is given in Theorem 3.2. This completes the proof. �

4. NUMERICAL SIMULATION

Let ℘(t) and ρ(t) be two right-continuous Markov chain taking values in S1 = {1,2,3,4}
and S2 = {1,2}, respectively. Their infinitesimal generators are

Θ =


−2 0.25 0.75 1
2 −3 0.5 0.5

0.3 0.25 −1 0.45
1 1 2 −4

 and Γ =

[
−1 1
8 −8

]
.

In this example, we take p = 2, ϒ(t) = et , t ≥ 0, and consider the scalar nonlinear delayed
hybrid stochastic differential equations with Markovian switched noises

d
[
u(t)−D

(
u(t−σt,ρ(t)),ρ(t)

)]
= f
(
t,u(t),u(t−σt,ρ(t)),ρ(t)

)
dt

+ h̄2(t)g
(
t,u(t),u(t−σt,ρ(t)),ρ(t)

)
dw(t)

+ h̄3(t)
∫ +∞

0
h
(
t,u(t),u(t−σt,ρ(t)),y,ρ(t)

)
N(dt,dy), (4.1)
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with initial data ξ = 1, where the delay σt,ρ(t) =
0.15
ρ(t) sin(t)+0.15 ∈ [0,0.3], the terms of equa-

tion (4.1) are defined by

D(v, i) =
{

0 if i = 1
1

14v if i = 2,
h(t,u,v, i,y) =

{
yz/2 if i = 1
xz/4 if i = 2,

f (t,u,v, i) =
{
−3u−2u3 if i = 1
−(u− 1

14v)u4−9u if i = 2,
g(t,u,v, i) =

{
2u2 if i = 1√

2(u− 1
14v)u2 if i = 2,

w(t) is a one-dimensional Brownian motion and N is a one-dimensional Poisson random mea-

sure. The character measure π of the Poisson jump is given by π(dy) := 1√
2π

e
−y2

2 . For any

` ∈ S1,y ∈ [0,∞) and t ≥ 0, it is obvious to show that k = 1
14 , k1 =

15
14 , k2 =

14
13 ,

c`11(t) =−3, c`21(t) = 0, c`12(t) =−8.6786, c`22(t) = 0.3214,

β
`
11(t) = β

`
21(t) = β

`
12(t) = β

`
22(t) = 1,

h`1(y) = 2+ y2

2 h̄2
3(t) and h`2(y) = 4+ y2

4 h̄2
3(t)+2k2. Therefore, we can easily check that

e`1 =−6, e`2 =−17.357, η
1
1 = η

3
1 = 1.25, η

2
1 = η

4
1 = 1, η

1
2 = η

3
2 = 2.1301

and η
2
2 = η

4
2 = 1.0051.

Then, one has the matrix

A ` =

[
4.9286 −1.0714
−8.5714 8.7857

]
,

which is a nonsingular M-matrix for any ` ∈ S1, [ = (0.28892,0.39569)T and the coefficients
are

ϖ
1
11 =ϖ

3
11 = 0.78571, ϖ

2
11 =ϖ

4
11 = 0.53571, ϖ

1
12 =ϖ

3
12 = 1.6658, ϖ

2
12 =ϖ

4
12 = 0.54082,

ϖ
1
21 = ϖ

3
21 = 1.2832, ϖ

2
21 = ϖ

4
21 = 1.0332, ϖ

1
22 = ϖ

3
22 = 2.1633, ϖ

2
22 = ϖ

4
22 = 1.0383,

m1
1 = m3

1 = 1.2832, m2
1 = m4

1 = 1.0332, m1
2 = m3

2 = 2.8061, m2
2 = m4

2 = 1.6811,
c1

31 = c3
31 = 0.77299, c2

31 = c4
31 = 0.84522, c1

32 = c3
32 = 0.51871, c2

32 = c4
32 = 0.84375,

c1
41 = c3

41 = 0.60589, c2
41 = c4

41 = 0.50697, c1
42 = c3

42 = 1.5295, c2
42 = c4

42 = 1.0844.
Further, it is not difficult to prove that all the conditions of Theorem 3.4 are fulfilled. Thus
system (4.1) admits a unique global solution u(t), t ≥ −0.3. Moreover, these solutions are
exponentially stable in mean squares and almost surely exponentially stable.
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FIGURE 1. Trajectory of
Markov chain ρ(t) with
ρ(0) = 1.
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FIGURE 2. Trajectory of
Markov chain ℘(t) with
℘(0) = 2.
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FIGURE 3. Trajectory of
Poisson process normally
distributed
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FIGURE 4. Trajectory of
the almost surely exponen-
tial stability for the solution
of system (4.1)
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FIGURE 5. Trajectory of the exponential stability in mean square for the solu-
tion of system (4.1)
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