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Abstract. In this paper, we are interested in finding sufficient conditions, which ensure the existence
of solutions to a weak (pessimistic) bilevel optimization problem (S) in a topological sequential setting.
To this aim, we consider an approach of (S) by means of a family of regularized perturbed bilevel
optimization problems (Sn) of (S). Unlike (S), such problems (Sn) have the privilege to admit solutions
under mild assumptions. Using the notion of variational convergence, after establishing stability results,
we prove the existence of solutions to problem (S).
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1. INTRODUCTION

Let U and V be two Hausdorff topological spaces, and let X and Y be two nonempty subsets
of U and V , respectively. Let F, f : U×V →R be real valued functions. We are concerned with
the following weak (in the sense of [11] and [24]) nonlinear bilevel optimization problem

(S) : min
x∈X

sup
y∈M (x)

F(x,y),

where M (x) is the solution set of the parameterized problem

P(x) : min
y∈Y

f (x,y).

Bilevel optimization problems have various applications, such as, economics, optimal taxation,
engineering design, ecology, system planning and transportation, and so on; see, e.g., [9, 13,
29] and the references therein. In terms of game theory, problem (S) corresponds to a non-
zero-sum noncooperative game where a leader plays against a follower. The leader disposing
of full information about the follower’s constraints and objective function f announces first
a strategy x ∈ X to minimize his objective function F , and the follower responds rationally
by choosing a strategy y(x) ∈ Y to minimize his objective function f . When X̂ =

{
x ∈ X :
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M (x) is not a singleton
}

is nonempty, then, for x ∈ X̂ , any strategy y(x) ∈M (x) is suitable
for the follower, but it can generate a worst case scenario for the leader. Assume that the
leader adopts a pessimistic attitude in the game. Then, having the possibility to anticipate in the
game but not in the follower’s choice, he provides himself by minimizing the marginal function
supy∈M (x)F(x,y) over his constraint set X . From the viewpoint of the leader’s attitude, (S)
is also called a pessimistic bilevel optimization problem. In terms of hierarchical game, the
leader’s problem (S) is called the first or upper level problem, and for an announced strategy x
by the leader, the follower’s problem P(x) is called the lower level problem.

As it is well known, weak nonlinear bilevel optimization problems present difficulties in their
theoretical and numerical studies; see, e.g., [14, 16, 23, 26]. Next, we give a survey on these
two aspects of studies. Concerning the theoretical aspect, we will especially focus our attention
on the works dealing with the existence of solutions. We note that the search for sufficient
conditions ensuring the existence of solutions for such a class of problems is a difficult task.
The difficulty is mainly due to the presence of the constraint solution set M (x) (which is an
output of problem P(x)) in the first level. In contrast, bilevel optimization problems with the
formulation

min
x∈X

inf
y∈M (x)

F(x,y)

can admit solutions under mild assumptions (see [9] and [13]). Such problems are called strong
(or optimistic) bilevel optimization problems and correspond to the case where both players
cooperate. For results on the existence of solutions to weak bilevel optimization problems, we
refer to [2, 3, 4, 5, 6, 25]. Let us summarize the main results obtained in these works. In the
finite dimensional case, in [2] and [3], sufficient conditions based on convexity properties were
provided to guarantee the existence of solutions to problem (S). For x ∈ X , consider in the first
level the following relaxed auxiliary problem

PF(x) : max
y∈Y

F(x,y).

Then, in [3], it was shown that the problem of existence of solutions to (S) can be reduced
to the existence of a common solution of the two convex parameterized problems P(x) and
PF(x) for every strategy x ∈ X . The convexity of the two problems results from the data. In
[4], the existence of solutions was established for some classes of weak linear bilevel program-
ming problems via a penalty method. In [5] and [6], the existence of solutions to weak bilevel
optimization problems was established respectively via the existence of solutions to ”MinSup
and D.C. problems” and ”reverse convex and convex maximization problems”. In [25], suffi-
cient conditions were given for the existence of solutions to a class of weak bilevel optimization
problems, where the follower’s objective function was weakly analytic. Other works dealing
with optimality conditions and approximation for weak bilevel optimization problems can be
found in [1, 12, 13, 14, 19, 20, 24].

Likewise, the numerical study of the class of weak bilevel optimization problems is also a
difficult task. Let us summarize some numerical approaches in the literature for this class of
problems. Note first that the most of them concern only the linear case. In [4], using an exact
penalty method, Aboussoror and Mansouri transformed the linear pessimistic bilevel optimiza-
tion problem into a single-level optimization one. Then, under appropriate assumptions, they
showed the existence of solutions to the bilevel problem and proposed an algorithm. However,
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no numerical results were given. Dempe et al. investigated in [15] a weak bilevel linear op-
timization problem. By means of duality and the follower’s value function, they transformed
the bilevel problem to a single one. Then, they proposed algorithms for computing global
and local solutions. A numerical example was given for illustration. In [16], the authors con-
sidered the weak formulation of a bilevel electricity tariff optimization problem for demand
response management. For such a problem, they provided an algorithm with numerical exam-
ples. A comparison with the strong (optimistic) formulation was given. In [27], Malyshev and
Strekalovsky were interested in solving a quadratic-linear weak bilevel optimization problem.
They first reduced it to a sequence of strong bilevel optimization problems. Then, replacing the
lower level problem by the corresponding Karush-Kuhn-Tucker conditions and using a penalty
method, they reduced each of these strong bilevel problems to a sequence of nonconvex single
level problems. Finally, by means of this approach, they developed global and local search
algorithms with numerical examples. Following the study and the penalty method considered
in [4], Zheng et al. presented in [30] a new variant of the penalty method to solve the linear
weak bilevel programming problem. An algorithm was then given with numerical examples
for illustration. Zheng et al. in [31] studied a weak bilevel programming problem in which the
follower’s solution set was discrete. After transforming it into a one level optimization problem,
they presented a maximum entropy approach for its resolution. Numerical examples were given
for illustration.

Let us return to the theoretical framework. In this paper, via a theoretical approach, we
give sufficient conditions, which guarantee the existence of solutions to a class of weak bilevel
optimization problems of type (S). To this aim, we consider a family of weak regularized
perturbed bilevel optimization problems (Sn) of (S). These problems, which have the privilege
of admitting solutions under mild assumptions, are constructed by means of a perturbation and
a regularization. The perturbation is done on the objective functions of the two players, and the
regularization consists in substituting the constraint solution set M (x) in the first level, by the
sequential closure of the set of approximate strict ε-solutions (ε > 0) of the perturbed lower level
problem. Then, we establish some fundamental convergence results concerning the perturbed
and the original lower levels. Similarly, other intermediate stability results are established for
the first level. Finally, using these results and the notion of variational convergence, we show
under additional appropriate assumptions that any accumulation point of a sequence of solutions
of regularized perturbed problems is a solution to original problem (S). The obtained result is an
extension of those given in [7, 21, 22, 26, 28] for Stackelberg problems with unique lower level
solutions. Moreover, our result gives an extension with improvement of the previous results
established in [2] and [3] where convexity assumptions are required. The extension is from the
finite dimensional case to a general topological one, and our result is obtained without resorting
to convexity. Throughout the paper, illustrative examples are also given.

The outline of the paper is as follows. In Section 2, we recall some definitions and results
that will be used in our study. In Section 3, we introduce the family of regularized perturbed
problems and establish some fundamental results concerning the lower level, that will be used
in the sequel. In Section 4, we establish our main result on the existence of solutions to the
original problem (S). Finally, we end this paper by Section 5.
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2. PRELIMINARIES

Throughout the paper, sets X and Y are endowed with the induced topologies of U and V
respectively. We recall the following definition concerning sequential limits of sets ([17]).

Definition 2.1. Let (An)n∈N be a sequence of nonempty subsets of a Hausdorff topological space
W . The sequential liminf and limsup of the sequence (An)n are the sets defined as follows

1) liminfn→+∞ An =
{

y ∈W /∃yn→ y, as n→+∞,yn ∈ An,∀n ∈ N
}

,

2) limsupn→+∞ An =
{

y ∈W /∃ynk → y, as k→+∞,ynk ∈ Ank ,∀k ∈ N
}

.

In the sequel, for a subset A of a Hausdorff topological space W , A and Aseq denote respec-
tively the topological and the sequential closure of A in W , where we recall that

Aseq
=
{

x ∈W : ∃(xk)⊂ A,xk→ x, as k→+∞

}
,

i.e., the set of limits of all converging sequences of A. Set A is called sequentially closed if
A = Aseq. Then, we have Aseq ⊂ A. When the topological space is first countable, the two
notions of closure coincide (see [17]). Set A is said to be sequentially compact if any sequence
in A admits a subsequence converging to a point of A.

Remark 2.1. We recall that, in a Hausdorff topological space W , the topological liminf and
limsup of sets are closed ([10]) (and hence sequentially closed). When W is a first count-
able topological space, the topological and sequential definitions of liminf and limsup of sets
coincide ([17]).

For the convenience of the reader, we recall the following definition and some fundamen-
tal results on the convergence of solution sets of optimization problems based on the use of
variational convergence.

Definition 2.2. ([8, 32]) Let ϕn,ϕ : Y →R, n ∈N, be functions. We say that the sequence (ϕn)
variationally converges to ϕ , if the following properties are satisfied

i) For any y∈Y and any sequence (yn) converging to y in Y , we have liminfn→+∞ ϕn(yn)≥
ϕ(y),

ii) For any y ∈ Y , there exists a sequence (yn) in Y , such that limsupn→+∞ ϕn(yn)≤ ϕ(y).

Consider the following minimization problems

(Rn) : min
y∈Y

ϕn(y), (R) : min
y∈Y

ϕ(y).

Let ArgminRn and ArgminR denote, respectively, their solution sets. For ε > 0, let ε-ArgminRn
and ε-ArgminR denote, respectively, their sets of approximate ε-solutions. Then, we have the
following well known fundamental convergence results.

Theorem 2.1. ([8, 32]) Assume that the sequence (ϕn) variationally converges to ϕ . Then,
i) limsupn→+∞ ArgminRn ⊂ ArgminR,
ii) for any sequence εn↘ 0+, limsupn→+∞ εn-ArgminRn ⊂ ArgminR.

Remark 2.2. In the case that V is a first countable Hausdorff topological space, the result of
Theorem 2.1 means that any accumulation point of a sequence of solutions or approximate
εn-solutions of problems (Rn), n ∈ N, is a solution to problem (R).



EXISTENCE OF SOLUTIONS FOR WEAK BILEVEL PROGRAMMING PROBLEMS 183

3. A REGULARIZATION AND PERTURBATION APPROACH

In this section, we first introduce a regularized perturbed problem (Sn) of (S), and then under
appropriate mild assumptions, we prove the existence of solutions to problem (Sn). This result
is fundamental to establish the existence of solutions to original problem (S).

3.1. The regularization and perturbation approach. Let us consider sequences of pertur-
bations (Fn) and ( fn) of leader’s and follower’s objective functions F and f respectively, with
Fn, fn : X ×Y → R, n ∈ N. Let Mn(x) and M s

n (x,ε), ε > 0, denote respectively the set of so-
lutions and the set of approximate strict ε-solutions of the following perturbed parameterized
problem

Pn(x) : min
y∈Y

fn(x,y),

and let
vn(x) = inf

y∈Y
fn(x,y)

denote its infimal value. If vn(x) is a finite real number, then M s
n (x,ε) has the following expres-

sion
M s

n (x,ε) =
{

y ∈ Y/ fn(x,y)< vn(x)+ ε

}
.

Let εn↘ 0+ be a fixed sequence in the rest of the paper, and consider the following regularized
perturbed problem of (S)

(Sn) : min
x∈X

sup
y∈M s

n (x,εn)
seq

Fn(x,y).

The regularization consists in substituting the solution set M (x) by the set M s
n (x,εn)

seq
.

We will use the following assumptions:
(3.1) For any n ∈ N, fn satisfies the following property:

For any (x,y) ∈ X ×Y , and any sequence (xk) converging to x in X , there exists a
sequence (yk) converging to y in Y such that limsupk→+∞ fn(xk,yk)≤ fn(x,y).

(3.2) For any n ∈ N, fn is sequentially lower semicontinuous on X×Y .
(3.3) For any n ∈ N, Fn is sequentially lower semicontinuous on X×Y .
(3.4) For any (x,y) ∈ X ×Y , and any sequence (xn) converging to x in X , there exists a se-

quence (yn) converging to y in Y such that limsupn→+∞ fn(xn,yn)≤ f (x,y).
(3.5) For any (x,y) ∈ X×Y , and any sequence (xn,yn) converging to (x,y) ∈ X×Y , we have

liminf
n→+∞

fn(xn,yn)≥ f (x,y).

Let us give the following remarks concerning the above assumptions which are useful in the
sequel.

Remark 3.1. i) Under assumption (3.2) and the sequential compactness of Y , for any
(n,x) ∈ N×X , vn(x) is a finite real number, and Mn(x) is a sequentially compact set.

ii) Let (xn) be a sequence converging to x in X . Then, assumptions (3.4) and (3.5) imply
that ( fn(xn, .))n epiconverges to f (x, .) ([8]). Such assumptions were used in several
works in different contexts (see, for example, [1, 18, 19, 21, 22, 26]). They were princi-
pally used in a sequential setting and they served in general to show stability results.

iii) In a first countable Hausdorff topological space, the notions of topological and sequen-
tial ”continuity, lower, and upper semicontinuities” coincide ([17]).



184 H. KERAOUI, F.E. SAISSI, A. ABOUSSOROR

iv) It is easy to see that if a function is sequentially upper semicontinuous, then it satisfies
assumption (3.1). The converse is not true in general as we see in the following example.

Example 3.1. Let X = Y = [1,2], and h be the function defined on R×R by

h(x,y) =
{
−x2−1, if y = 1,
−(y− x)2, if y 6= 1.

Then, we can easily verify that h is not upper semicontinuous at (x,1) for any x ∈ X , but it
satisfies assumption (3.1). In fact

i) if y = 1, we choose yk = 1 for all k ∈ N,
ii) if y ∈]1,2], then any sequence (yk)⊂ [1,2] converging to y is suitable.

3.2. Convergence results of the lower level. In this subsection, we establish some conver-
gence results concerning principally the solution and approximate solution sets of the original
and the perturbed lower level problems P(x) and Pn(x), respectively.

Proposition 3.1. Let n ∈ N. Assume that assumptions (3.1) and (3.2) hold. If moreover, set Y
is sequentially compact, then, for any x ∈ X and any sequence (xk) converging to x in X,

1) limk→+∞ vn(xk) = vn(x),
2) M s

n (x,εn)
seq ⊂ liminfk→+∞ M s

n (xk,εn)
seq

, i.e., the multifunction M s
n (.,εn)

seq
is sequen-

tially lower semicontinuous on X.

Proof. 1) First, note that vn(x) is a finite real number (Remark 3.1). Let y ∈ Y . Assumption
(3.1) implies that there exists a sequence (yk)⊂ Y converging to y in Y such that

limsup
k→+∞

fn(xk,yk)≤ fn(x,y).

It follows that

limsup
k→+∞

vn(xk)≤ limsup
k→+∞

fn(xk,yk)≤ fn(x,y).

Since y is arbitrary in Y , one sees that limsupk→+∞ vn(xk) ≤ vn(x). Now, let us show that
liminfk→+∞ vn(xk)≥ vn(x). Assume the contrary that there exists α ∈ R such that

liminf
k→+∞

vn(xk)< α < vn(x). (1)

Set liminfk→+∞ vn(xk) = lim k→+∞

k∈N
vn(xk), where N is an infinite subset of N. Then, there exists

k0 ∈N such that vn(xk) < α , for all k ≥ k0, k ∈N . Hence, for all k ≥ k0 and k ∈N , there
exists yk ∈ Y such that fn(xk,yk) < α . Since Y is sequentially compact, then there exists an
infinite subset N1 ⊂N0 such that (yk)k∈N1 converges to a point ȳ ∈Y . Then, using assumption
(3.2), we obtain

vn(x)≤ fn(x, ȳ)≤ liminf
k→+∞

fn(xk,yk)≤ α,

which gives a contradiction to the last strict inequality in (1). Hence liminfk→+∞ vn(xk)≥ vn(x).
We conclude that limk→+∞ vn(xk) = vn(x).

2) Let y ∈M s
n (x,εn), i.e., fn(x,y)− vn(x) < εn. From assumption (3.1), there exists a se-

quence (yk) ⊂ Y , converging to y in Y such that limsupk→+∞ fn(xk,yk) ≤ fn(x,y). Assumption
(3.2) implies that limk→+∞ fn(xk,yk) = fn(x,y). Besides, we have limk→+∞ vn(xk) = vn(x). Then

lim
k→+∞

( fn(xk,yk)− vn(xk)) = fn(x,y)− vn(x)< εn,
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and hence fn(xk,yk)< vn(xk)+εn for large k. That is, yk ∈M s
n (x,εn) for large k. It follows that

M s
n (x,εn)⊂ liminf

k→+∞
M s

n (xk,εn)⊂ liminf
k→+∞

M s
n (xk,εn)

seq
.

Since liminfk→+∞ M s
n (xk,εn)

seq
is closed (Remark 2.1) and hence sequentially closed, then

M s
n (x,ε)

seq ⊂ liminf
k→+∞

M s
n (xk,εn)

seq
.

�

Recall that εn ↘ 0+ is a sequence fixed throughout the paper. Define on X the marginal
function wn(.) by

wn(x) = sup
y∈M s

n (x,εn)
seq

Fn(x,y).

Then, problem (Sn) is written as

(Sn) : min
x∈X

wn(x).

We obtain the following result on the existence of solutions to problem (Sn).

Theorem 3.1. Let n ∈ N. Assume that X and Y are sequentially compact and that assumptions
(3.1)-(3.3) are satisfied. Then, problem (Sn) has at least one solution.

Proof. Let us show that the marginal function wn(.) is sequentially lower semicontinuous on
X sequentially compact. Let x ∈ X and (xk) be a sequence converging to x in X . Let y ∈
M s

n (x,εn)
seq

. From property 2) of Proposition 3.1, there exists a sequence (yk) converging to y,
with yk ∈M s

n (xk,εn)
seq

, for large k. Then, wn(xk)≥ Fn(xk,yk) for large k. By using assumption
(3.3), we obtain

liminf
k→+∞

wn(xk) ≥ liminf
k→+∞

Fn(xk,yk)≥ Fn(x,y).

Since y is arbitrary in M s
n (x,εn)

seq
, we deduce that

liminf
k→+∞

wn(xk) ≥ sup
y∈M s

n (x,εn)
seq

Fn(x,y) = wn(x).

That is, marginal function wn(.) is sequentially lower semicontinuous on X . Then, the result
follows from the sequential compactness of X immediately. �

Let (x,n) ∈ X ×N. Let v(x) denote the infimal value of the lower level problem P(x), and
let Mn(x,εn) denote the set of approximate εn-solutions of problem Pn(x). Assume that its
infimal value vn(x) is a finite real number. In this case, Mn(x,εn) has the following expression

Mn(x,εn) =
{

y ∈ Y : fn(x,y)≤ vn(x)+ εn
}
.

Then, we have the following convergence result.

Proposition 3.2. Assume that assumptions (3.4) and (3.5) hold. If, moreover, the set Y is se-
quentially compact, then, for any x ∈ X and any sequence (xn) converging to x in X,

1) limn→+∞ vn(xn) = v(x),
2) limsupn→+∞ Mn(xn,εn) ⊂M (x), i.e., the sequence of multifunctions (Mn(.,εn))n is se-

quentially upper convergent to the multifunction M (.) ([18]).
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Proof. 1) The proof is similar to the proof of 1) of Proposition 3.1. So it is omitted here.
2) Let y ∈ limsupk→+∞ Mn(xn,εn). There exists a subsequence (yn)n∈N converging to y,

with yn ∈Mn(xn,εn), for all n ∈N , where N is an infinite subset of N. Then

fn(xn,yn)≤ vn(xn)+ εn, ∀n ∈N .

Assumption (3.5) implies that

f (x,y) ≤ liminf
n→+∞

fn(xn,yn)≤ limsup
n→+∞

fn(xn,yn)≤ limsup
n→+∞

(vn(xn)+ εn)≤ v(x).

That is y ∈M (x). �

Corollary 3.1. Assume that Y is sequentially compact and that assumptions (3.4), (3.5) and the
following assumption are satisfied

(3.6) for any (x,n) ∈ X×N, function fn(x, .) is sequentially lower semicontinuous on Y .
Then, for any x ∈ X and any sequence (xn) converging to x in X,

limsup
n→+∞

M s
n (xn,εn)

seq ⊂M (x).

Proof. Assumption (3.6) implies that set Mn(xn,εn) is sequentially closed. Hence, M s
n (xn,εn)

seq⊂
Mn(xn,εn). Then, Proposition 3.2 implies that

limsup
n→+∞

M s
n (xn,εn)

seq ⊂M (x).

�

Note that assumption (3.2) implies assumption (3.6). For x ∈ X , consider in the upper level
the following relaxed problem

PF(x) : max
y∈Y

F(x,y),

and let MF(x) denote its solution set. The term relaxed is used in the sense that the constraint
solution set M (x) is substituted by the set Y .

Proposition 3.3. Assume that assumption (3.6) and the following assumptions are satisfied
(3.7) for any (x,y) ∈ X ×Y , and any sequence (xn) converging to x in X, there exists a

sequence (yn) in Y such that limsupn→+∞ fn(xn,yn)≤−F(x,y),
(3.8) for any (x,y) ∈ X×Y , and any sequence (xn,yn) converging to (x,y) ∈ X×Y ,

liminf
n→+∞

fn(xn,yn)≥−F(x,y).

Then, for any x ∈ X and any sequence (xn) converging to x in X,

limsup
n→+∞

M s
n (xn,εn)

seq ⊂MF(x).

Proof. By assumptions (3.7) and (3.8), one sees that ( fn(xn, .))n variationally converges to
F̂(x, .) =−F(x, .). Let MF̂(x) denote the solution set of problem

PF̂(x) : min
y∈Y

F̂(x,y).

Then, Theorem 2.1 implies that

limsup
n→+∞

Mn(xn,εn)⊂MF̂(x) = MF(x).
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Since M s
n (xn,εn)⊂Mn(xn,εn), which is sequentially closed, then M s

n (xn,εn)
seq ⊂Mn(xn,εn).

It follows that

limsup
n→+∞

M s
n (xn,εn)

seq ⊂ limsup
n→+∞

Mn(xn,εn)⊂MF(x).

�

Remark 3.2. i) Note that, in the rule of this game, it is assumed that the leader has full
information about the follower. Moreover, assume that the leader knows the perturbation
on the data f and F . Then, he has the possibility to verify the fulfillment of the properties
in (3.7) and (3.8).

ii) The role of assumptions (3.7) and (3.8) is twofold. On the one hand, they link the
first and the second levels. On the other hand, they serve to establish stability results.
They are similar to assumptions (3.4) and (3.5), except that (3.7) is weaker than (3.4)
concerning the fact that this latter requires the convergence of the sequence (yn). Note
that assumptions (3.4) and (3.5), which were widely used (see, e.g., [1, 18, 21, 22, 26]),
are in particular satisfied in the case of barrier and penalty methods (see [22, 28]).

We consider the following example borrowed from [22] where assumptions (3.7) and (3.8)
are satisfied.

Example 3.2. Let fn,F : R×R→ R, n ∈ N∗ be the functions defined by

if x≤ 0, fn(x,y) = 0, for y ∈ R,

if x > 0, fn(x,y) =

{
0, for y≤ 0,

−nyexp
[
−
(ny

x

)2 ]
, for y > 0,

and

F(x,y) =

{ x√
2exp(1)

, for y = 0 and x > 0,

0, otherwise.

Then, ( fn) and −F satisfy assumptions (3.7) and (3.8).

4. EXISTENCE OF SOLUTIONS TO PROBLEM (S)

In this section, using the convergence results concerning the first and second levels, we es-
tablish our main result on the existence of solutions to the original weak bilevel optimization
problem (S). The notion of variational convergence plays an important role in establishing this
result.

In the following, for a subset A of U , ψA denotes the indicator function of the set A, i.e.,

ψA(x) =
{

0, if x ∈ A,
+∞, if x 6∈ A.

The following results of Proposition 4.1 and Corollary 4.1 will be established for arbitrary x∈ X
and (xn)⊂ X , with (xn) a sequence converging to x in X . Such results are fundamental to obtain
our main result on the existence of solutions to problem (S).
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Let x ∈ X , and (xn)n be a sequence converging to x in X . Consider the following auxiliary
maximization problems in the first level

S(x) : max
y∈M (x)

F(x,y), and Sn(xn) : max
y∈M s

n (xn,εn)
seq

Fn(xn,y),

which are respectively equivalent to the following minimization problems

Q(x) : min
y∈Y
{−F(x,y)+ψ

M (x)(y)},

and
Qn(xn) : min

y∈Y
{−Fn(xn,y)+ψ

M s
n (xn,εn)

seq (y)}.

The equivalence is in the sense that S(x) (resp. Sn(xn)) and Q(x) (resp. Qn(xn)) have the same
solution set and opposite optimal values. Define the functions φ(.) and φn(.) on Y by

φ(y) =−F(x,y)+ψ
M (x)(y),

and
φn(y) =−Fn(xn,y)+ψ

M s
n (xn,εn)

seq (y).

Then we have the following convergence result.

Proposition 4.1. Let Y be sequentially compact and assume that assumptions (3.4)-(3.8) and
the following assumption are satisfied

(4.1) (Fn)n sequentially continuously converges to F.
Then, (φn) variationally converges to φ .

Proof. 1) Let ȳ ∈ Y and (ȳn) be a sequence converging to ȳ in Y . Let us show that

liminf
n→+∞

φn(ȳn)≥ φ(ȳ).

We prove in the following cases.
i) If ȳ ∈M (x), then φ(ȳ) =−F(x, ȳ) and

liminf
n→+∞

φn(ȳn) = liminf
n→+∞

{−Fn(xn, ȳn)+ψ
M s

n (xn,εn)
seq (ȳn)}

≥ liminf
n→+∞

(−Fn(xn, ȳn))

= lim
n→+∞

(−Fn(xn, ȳn))

= −F(x, ȳ) = φ(ȳ).

ii) If ȳ 6∈M (x), then φ(ȳ) = +∞. Moreover, we have ȳn 6∈M s
n (xn,εn)

seq
for large n ∈ N.

Otherwise, there exists an infinite subset N1 ⊂ N such that ȳn ∈M s
n (εn,xn)

seq
for all n ∈N1.

Then, from Corollary 3.1, we have

ȳ ∈ limsup
k→+∞

M s
n (xn,εn)

seq ⊂M (x),

which gives a contradiction to the fact that ȳ 6∈M (x), which implies yn 6∈M s
n (xn,εn)

seq
for

large n ∈ N. Hence, φn(ȳn) = +∞ for large n ∈ N, and the result follows.
2) Now, let ȳ∈Y . We show that there exists a sequence (y∗n) in Y such that limsupn→+∞ φn(y∗n)≤

φ(ȳ). Then, we have two cases to consider:
i) If ȳ 6∈M (x), then, φ(ȳ) = +∞, and the result is obvious.
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ii) If ȳ ∈M (x), then φ(ȳ) = −F(x, ȳ). For n ∈ N, let y∗n ∈M s
n (xn,εn)

seq
. Then, φn(y∗n) =

−Fn(xn,y∗n). Let N2 be an infinite subset of N such that

limsup
n→+∞

φn(y∗n) = limsup
n→+∞

(−Fn(xn,y∗n)) = lim
n→+∞

n∈N2

(−Fn(xn,y∗n)).

Using the sequential compactness of Y , there exists an infinite subset N3 of N2 such that y∗n→
y∗ as n→+∞, n ∈N3. Then, y∗ ∈ limsupn→+∞ M s

n (xn,εn)
seq

, and Proposition 3.3 implies that
y∗ ∈MF(x). That is, y∗ solves the problem

PF(x) : max
y∈Y

F(x,y).

It follows that

limsup
n→+∞

φn(y∗n) = lim
n→+∞

n∈N2

(−Fn(xn,y∗n))

= lim
n→+∞

n∈N3

(−Fn(xn,y∗n)) =−F(x,y∗)

≤ −F(x, ȳ) = φ(ȳ),

where the inequality follows from the fact that y∗ solves the problem PF(x) and ȳ is a feasible
point to PF(x). �

Corollary 4.1. Let the assumptions of Proposition 4.1 hold. Then

limsup
n→+∞

ArgminQn(xn)⊂ ArgminQ(x).

Proof. The result follows by using Proposition 4.1 and Theorem 2.1. �

For x∈X , set w(x)= supy∈M (x)F(x,y). Then, the original weak bilevel optimization problem
is written as

(S) : min
x∈X

w(x).

Let ArgminS and ArgminSn denote the solution sets of problems (S) and (Sn), respectively.
Now, we are able to state the following theorem on the existence of solutions to problem (S).

Theorem 4.1. Let X and Y be sequentially compact and assume that assumptions (3.1)-(3.5),
(3.7), (3.8), and (4.1) and the following assumption are satisfied

(4.2) for any (x,n) ∈ X×N, Fn(x, .) is sequentially upper semicontinuous on Y .
Then

i) limsupn→+∞ ArgminSn 6= /0,
ii) limsupn→+∞ ArgminSn ⊂ ArgminS.

Then the original weak bilevel optimization problem (S) admits at least one solution.

Proof. i) According to Theorem 3.1, for every n∈N, regularized perturbed problem (Sn) admits
a solution xn. Since X is sequentially compact, then (xn) admits a subsequence converging to a
point x ∈ X . It follows that x ∈ limsupn→+∞ ArgminSn.

ii) Let x̄∈ limsupn→+∞ ArgminSn. Let us show that x̄∈ArgminS. There exists a subsequence
(x̄n)n∈N0 , converging to x̄, with x̄n ∈ ArgminSn, for all n ∈ N0, and N0 is an infinite subset
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of N. Assume that x̄ 6∈ ArgminS. Then, there exists x∗ ∈ X , such that w(x∗) < w(x̄), i.e.,
supy∈M (x∗)F(x∗,y)< w(x̄). Hence

F(x∗,y)< w(x̄), ∀ y ∈M (x∗). (2)

For n ∈N0, let ȳn be a solution to

max
y∈M s

n (εn,x̄n)
seq

Fn(x̄n,y).

That is ȳn ∈ ArgminQn(x̄n) (such a point exists from the sequential compactness of the set
M s

n (εn, x̄n)
seq

and the sequential upper semicontinuity of the function Fn(x̄n, .)). Hence

wn(x̄n) = Fn(x̄n, ȳn). (3)

From the sequential compactness of Y , there exists an infinite subset N1 of N0 such that ȳn→ ȳ
as n→ +∞, n ∈N1. Hence, ȳ ∈ limsupn→+∞ ArgminQn(x̄n) and then Corollary 4.1 implies
ȳ ∈ AgrminQ(x̄), that is,

w(x̄) = F(x̄, ȳ), (4)

and ȳ ∈M (x̄). For n ∈N1, let y∗n be a solution to maxy∈M s
n (x∗,εn)

seq Fn(x∗,y) (such a point exists

since M s
n (x∗,εn)

seq
is a sequentially compact set and the function Fn(x∗, .) is sequentially upper

semicontinuous on Y ), i.e.,
wn(x∗) = Fn(x∗,y∗n), (5)

and y∗n ∈M s
n (x∗,εn)

seq
. From the sequential compactness of Y , there exists an infinite subset

N2 ⊂N1 such that y∗n→ y∗ as n→ +∞, n ∈N2. Since y∗n ∈M s
n (x∗,εn)

seq
for all n ∈N ∗

2 , it
follows that (Corollary 3.1)

y∗ ∈ limsup
n→+∞

M s
n (x∗,εn)

seq ⊂M (x∗).

Then, from properties (2) and (4), we have F(x∗,y∗) < w(x̄) = F(x̄, ȳ). Therefore, assumption
(4.1) implies that Fn(x∗,y∗n)< Fn(x̄n, ȳn) for large n ∈N2. Finally, using (5) and (3), we obtain
wn(x∗) < wn(x̄n), for large n ∈N2. This strict inequality contradicts the optimality of x̄n to
problem (Sn), for large n ∈N2. We conclude that x̄ is a solution to problem (S). �

Moreover, if space U satisfies the first axiom of countability, we obtain an improvement of
the result of Theorem 4.1.

Theorem 4.2. Let the assumptions of Theorem 4.1 hold. If, moreover, topological space U
is first countable, then any accumulation point of a sequence of solutions of the regularized
perturbed problems (Sn) solves the original weak bilevel optimization problem (S).

Proof. For n ∈ N, let x̃n be a solution of the regularized perturbed problem (Sn), i.e., x̃n ∈
ArgminSn. Let x̃∈ X be an accumulation point of the sequence (x̃n)n. Since U is first countable,
then there exists a subsequence (x̃n)n∈N , converging to x̃, where N is an infinite subset of
N. It follows that x̃ ∈ limsupn→+∞ ArgminSn. Then, by ii) of Theorem 4.1 we deduce that
x̃ ∈ ArgminS. That is x̃ solves the original weak bilevel optimization problem (S). �

We present the following example where all assumptions of Theorem 4.2 are satisfied.
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Example 4.1. Let X = [1,2],Y = [0,3]× [1,2], F, f , Fn, and fn,n∈N∗, be the functions defined
on R2 by

fn(x,y) =−y1e−(
y1
xy2

)2
+

1
n
, f (x,y) =−y1e−(

y1
xy2

)2
,

and

Fn(x,y) =
(xy2− 1

n)√
2e

e
1
n , F(x,y) =

xy2√
2e

.

Then, we have that F is continuous on X×Y , and X and Y are compact sets. Moreover, we can
verify via simple calculus that assumptions (3.1)-(3.5), (3.7), (3.8), and (4.1)-(4.2) are satisfied.

5. CONCLUSIONS

It is known that the study of existence of solutions to weak bilevel optimization problems is a
difficult task in general. In this paper, in order to provide sufficient conditions to guarantee the
existence of solutions to the weak bilevel optimization problem (S), we considered an approach
with two operations, a perturbation and a regularization. The perturbation is done on the ob-
jective functions of the two players, and the regularization consists in replacing the constraint
solution set M (x) in the first level by the sequential closure of the approximate strict ε-solutions
of the perturbed lower level problem. Under mild assumptions we demonstrated that every reg-
ularized perturbed problem admits solutions. Using the notion of variational convergence and
the results obtained for the regularized perturbed problems, we proved the existence of solutions
to original problem (S). More precisely, we shown that any accumulation point of a sequence
of solutions to the regularized perturbed problem is a solution to problem (S). The obtained
result is an extension of those given in [7, 21, 22, 26, 28] for Stackelberg problems with unique
lower level solution. Moreover, it gives an extension with improvement of the previous results
established under convexity assumptions in [2] and [3]. In fact, our result is established without
resorting to convexity, and it gives an extension from the finite dimensional case to a general
topological one. Finally, we note that this approach raises the question of finding adaptable
approximation methods to solve problem (S).
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