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Abstract. In this paper, we study the problem of finding a solution of a pseudomonotone variational
inequality problem with the constraints of fixed points of a finite family of demicontractive multival-
ued mappings. We introduce a new generalized viscosity inertial Tseng’s extragradient method which
uses self-adaptive step sizes. Unlike some existing results in this direction, we prove our strong conver-
gence theorems without the sequentially weakly continuity condition of the pseudomonotone operator
and without the knowledge of Lipschitz constants. Moreover, our strong convergence results do not fol-
low the conventional “two cases” approach, which was often employed in proving strong convergence.
Finally, we apply our result to convex minimization problems and present several numerical experiments
to illustrate the performance of the proposed algorithms in comparison with other existing methods in
the literature.
Keywords. Demicontractive multivalued mappings; Inertial algorithm; Self-adaptive step size; Varia-
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1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈., .〉 and induced norm ‖.‖. In this paper, we
consider the variational inequality problem (VIP) of finding a point p ∈C such that

〈Ap,x− p〉 ≥ 0, ∀x ∈C, (1.1)

where C is a convex and closed set in H, and A : H→ H is a nonlinear operator. We denote by
V I(C,A) the solution set of the VIP (1.1).

Variational inequality theory is a vital tool that are often used in physics, economics, engi-
neering, optimization theory, operator theory, and many others. Solution method of variational
inequalities is an active area of research both in theory and applications. The two common
approaches to solve VIP are regularized methods and projection methods. In this work, the
projection method is adopted and the class of pseudomonotone operators is considered.

For any elements x,y ∈ H, we recall that a mapping A : H→ H is said to be:
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(1) η-strongly monotone if there exists a constant η > 0 such that

〈Ax−Ay,x− y〉 ≥ η‖x− y‖2;

(2) η-inversely strongly monotone if there exists a constant η > 0 such that

〈Ax−Ay,x− y〉 ≥ η‖Ax−Ay‖2;

(3) monotone if 〈Ax−Ay,x− y〉 ≥ 0;
(4) η-strongly pseudomonotone if there exists a constant η > 0 such that

〈Ay,x− y〉 ≥ 0⇒ 〈Ax,x− y〉 ≥ η‖x− y‖2,

(5) pseudomonotone if 〈Ay,x− y〉 ≥ 0⇒ 〈Ax,x− y〉 ≥ 0;
(6) Lipschitz-continuous if there exists a constant L > 0 such that ‖Ax−Ay‖ ≤ L‖x−y‖; A is

said to be a contraction mapping if L ∈ [0,1);
(7) sequentially weakly continuous if, for each sequence {xn}, xn ⇀ x⇒ Axn ⇀ Ax.
It is clear from the definitions above that (1)⇒ (3)⇒ (5) and (1)⇒ (4)⇒ (5). However,

the converse is not generally true.
The simplest celebrated projection method for solving VIP is the gradient method (GM),

which involves a single projection onto feasible set C per iteration. Sibony [1] proposed the
classical gradient projection algorithm as follows:

xn+1 = PC(xn−λAxn). (1.2)

Algorithm (1.2) is also called the projected-gradient method (PGM), where PC represents the
metric projection onto C, A is L-Lipschitz continuous and η- strongly monotone, and step size
λ ∈ (0, 2η

L2 ). If VI(C, A) is nonempty, then the iterative sequence {xn} generated by (1.2) con-
verges to a solution of the (VIP). The sequence generated by algorithm (1.2) only converges
weakly when the operator is either strongly monotone or inverse-strongly monotone but fails to
converge when the operator is only monotone.

Recently, Malitsky [2] proposed a projected reflected gradient method (PRGM), which is an
improvement over the PGM. The (PRGM) is defined as follows:

xn+1 = PC(xn− γA(2xn− xn−1)), ∀n≥ 1.

Malitsky proved that the sequence generated by (1) converges to an element in VI(C,A) when
mapping A is monotone.

Korpelevich [3] and Antipin [4] relaxed the conditions in Algorithm (1.2) and proposed the
extragradient method (EGM) for solving the VIP (1.1). Initially, the algorithm proposed by
Korpelevich was used to solve saddle point problems but later it was extended to solve VIPs
in both Euclidean and infinite dimensional Hilbert spaces. The (EGM) method is proposed as
follows: 

x0 ∈C,

yn = PC(xn−λAxn),

xn+1 = PC(xn−λAyn),

where λ ∈ (0, 1
L), A is monotone and L-Lipschitz continuous, and PC is the metric projection

from H onto C. The algorithm only converges weakly to an element in VI(C,A) if set VI(C,A) is
nonempty.
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Over the years, (EGM) has been extensively used and extended by several researchers to
approximate the solution of (VIP) in infinite dimensional spaces. Recently, this iterative scheme
was extended by Vuong [5] to solve pseudomonotone variational inequalities in Hilbert spaces.
However, due to the extensive amount of time required in executing the EGM method, as a
result of calculating two projections onto closed and convex set C in each iteration, Censor et
al. [6] proposed the subgradient extragradient method (SEGM) in which the second projection
onto C was replaced by a projection onto a half space, which is given as follows:

yn = PC(xn−λAxn),

Tn = {w ∈ H : 〈xn−λAxn− yn,w− yn〉 ≤ 0},
xn+1 = PTn(xn−λAyn) ∀n≥ 0,

(1.3)

where λ ∈ (0, 2
L). The weak convergence result of algorithm (1.3) motivated the authors in [6]

to introduce a hybrid subgradient extragradient method in [7], which generates a strong conver-
gence sequence. In the same vein, Tseng [8] improved the (EGM) method, by introducing the
Tseng’s extragradient method (TEGM) which only requires one projection per iteration. The
scheme is as follows: {

yn = PC(xn−λAxn),

xn+1 = yn +λ (Axn−Ayn),∀n≥ 0,
(1.4)

where A is monotone, L-Lipschitz continuous, and λ ∈ (0, 2
L). TEGM (1.4) converges to a

solution of the VIP with the assumption that VI(C, A) is nonempty.
In this work, we consider the inertial technique which is a two-step iteration process for ac-

celerating the speed of convergence of iterative schemes. This technique was derived by Polyak
[9] from a dynamic system called the heavy ball with friction. Over the years, several authors
have incorporated this technique in their methods for solving various optimization problems;
see, e.g., [10–15] and the references therein.

Recently, Tan and Qin in [16] proposed an inertial Tseng’s extragradient method (ITEM)
for approximating the solution of VIP (1.1) in Hilbert spaces. Their proposed algorithm is as
follows: 

sn = xn +δn(xn− xn−1),

yn = PC(sn− γnAsn),

zn = yn− γn(Ayn−Asn),

xn+1 = αn f (zn)+(I−ϕn)zn,

where

δn =

{
min

{
εn

‖xn−xn−1
,δ
}
, if xn 6= xn−1,

δ , otherwise
and

γn+1 =

{
min

{
φ‖rn−yn‖
‖Arn−Ayn‖ ,ψn

}
, if Arn−Ayn 6= 0,

ψn, otherwise.
where f is a contraction and A is a pseudomonotone Lipschitz continuous and sequentially
weakly continuous mapping.

Another problem of interest in this study is the fixed point problem. Let S : H → H be a
nonlinear map. The fixed point problem (FPP) is defined as finding a point p ∈ H (called the
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fixed point of S) such that Sp = p. We denote by F(S), the set of all fixed points of S, i.e.,
F(S) = {p ∈ H : Sp = p}. If S is a multivalued mapping, i.e., S : H→ 2H , then p ∈ H is called
a fixed point of S if p ∈ Sp. Our interest in this study is to approximate a common solution of
VIP (1.1) and FPP p∈ Sp.. That is, to find a point x∗ ∈H such that x∗ ∈V I(C,A)∩F(S), where
S is a multivalued mapping.

Recently, the common solution problem has received great research attention and several
iterative methods have been proposed for finding its solution; see, e.g., [11, 17–22] and the
references therein. The motivation for studying such a problem lies in its potential application
to mathematical models whose constraints can be expressed as V IP and FPP. This arises in
areas like image recovery, signal processing, and network resource allocation. A particular
example of this is in network bandwidth allocation problem for two services in a heterogeneous
wireless access networks in which the bandwidth of the services are related mathematically;
see, e.g., [23, 24].

Very recently, Cai et al. [25] introduced the following inertial Tseng’s extragradient method
for finding the common solution of pseudomonotone variational inequality problem and fixed
point problem for nonexpansive mappings in real Hilbert spaces:

x0,x1 ∈ H,

wn = xn +θn(xn− xn−1),

yn = PC(wn−ψAwn),

zn = yn−ψ(Ayn−Awn),

xn+1 = αn f (xn)+(1−αn)[βnT zn +(1−βn)zn],

(1.5)

where f is a contraction, T is a nonexpansive mapping, A is pseudomonotone, L-Lipschitz and
sequentially weakly continuous, and ψ ∈ (0, 1

L). They established strong convergence result for
the proposed method under certain conditions. One of the major drawbacks of the above algo-
rithms for solving pseudomonotone variational inequality problems and several other existing
methods in the literature is that the pseudomonotone operator is required to be sequentially
weakly continuous, which is a stringent condition. Moreover, several of the existing methods,
such as Algorithm (1.5), require knowledge of the Lipschitz constant of the pseudomonotone
operator for their implementation. However, the Lipschitz constant is unknown or difficult to
calculate or even estimate, which makes the implementation of these algorithms infeasible.

Motivated by the above results and the ongoing research activities in this direction, in this
paper, we propose a new generalized viscosity method, which combines the inertial Tseng’s
extragradient method with self-adaptive step size for approximating a common solution of
pseudomonotone variational inequality problem and common fixed point of finite family of
demicontractive multivalued mappings in Hilbert spaces. We prove strong convergence theo-
rems without the sequentially weakly continuity condition of the pseudomonotone operator and
without the knowledge of Lipschitz constants. More precisely, our proposed method has the
following features:

(i) Our algorithm converges to the common solution of pseudomonotone variational in-
equality problem and common fixed points of a finite family of multivalued demicon-
tractive mappings.

(ii) The proposed method only requires one projection per iteration onto the feasible set,
which improves the efficiency of the algorithm and minimizes computational cost.
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(iii) The viscosity method and the inertial technique, which are two of the efficient tech-
niques for accelerating rate of convergence of iterative methods are employed in our
proposed algorithm.

(iv) In addition, the proposed method does not require the sequentially weakly continuity
condition of the pseudomonotone operator neither does it require knowledge of the Lip-
schitz constant of the operator for its implementation.

(v) We establish strong convergence results without following the conventional ”two-cases”
approach, which was often employed; see, eg., [25–27].

Moreover, we apply our result to convex minimization problems and present several nu-
merical experiments to demonstrate the efficiency of our proposed method in comparison with
existing methods in the literature. Our result in this paper complements several of the recently
announced results in this direction. The organization of our paper is built as follows. In Section
2, we give relevant definitions and lemmas needed in the subsequent sections. In Section 3,
we present the proposed algorithm while in Section 4, we analyze its convergence. We give
applications of our proposed algorithm in Section 5. In Section 6 we present some numerical
experiments. Finally, in Section 7, we give a concluding remark.

2. PRELIMINARIES

Let C be a convex, closed, and nonempty set in a real Hilbert space H. The weak convergence
and strong convergence of {xn} to x are represented by xn ⇀ x and xn→ x respectively.

We recall that a mapping PC : H→C is called the metric projection from H onto C if, for all
x ∈H, there is a unique nearest point in C represented by PC(x) such that PC(x) := argmin{‖x−
y‖,y ∈C}. The following statements are true and useful

(i) 〈x−PCx,y−PCx〉 ≤ 0, ∀y ∈C;
(ii) ‖PCx−PCy‖2 ≤ 〈PCx−PCy,x− y〉, ∀y ∈ H;

(iii) ‖x−PCx‖2 ≤ ‖x− y‖2−‖y−PCx‖2, ∀y ∈C.

Recall that a bounded linear operator G on H is said to be strongly positive if there exists a
constant γ̂ > 0 such that 〈Gx,x〉 ≥ γ̂‖x‖2 for all x ∈ H. Let ξ be a positive real number and let
0 < ρ ≤ ||G||−1. From [28], one has ||I−ρG|| ≤ 1−ρξ . Recall that a subset K of H is called
proximal if, for each x∈H, there exists y∈K such that ‖x−y‖= d(x,K) = inf{‖x−z‖ : z∈K}.
In this study, we denote the families of all nonempty closed bounded subsets, nonempty closed
convex subsets, nonempty compact subsets, and nonempty proximal bounded subsets of C by
CB(C), CC(C), KC(C), and P(C), respectively. The Pompeiu-Hausdorff metric on CB(C) is
defined by:

H(A,B) := max
{

sup
x∈A

d(x,B), sup
y∈B

(y,A)
}
.

for all A,B∈CB(C), where d(x,B)= infb∈B ‖x−b‖. Let S :C→ 2C be a multivalued mapping. S
is said to satisfy the end point condition if Sp= {p} for all p∈F(S). For multivalued mappings,
Si : C→ 2C (i∈N) with

⋂
∞
i=1 F(Si) 6= /0, then Si is said to satisfy the common endpoint condition

if Si(p) = {p} for all i ∈ N, p ∈
⋂

∞
i=1 Fix(Si).

Recall that a multivalued mapping S : C→CB(C) is said to be:

(i) nonexpansive if H(Sa,Sb)≤ ‖a−b‖ for all a,b ∈C;
(ii) quasi-nonexpansive if F(S) 6= /0 and H(Sa,Sp)≤ ‖a− p‖ for all a ∈C and p ∈ F(S);
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(iii) nonspreading if 2H(Sa,Sb)2 ≤ d(b,Sa)2 +d(a,Sb)2 for all a,b ∈C;
(iv) k-hybrid if there exists k ∈ R, such that

(1+ k)H(Sa,Sb)2 ≤ (1− k)‖a−b‖2 + kd(b,Sa)2 + kd(a,Sb)2, ∀ a,b ∈C;

(v) λ -demicontractive for 0≤ λ < 1 if F(S) 6= /0 and

H(Sa,Sp)2 ≤ ‖a− p‖2 +λd(a,Sa)2, ∀ a ∈C, p ∈ F(S).

Remark 2.1. It can easily be observed from the above definitions that the class of λ -demicontractive
maps is more general than all other classes of maps listed above.

Let C be a convex ad closed subset of a real Hilbert space H and let S : C→ CB(C) be a
multivalued mapping. The mapping I−S is said to be demiclosed at zero if, for any sequence
{xn} in C, the conditions xn ⇀ p and limn→∞ d(xn,Sxn) = 0, imply p ∈ F(S).

The following Lemmas are needed to establish our results.

Lemma 2.1. [29] For each x,y ∈ H, and δ ∈ R, we have the following results:
(i) ||x+ y||2 ≤ ||x||2 +2〈y,x+ y〉;

(ii) ||x+ y||2 = ||x||2 +2〈x,y〉+ ||y||2;
(iii) ||δx+(1−δ )y||2 = δ ||x||2 +(1−δ )||y||2−δ (1−δ )||x− y||2.

Lemma 2.2. [29] For each x1, . . . ,xm ∈H and α1, . . . ,αm ∈ [0,1] with ∑
m
i=1 αi = 1, the equality

holds

||α1x1 + . . .+αmxm||2 =
m

∑
i=1

αi||xi||2− ∑
1≤i< j≤m

αiα j||xi− x j||2.

Lemma 2.3. [30] Let {an} be a non-negative real sequence and let {bn} be a real sequence. Let
{αn} be a real sequence in (0,1) with ∑

∞
n=1 αn = ∞. Assume that an+1 ≤ (1−αn)an +αnbn for

all n≥ 1. If limsupk→∞ bnk ≤ 0 for every subsequence {ank} of {an} satisfying liminfk→∞(ank+1−
ank)≥ 0, then limn→∞ an = 0.

Lemma 2.4. [31] Consider the V IP (1.1) with C being a closed and convex subset of a real
Hilbert space H and A : C→H being pseudomonotone and continuous. Then p is a solution to
V IP (1.1) if and only if 〈Ax,x− p〉 ≥ 0 for all x ∈C.

3. THE ALGORITHM

In this section, we present our algorithm and highlight some of its important features. Let
Si : H −→CB(H) be a finite family of multivalued demicontractive mappings with constant ki
such that each I−Si is demiclosed at zero, Si(p) = {p} for all p∈

⋂m
i=1 F(Si), and k = max{ki}.

Let G : H −→ H be a strongly positive and bounded linear operator with coefficient γ̂ > 0 and
let f : H −→ H be a contraction mapping with coefficient ρ ∈ (0,1) such that 0 < γ < γ̂

ρ
. We

establish the strong convergence result of our algorithm under the following assumptions:
(A1) solution set Ω =

⋂m
i=1 F(Si)∩V I(C,A) is non-empty;

(A2) mapping A : H −→ H is pseudomonotone and L-Lipschitz continuous (however, the
knowledge of the Lipschitz constant is not required);

(A3) A : H→H satisfies the following property. Whenever {xn}⊂C, xn ⇀ z, one has ‖Az‖≤
liminfn→∞ ‖Axn‖.
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(A4) {αn} ⊂ (0,1) such that limn→∞
αn = 0 and ∑

∞

n=1 αn = ∞ and the positive sequence εn

satisfies limn→∞

εn
αn

= 0;
(A5) βn,0 ⊂ (0,1),∑m

i=0 βn,i = 1, liminfn(βn,0− k)βn,i > 0 for each 1≤ i≤ m;
(A6) Let {φn} be a nonnegative sequence such that ∑

∞
n=1 φn <+∞.

Now, the algorithm is presented as follows:

Algorithm 1
Initialization: Give δ > 0, γ1 > 0, and φ ∈ (0,1). Let x0,x1 ∈ H be two initial points.
Iterative Steps: Calculate the next iteration point xn+1 as follows:

wn = xn +δn(xn− xn−1),

yn = PC(wn− γnAwn),

zn = yn− γn(Ayn−Awn),

un = βn,0zn +∑
m
i=1 βn,ivn,i, vn,i ∈ Sizn,

xn+1 = αnγ f (wn)+(I−αnG)un,

(3.1)

where δn and γn are updated by (3.2) and (3.3), respectively

δn =

{
min

{
εn

||xn−xn−1|| , δ

}
, if xn 6= xn−1,

δ , otherwise
(3.2)

and

γn+1 =

{
min

{
φ‖wn−yn‖
‖Awn−Ayn‖ , γn +φn

}
, if Awn−Ayn 6= 0

γn +φn, otherwise.
(3.3)

Remark 3.1.
• If A is sequentially weakly continuous, then A satisfies condition (A3), but the converse

is false. Thus, condition (A3) is strictly weaker than the sequentially weakly continuity
condition commonly employed in the literature (see, e.g., [32]).
• Inertial technique is employed to accelerate the convergence speed of our proposed

algorithm. Observe that (3.2) updates the inertial factor is easily implemented since the
value of ‖xn− xn−1‖ is known prior to choosing δn.

Remark 3.2. From (3.2) and condition (A5), it follows that limn→∞
δn
αn
‖xn− xn−1‖ = 0. It is

clearly seen that δn‖xn− xn−1‖ ≤ εn for all n ∈ N, which together with limn→∞

εn
αn

= 0 gives

limn→∞

δn
αn
‖xn− xn−1‖ ≤ limn→∞

εn
αn

= 0.

4. CONVERGENCE ANALYSIS

First, we present some lemmas, that are needed to prove our strong convergence theorem for
the proposed algorithm.

Lemma 4.1. Suppose that {γn} is the sequence generated by (3.3). Then lim
n→∞

γn = γ, where

γ ∈ [min{φ

L ,γ1},γ1 +Φ] and Φ = ∑
∞
n=1 φn.

Proof. The method of proof is similar to the result in [33]. Hence, the proof is omitted here. �
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Lemma 4.2. Let {wn} and {yn} be two sequences generated by Algorithm 1 such that condi-
tions (A1)-(A3) hold. If there exists a subsequence {wnk} which is weakly convergent to u ∈ H
and limk→∞ ‖wnk− ynk‖= 0, then u ∈V I(C,A).

Proof. From (3.1) and the characterization of the projection, we have 〈wnk − γnkAwnk − ynk ,x−
ynk〉 ≤ 0 for all x ∈C, which implies that 1

γnk
〈wnk − ynk ,x− ynk〉 ≤ 〈Awnk ,x− ynk〉 for all x ∈C.

Thus
1

γnk

〈wnk− ynk ,x− ynk〉+ 〈Awnk ,ynk−wnk〉 ≤ 〈Awnk ,x−wnk〉, ∀x ∈C. (4.1)

Since the subsequence {wnk} is weakly convergent to u ∈ H, then {wnk} is a bounded subse-
quence. By the Lipschitz continuity of A and ‖wnk−ynk‖→ 0, we assert that {Awnk} and {ynk}
are bounded as well. Observe that γnk ≥min{γ1,

φ

L}. Bby applying (4.1), we have

liminf
n→∞

〈Awnk ,x−wnk〉 ≥ 0,∀x ∈C. (4.2)

We also have

〈Aynk ,x− ynk〉= 〈Aynk−Awnk ,x−wnk〉+ 〈Awnk ,x−wnk〉+ 〈Aynk ,wnk− ynk〉. (4.3)

Observe ‖wnk− ynk‖→ 0 as k→ ∞. By the Lipschitz continuity of A, we have limk→∞ ‖Awnk−
Aynk‖ = 0, which together with (4.2) and (4.3) gives liminf

n→∞
〈Aynk ,x− ynk〉 ≥ 0. Now, let {Φk}

be a decreasing sequence of positive numbers such that Φk→ 0 as k→ ∞. Let Nk represent the
smallest positive integer for any k such that

〈Ayn j ,x− yn j〉+Φk ≥ 0, ∀ j ≥ Nk. (4.4)

Clearly, the sequence {Nk} is increasing since {Φk} is decreasing. From {yNk} ⊂C, for any k,

suppose AyNk 6= 0 (otherwise yNk is a solution) and let uNk =
AyNk
‖AyNk‖

2 . Thus 〈AyNk ,uNk〉 = 1 for

each k. From (4.4), we obtain 〈AyNk ,x+ΦkuNk−yNk〉 ≥ 0 for all k. By the pseudomonotonicity
of A, we have 〈A(x+ΦkuNk),x+ΦkuNk− yNk〉 ≥ 0, which gives

〈Ax,x− yNk〉 ≥ 〈Ax−A(x+ΦkuNk),x+ΦkuNk− yNk〉−Φk〈Ax,uNk〉. (4.5)

We now prove that limk→∞
ΦkuNk = 0. Since wnk ⇀ u and limk→∞

‖wnk − ynk‖ = 0, we have
yNk ⇀ u, so u ∈C. Since A satisfies condition (A3), we have 0 < ‖Au‖ ≤ liminf

k→∞
‖Aynk‖. Using

{yNk} ⊂ {ynk} and Φk→ 0 as k→ ∞, we have

0≤ limsup
k→∞

‖ΦkuNk‖= limsup
k→∞

(
Φk

‖Aynk‖

)
≤

limsup
k→∞

Φk

liminf
k→∞

‖Aynk‖
= 0,

which implies that limsup
k→∞

ΦkuNk = 0. From the facts that A is Lipschitz continuous, {yNk}

and {uNk} are bounded, and lim
k→∞

ΦkuNk = 0, it follows from (4.5) that liminf
k→∞

〈Ax,x− yNk〉 ≥ 0.

Hence, we obtain 〈Ax,x−u〉= limk→∞
〈Ax,x− yNk〉= liminf

k→∞
〈Ax,x− yNk〉 ≥ 0 for all x ∈C. By

invoking Lemma 2.4, it follows that u ∈V I(C,A) as required. �
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Lemma 4.3. Suppose that {yn} and {zn} are two sequences generated by Algorithm 1 such that
conditions (A1)- (A3) hold. Then, we have the following inequalities

‖zn− p‖2 ≤ ‖wn− p‖2− (1−φ
2 γ2

n

γ2
n+1

)‖wn− yn‖2, ∀p ∈Ω (4.6)

and

‖zn− yn‖ ≤ φ
γn

γn+1
‖wn− yn‖. (4.7)

Proof. By the definition of γn+1, we have

‖Awn−Ayn‖ ≤
φ

γn+1
‖wn− yn‖, ∀n ∈ N. (4.8)

Observe that (4.8) holds both when Awn = Ayn and Awn 6= Ayn. Using the definition of zn and
applying Lemma 2.1, we obtain

‖zn− p‖2 = ‖yn− p‖2 + γ
2
n‖Ayn−Awn‖2−2γn〈yn− p,Ayn−Awn〉

= ‖wn− p‖2 +‖yn−wn‖2 +2〈yn−wn,wn− p〉

+ γ
2
n‖Ayn−Awn‖2−2γn〈yn− p,Ayn−Awn〉

= ‖wn− p‖2−‖yn−wn‖2 +2〈yn−wn,yn− p〉+ γ
2
n‖Ayn−Awn‖2

−2γn〈yn− p,Ayn−Awn〉. (4.9)

The characterization of the projection yields that 〈yn−wn+γnAwn,yn− p〉 ≤ 0, which is equiv-
alent to 〈yn−wn,yn− p〉 ≤ −γn〈Awn,yn− p〉. From (4.8) and (4.9), we obtain

‖zn− p‖2 ≤ ‖wn− p‖2−
(

1−φ
2 γ2

n

γ2
n+1

)
‖wn− yn‖2−2γn〈yn− p,Ayn〉.

Since p ∈ V I(C,A) and yn ∈C, we have 〈Ap,yn− p〉 ≥ 0. By the pseudomonotonicity of A, it
follows that 〈Ayn,yn− p〉 ≥ 0. Thus

‖zn− p‖2 ≤ ‖wn− p‖2−
(

1−φ
2 γ2

n

γ2
n+1

)
‖wn− yn‖2.

Also, from the definition of zn and (4.8), we see that ‖zn− yn‖ ≤ φ
γn

γn+1
‖wn− yn‖, which com-

pletes the proof. �

Lemma 4.4. Let {xn} be a sequence generated by Algorithm 1. Then {xn} is bounded.
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Proof. First, we recall from Algorithm 1 that un = βn,0zn +∑
m

i=1
βn,ivn,i. By applying Lemma

2.2, we have

‖un− p‖2 ≤ βn,0‖zn− p‖2 +

m

∑
i=1

βn,i‖vn,i− p‖2−βn,0

m

∑
i=1

βn,i‖vn,i− zn‖2

≤ βn,0‖zn− p‖2 +

m

∑
i=1

βn,iH(Sizn,Si p)2−βn,0

m

∑
i=1

βn,i‖vn,i− zn‖2

≤ βn,0‖zn− p‖2 +

m

∑
i=1

βn,i(‖zn− p‖2 + kid(zn,Sizn)
2)−βn,0

m

∑
i=1

βn,i‖vn,i− zn‖2

≤ βn,0‖zn− p‖2 +

m

∑
i=1

βn,i(‖zn− p‖2 + ki‖zn− vn,i‖2)−βn,0

m

∑
i=1

βn,i‖vn,i− zn‖2

= ‖zn− p‖2−
m

∑
i=1

βn,i(βn,0− ki)‖zn− vn,i‖2 (4.10)

≤ ‖zn− p‖2.

Using (3.1) yields ‖wn− p‖ ≤ ‖xn− p‖+αn
δn
αn
‖xn− xn−1‖. Thanks to Remark 3.2, we have

limn→∞

δn
αn
‖xn− xn−1‖ = 0. It follows that there exists a constant M1 > 0 such that δn

αn
‖xn−

xn−1‖ ≤M1 for all n≥ 1. It thus follows that

‖wn− p‖ ≤ ‖xn− p‖+αnM1. (4.11)

Observe that from Lemma 4.1, we have

lim
n→∞

(
1−φ

2 γ2
n

γ2
n+1

)
= 1−φ

2 > 0,

which implies that there exists n0 ∈N such that 1−φ 2 γ2
n

γ2
n+1

> 0 for all n≥ n0. Thus, from (4.6),

we obtain ‖zn− p‖ ≤ ‖wn− p‖ for all n ≥ n0. Combining (4.10) and (4.11), we have that, for
all n≥ n0,

‖xn+1− p‖= ‖αnγ f (wn)−αnGp+(I−αnG)(un− p)‖
≤ αn(‖γ f (wn)− γ f (p)‖+‖γ f (p)−Gp‖)+(1−αnγ̂)‖un− p‖
≤ αnγρ‖wn− p‖+αn‖γ f (p)−Gp‖+(1−αnγ̂)(‖xn− p‖+αnM1)

≤ αnγρ(‖xn− p‖+αnM1)+αn‖γ f (p)−Gp‖+(1−αnγ̂)(‖xn− p‖+αnM1)

≤ (1−αn(γ̂− γ p))‖xn− p‖+αn(γ̂− γ p)
{‖γ f (p)−Gp‖

γ̂− γ p
+

M1

γ̂− γ p

}
≤max

{
‖xn− p‖, ‖γ f (p)−Gp‖

γ̂− γ p
+

M1

γ̂− γ p

}
· · ·

≤max
{
‖xn0− p‖, ‖γ f (p)−Gp‖

γ̂− γ p
+

M1

γ̂− γ p

}
,
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which presents the boundedness of {‖xn− p‖}. Consequently, {xn} is bounded. Moreover,
{wn},{yn},{zn}, and {un} are all bounded. �

Lemma 4.5. The following inequality holds for all p ∈Ω and n ∈ N :

||xn+1− p||2 ≤
(

1− 2αn(γ̂− γρ)

(1−αnγρ)

)
||xn− p||2 + 2αn(γ̂− γρ)

(1−αnγρ)

{
αnγ̂2

2(γ̂− γρ)
M3

+
3M2(1−αnγ̂)2 +αnγρ

2(γ̂− γρ)

δn

αn
||xn− xn−1||+

1
(γ̂− γρ)

〈γ f (p)−Gp,xn+1− p〉
}

− (1−αnγ̂)2

(1−αnγρ)

{(
1−φ

2 γ2
n

γ2
n+1

)
‖wn− yn‖2 +

m

∑
i=1

βn,i(βn,0− ki)||zn− vn,i||2
}
.

Proof. Using Lemma 2.1, we have

‖wn− p‖2 = ‖xn− p‖2 +δ
2
n ‖xn− xn−1‖2 +2δn(xn− p,xn− xn−1)

≤ ‖xn− p‖2 +δn‖xn− xn−1‖(δn‖xn− xn−1‖+2‖xn− p‖)

≤ ‖xn− p‖2 +3M2αn
δn

αn
‖xn− xn−1‖, (4.12)

where M2 := sup{‖xn− p‖,δn‖xn− xn−1‖}> 0.
Next, by applying Lemma 2.1, we obtain from (4.6), (4.10), and (4.12) that

‖xn+1− p‖2

≤ (1−αnγ̂)2‖un− p‖2 +2αn〈γ f (wn)−Gp,xn+1− p〉

≤ (1−αnγ̂)2(‖zn− p‖2−
m

∑
i=1

βn,i(βn,0− ki)‖zn− vn,i‖2)

+2αnγ〈 f (wn)− f (p),xn+1− p〉+2αn〈γ f (p)−Gp,xn+1− p〉

≤ (1−αnγ̂)2(‖zn− p‖2−
m

∑
i=1

βn,i(βn,0− ki)‖zn− vn,i‖2)

+αnγρ(‖wn− p‖2 +‖xn+1− p‖2)+2αn〈γ f (p)−Gp,xn+1− p〉

≤ (1−αnγ̂)2
(
‖wn− p‖2− (1−φ

2 γ2
n

γ2
n+1

)‖wn− yn‖2−
m

∑
i=1

βn,i(βn,0− ki)‖zn− vn,i‖2
)

+αnγρ(‖wn− p‖2 +‖xn+1− p‖2)+2αn〈γ f (p)−Gp,xn+1− p〉

≤ (1−αnγ̂)2
(
‖xn− p‖2 +3M2αn

δn

αn
‖xn− xn−1‖

− (1−φ
2 γ2

n

γ2
n+1

)‖wn− yn‖2−
m

∑
i=1

βn,i(βn,0− ki)‖zn− vn,i‖2
)

+αnγρ

(
‖xn− p‖2 +3M2αn

δn

αn
‖xn− xn−1‖+‖xn+1− p‖2

)
+2αn〈γ f (p)−Gp,xn+1− p〉.
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This consequently leads to

‖xn+1− p‖2

≤ (1−2αnγ̂ +(αnγ̂)2 +αnγρ)

(1−αnγρ)
‖xn− p‖2 +

3M2((1−αnγ̂)2 +αnγρ)

(1−αnγρ)
αn

δn

αn
‖xn− xn−1‖

+
2αn

(1−αnγρ)
〈γ f (p)−Gp,xn+1− p〉− (1−αnγ̂)2

(1−αnγρ)

{(
1−φ

2 γ2
n

γ2
n+1

)
‖wn− yn‖2

+
m

∑
i=1

βn,i(βn,0− ki)‖zn− vn,i‖2
}

=
(1−2αnγ̂ +αnγρ)

(1−αnγρ)
‖xn− p‖2 +

(αnγ̂)2

(1−αnγρ)
‖xn− p‖2

+
3M2((1−αnγ̂)2 +αnγρ)

(1−αnγρ)
αn

δn

αn
‖xn− xn−1‖+

2αn

(1−αnγρ)
〈γ f (p)−Gp,xn+1− p〉

− (1−αnγ̂)2

(1−αnγρ)

{(
1−φ

2 γ2
n

γ2
n+1

)
‖wn− yn‖2 +

m

∑
i=1

βn,i(βn,0− ki)‖zn− vn,i‖2
}

≤
(

1− 2αn(γ̂− γρ)

(1−αnγρ)

)
||xn− p||2 + 2αn(γ̂− γρ)

(1−αnγρ)

{
αnγ̂2

2(γ̂− γρ)
M3

+
3M2(1−αnγ̂)2 +αnγρ

2(γ̂− γρ)

δn

αn
||xn− xn−1||+

1
(γ̂− γρ)

〈γ f (p)−Gp,xn+1− p〉
}

− (1−αnγ̂)2

(1−αnγρ)

{(
1−φ

2 γ2
n

γ2
n+1

)
‖wn− yn‖2 +

m

∑
i=1

βn,i(βn,0− ki)||zn− vn,i||2
}
,

where M3 := sup{‖xn− p‖2 : n ∈ N}. Thus the required inequality is obtained. �

Theorem 4.1. Suppose that assumptions (A1)− (A6) hold. Then, the sequence {xn} generated
by Algorithm 1 converges to x̂ ∈ Ω in norm, where x̂ = PΩ(I−G+ γ f )(x̂) is a solution to the
variational inequality 〈(G− γ f )x̂, x̂−q〉 ≤ 0 for all q ∈Ω.

Proof. Let x̂ = PΩ(I−G+ γ f )(x̂). Then, from Lemma 4.5, we obtain

||xn+1− x̂||2 ≤
(

1− 2αn(γ̂− γρ)

(1−αnγρ)

)
||xn− x̂||2 + 2αn(γ̂− γρ)

(1−αnγρ)

{
αnγ̂2

2(γ̂− γρ)
M3

+
3M2(1−αnγ̂)2 +αnγρ

2(γ̂− γρ)

δn

αn
||xn− xn−1||+

1
(γ̂− γρ)

〈γ f (x̂)−Gx̂,xn+1− x̂〉
}
.

(4.13)

Next, we claim that the sequence {‖xn− x̂‖2} converges to zero. To establish this claim,
in view of Lemma 2.3, Remark 3.2, and the fact that limn→∞ αn = 0, it suffices to prove that
limsupk→∞〈γ f (x̂)−Gp,xnk+1− x̂〉 ≤ 0 for every subsequence {‖xnk − x̂‖} of {‖xn− x̂‖} sat-
isfying liminfk→∞(‖xnk+1− x̂‖−‖xnk − x̂‖)≥ 0. Suppose that {‖xnk − x̂‖} is a subsequence of
{‖xn− x̂‖} such that

liminf
k→∞

(‖xnk+1− x̂‖−‖xnk− x̂‖)≥ 0. (4.14)
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Again, from Lemma 4.5 we have

(1−αnk γ̂)2

(1−αnkγρ)

{(
1−φ

2 γ2
nk

γ2
nk+1

)
‖wnk− ynk‖

2 +
m

∑
i=1

βnk,i(βnk,0− ki)||znk− vnk,i||
2
}

≤
(

1−
2αnk(γ̂− γρ)

(1−αnkγρ)

)
||xnk− x̂||2−||xnk+1− x̂||2 +

2αnk(γ̂− γρ)

(1−αnkγρ)

{
αnk γ̂2

2(γ̂− γρ)
M3

+
3M2(1−αnk γ̂)2 +αnkγρ

2(γ̂− γρ)

δnk

αnk

||xnk− xnk−1||+
1

(γ̂− γρ)
〈γ f (x̂)−Gx̂,xnk+1− x̂〉

}
.

Applying (4.14) and the fact that limk→∞ αnk = 0, we have

(1−αnk γ̂)2

(1−αnkγρ)

{(
1−φ

2 γ2
nk

γ2
nk+1

)
‖wnk− ynk‖

2 +
m

∑
i=1

βnk,i(βnk,0− ki)||znk− vnk,i||
2
}
→ 0, k→ ∞.

By the conditions on the control parameters, we have

lim
k→∞
‖wnk− ynk‖= lim

k→∞
‖znk− vnk,i‖= 0. (4.15)

From (4.7) and (4.15), it follows that limk→∞ ‖znk − ynk‖ = 0. From the definition of un and by
applying (4.15), we have

‖unk− znk‖ ≤ βnk,0‖znk− znk‖+
m

∑
i=1

βnk,i‖vnk,i− znk‖→ 0, k→ ∞. (4.16)

Applying Remark 3.2 and the definition of wn, we obtain

‖xnk−wnk‖= δnk‖xnk− xnk−1‖→ 0, k→ ∞. (4.17)

From (4.15)-(4.17), we obtain

lim
k→∞
‖xnk−unk‖= lim

k→∞
‖xnk− znk‖= 0. (4.18)

Now, applying (4.18) and the fact that limk→∞ αnk = 0, we see that

‖xnk+1− xnk‖= ‖αnkγ f (wnk)−αnkGxnk +(I−αnkG)(unk− xnk)‖
≤ αnk‖γ f (wnk)−Gxnk‖+(1−αnk γ̂)‖unk− xnk‖→ 0, k→ ∞. (4.19)

To complete the proof, we need to establish wω(xn) ⊂ Ω. Since {xn} is bounded, then wω(xn)
is nonempty. Let x∗ ∈ wω(xn) be an arbitrary element. Then there exists a subsequence {xnk} of
{xn} such that xnk ⇀ x∗ as k→ ∞. From (4.17), we have wnk ⇀ x∗ as k→ ∞. Consequently, by
Lemma 4.2 and (4.15), we obtain x∗ ∈ V I(C,A). Since x∗ ∈ wω(xn) is arbitrary, it follows that
wω(xn)⊂V I(C,A). By applying (4.15), we obtain

d(znk ,Siznk)≤ ‖znk− vnk,i‖→ 0, k→ ∞ ∀i = 1,2, . . . ,m. (4.20)

From (4.18), we have znk ⇀ x∗ as k → ∞. Since I − Si is demiclosed at zero for each i =
1,2, . . . ,m, then it follows from (4.20) that x∗ ∈ F(Si) for each i = 1,2, . . . ,m, which implies
that x∗ ∈

⋂m
i=1 F(Si). That is, wω(xn)⊂

⋂m
i=1 F(Si). Hence, wω(xn)⊂Ω.

Now, we see from (4.18) that wω{xn} = wω{zn}. By the boundedness of {xnk}, we further
sees that there exists a subsequence {xnk j

} of {xnk} such that xnk j
⇀ x† and

lim
j→∞
〈γ f (x̂)−Gx̂,xnk j

− x̂〉= limsup
k→∞

〈γ f (x̂)−Gx̂,xnk− x̂〉= limsup
k→∞

〈γ f (x̂)−Gx̂,znk− x̂〉.
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Since x̂ = PΩ(I−G+ γ f )(x̂), it follows that

limsup
k→∞

〈γ f (x̂)−Gx̂,xnk− x̂〉= lim
j→∞
〈γ f (x̂)−Gx̂,xnk j

− x̂〉

= 〈γ f (x̂)−Gx̂,x†− x̂〉 ≤ 0.
(4.21)

Hence, from (4.19) and (4.21), we have

limsup
k→∞

〈γ f (x̂)−Gx̂,xnk+1− x̂〉

= limsup
k→∞

〈γ f (x̂)−Gx̂,xnk+1− xnk〉+ limsup
k→∞

〈γ f (x̂)−Gx̂,xnk− x̂〉

= 〈γ f (x̂)−Gx̂,x†− x̂〉 ≤ 0.

Applying Lemma 2.3 to (4.13) and using the fact that limn→∞
θn
αn
||xn−xn−1||= 0 and limn→∞ αn =

0, we deduce that limn→∞ ||xn− x̂||= 0 as desired. �

5. APPLICATIONS

5.1. Convex minimization problem with fixed point constraints. Let C be a nonempty,
closed, and convex subset of a real Hilbert space H, the constrained convex minimization prob-
lem is formulated as follows: Find a point x∗ ∈C such that

ψ(x∗) = min
x∈C

ψ(x), (5.1)

where ψ is a real-valued convex function. The set of solutions of the constrained convex mini-
mization problem is denoted by argminx∈C ψ(x).

Lemma 5.1. [34] Let H be a real Hilbert space, and let C be a nonempty, closed, and convex
subset of H. Let ψ be a convex function of H into R. If ψ is differentiable. Then z is a solution
to problem (5.1) if and only if z ∈V I(C,Oψ).

Applying Theorem 4.1 and Lemma 5.1, we obtain the following result immediately.

Theorem 5.1. Let H be a real Hilbert space, and let ψ : H → R be a differentiable convex
function such that Oψ is α−ism. Let {xn} be a sequence generated as follows:
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Algorithm 2
Initialization: Give δ > 0, γ1 > 0, φ ∈ (0,1). Let x0,x1 ∈ H be two initial points.
Iterative Steps: Calculate the next iterate xn+1 as follows:

wn = xn +δn(xn− xn−1),

yn = PC(wn− γnOψwn),

zn = yn− γn(Oψyn−Oψwn),

un = βn,0zn +∑
m
i=1 βn,ivn,i, vn,i ∈ Sizn,

xn+1 = αnγ f (wn)+(I−αnG)un,

where δn and γn are updated by (5.2) and (5.3), respectively,

δn =

{
min

{
εn

||xn−xn−1|| , δ

}
, if xn 6= xn−1,

δ , otherwise
(5.2)

and

γn+1 =

{
min

{
φ‖wn−yn‖

‖Oψwn−Oψyn‖ , γn +φn

}
, if Oψwn−Oψyn 6= 0

γn +φn, otherwise.
(5.3)

If all other conditions of Theorem 4.1 hold, then sequence {xn} converges to

x̂ ∈ Γ = argmin
x∈C

ψ(x)
⋂
∩m

i=1F(Si) 6= /0

in norm, where x̂ = PΓ(I−G+ γ f )(x̂) is a solution to the variational inequality

〈(G− γ f )x̂, x̂−q〉 ≤ 0, ∀q ∈ Γ.

Proof. Since ψ is convex, then Oψ is monotone [34] and thus pseudomonotone. Now, setting
A=Oψ in Theorem 4.1 and applying Lemma 5.1, we immediately obtain the desired result. �

6. NUMERICAL EXAMPLES

In this section, we give some numerical examples to illustrate the performance of our Algo-
rithm 1 in comparison with Algorithm 1.5 proposed by Gang et al. (Gang et al. Alg.), Appendix
7.1 proposed by Chen et al. (Chen et al. Alg.), Appendix 7.2 by Ceng et al. (Ceng et al. Alg.
(1)) and Appendix 7.3 by Ceng et al. (Ceng et al. Alg. (2)). The parameters are selected as
follows:

• Take f (x) = 1
3x, that is, ρ = 1

3 is the Lipschitz constant for f . Let G(x) = x
2 with constant

γ̄ = 1
2 . Then we take γ = 1, which satisfies 0 < γ < γ̄

ρ
. Let Six = {− (i+2)

3 x} for i =

1,2, . . . ,5. Choose δ = 0.9,γ1 = 0.65,φ = 0.8,φn =
1

(n+2)2 ,αn =
1

n+5 ,εn =
1

(n+5)3 ,βn,0 =
n

n+1 , and βn,i =
1

5(n+1) in our Algorithm 1.

• Take T x = x
3 ,ψ = 0.2, and θn =

1
(n+2)2 in Algorithm (1.5).

• Let Ux =−3
2x,Gx = x− x1,γn =

1
n+2 ,ω = 0.09, and ρn =

n+1
2n+1 in Appendix 7.1.

• Take Tnx = − 2
n mod 5x,λ = m = µ = 2

3 ,σn = 1
n+2 ,τn = 1

3 ,γn = 1
6 , and µn = 1

2 , in Ap-
pendix 7.2 and Appendix 7.3.
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The graph of errors is plotted against the number of iterations in each case and ‖xn+1−xn‖ ≤
10−2 is used as the stopping criterion. All numerical computations were carried out by using
Matlab 2022(b) and the numerical results are reported in Tables 1 - 2 and Figures 1 - 8.

Example 6.1. Let A : Rm→ Rm be a linear operator in the form A(x) = Sx+q, where q ∈ Rm

and S = NNT +Q+D,N is a m×m matrix, Q is a m×m skew-symmetric matrix, and D is a
m×m diagonal matrix with its diagonal entries being nonnegative (thus S is positive symmetric
definite). We take feasible set C as C = {x ∈ Rm : −2 ≤ xi ≤ 5, i = 1, ...,m}. Clearly, A is
monotone and Lipschitz continuous with constant L = ‖S‖. In this experiment, all entries of
N,Q are randomly generated in [−2,2] while D is randomly generated in [0,2] and q = 0. The
choices of the initial values x0 and x1 are generated randomly in Rm for m = 10,20,25,50.

TABLE 1. Numerical Results for Example 6.1

m = 10 m = 20 m = 25 m = 50

Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Gang et al. Alg. 26 3.0827 31 3.6278 31 4.0547 39 2.6929

Chen et al. Alg. 9 0.8600 10 0.9154 10 1.0204 10 0.5639

Ceng et al. Alg. (1) 11 0.8903 12 1.2412 12 1.2354 12 0.6088

Ceng et al. Alg. (2) 22 1.7677 23 1.9747 24 2.0761 25 1.2937

Proposed Alg. 1 8 0.7119 10 0.7540 10 0.7718 10 0.5087
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FIGURE 1. Example 6.1 (m = 10)
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FIGURE 2. Example 6.1 (m = 20)
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FIGURE 3. Example 6.1 (m = 25)
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FIGURE 4. Example 6.1 (m = 50)

Example 6.2. Let H =(`2(R),‖·‖2), where `2(R) := {x=(x1,x2, . . . ,xn, . . .),x j ∈R : ∑
∞
j=1 |x j|2 <

+∞}, ||x||2 = (∑∞
j=1 |x j|2)

1
2 , and 〈x,y〉 = ∑

∞
j=1 x jy j for all x ∈ `2(R). Let α,β ∈ R be such

that β > α > β

2 > 0 and C = {x ∈ H : ‖x‖ ≤ α}. We define the operator A : H → H by
A(x) = (β −‖x‖)x, ∀x ∈ H. It can be verified that A is pseudomonotone. For this experiment,
we choose β = 3 and α = 2.
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We choose different initial values as follows:
Case I: x0 = (−1

2 ,
1
5 ,−

1
10 , · · ·) and x1 = (−1, 1

3 ,−
1
9 , · · ·);

Case II: x0 = (1
2 ,

1
5 ,

1
10 , · · ·) nad x1 = (1, 1

3 ,
1 , · · ·);

Case III: x0 = (−1
2 ,

1
5 ,−

1
10 , · · ·) and x1 = (1, 1

2 ,
1
4 , · · ·);

Case IV: x0 = (−1
2 ,

1
5 ,−

1
10 , · · ·) and x1 = (−1, 1

2 ,−
1
4 , · · ·).

TABLE 2. Numerical Results for Example 6.2

Case I Case II Case III Case IV

Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Gang et al. Alg. 9 0.0022 9 0.0234 10 0.0231 9 0.0253

Chen et al. Alg. 6 0.0173 6 0.0179 6 0.0204 6 0.0171

Ceng et al. Alg. (1) 6 0.0159 6 0.0132 8 0.0184 10 0.0171

Ceng et al. Alg. (2) 4 0.0089 4 0.0080 4 0.0077 4 0.0096

Proposed Alg. 1 4 0.0113 4 0.0112 4 0.0108 4 0.0092
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FIGURE 5. Example 6.2 Case I
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FIGURE 6. Example 6.2 Case II
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FIGURE 7. Example 6.2 Case III
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FIGURE 8. Example 6.2 Case IV

7. CONCLUSION

In this paper, we studied the problem of finding the solution of the pseudomonotone varia-
tional inequality problem with constraints of fixed points of a finite family of demicontractive
multivalued mappings. We proposed a new generalized viscosity inertial Tseng’s extragradient
method, which uses self-adaptive step sizes. We proved strong convergence results and pre-
sented several numerical experiments to demonstrate the efficiency of the proposed method in
comparison with other existing methods in the literature.

Acknowledgments
The authors sincerely thank the anonymous referee for his careful reading, constructive com-
ments, and useful suggestions that improved the manuscript. The first author was supported
by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated Re-
searchers (Grant Number 119903). The research of the third author was wholly supported by
the University of KwaZulu-Natal, Durban, South Africa Postdoctoral Fellowship.

REFERENCES

[1] M. Sibony, Methodes iteratives pour les equation set en equations aux derives partielles
nonlinearesde type monotone, Calcolo, 7 (1970), 65-183.

[2] Y. Malitsky, Projected reflected gradient methods for monotone variational inequalities,
SIAM J. Optim. 25 (2015), 502-520.

[3] G.M. Korpelevich, The extragradient method for finding saddle points and other problems,
Ekonom. Mat, Methody 12 (1976), 747-756.

[4] A.S. Antipin, On a method for convex programs using a symmetrical modification of the
Lagrange function, Ekonom. i Mathe. Met. 12 (1976), 1164-1173.



212 O.T. MEWOMO, O.J. OGUNSOLA, T.O. ALAKOYA

[5] P.T. Vuong, On the weak convergence of the extragradient method for solving pseudo-
monotone variational inequalities, J. Optim. Theory Appl. 176 (2018), 399-409.

[6] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving varia-
tional inequalities in Hilbert spaces, J. Optim. Theory Appl. 148 (2011), 318-335.

[7] Y. Censor, A. Gibali, S. Reich, Strong convergence of subgradient extragradient methods
for variational inequality problems in Hilbert space, Optim. Meth. Softw. 26 (2011), 827-
845.

[8] P. Tseng, A modified forward-backward splitting method for maximal monotone map-
pings, SIAM J. Control Optim. 38 (2000), 431-446.

[9] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, Politehn.
Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 4 (1964), 1-17.

[10] J. Fan, L. Liu, X. Qin, A subgradient extragradient algorithm with inertial effects for
solving strongly pseudomonotone variational inequalities, Optimization, 69 (2020), 2199-
2215.

[11] L. Liu, X. Qin, Strong convergence theorems for solving pseudo-monotone variational
inequality problems and applications, Optimization, 71 (2022), 3603-3626.

[12] G.N. Ogwo, C. Izuchukwu, Y. Shehu, O.T. Mewomo, Convergence of relaxed inertial
subgradient extragradient methods for quasimonotone variational inequality problems, J.
Sci. Comput. (2021). DOI:10.1007/s10915-021-01670-1.

[13] A. Taiwo, L.O. Jolaoso, O.T. Mewomo, Inertial-type algorithm for solving split common
fixed point problems in Banach spaces, J. Sci. Comput. 86 (2021), 12.

[14] B. Tan, X. Qin, S.Y. Cho, Revisiting subgradient extragradient methods for solving varia-
tional inequalities, Numer. Algo. 90 (2022), 1593-1615.

[15] B. Tan, S.Y. Cho, Strong convergence of inertial forward–backward methods for solving
monotone inclusions, Appl. Anal. 101 (2022), 5386-5414

[16] B. Tan, X. Qin, Strong convergence of an inertial Tseng’s extragradient algorithm for
pseudomonotone variational inequalities with applications to optimal control problems,
arXiv preprint arXiv:2007.11761v1 [math. O.C], (2020).

[17] J.S. Jung, A general iterative algorithm for split variational inclusion problems and fixed
point problems of a pseudocontractive mapping, J. Nonlinear Funct. Anal. 2022 (2022),
13.

[18] L.C. Ceng, A. Petruse, X. Qin, J.C. Yao, A modified inertial subgradient extragradi-
ent method for solving pseudomonotone variational inequalities and common fixed point
problems, Fixed Point Theory 21 (2020), 93-108.

[19] F. Ogbuisi, Y. Shehu, J.C. Yao, An alternated inertial method for pseudomonotone varia-
tional inequalities in Hilbert spaces, Optim. Eng. 23 (2022), 917-945.

[20] B. Tan, S.Y. Cho, Inertial extragradient methods for solving pseudomonotone variational
inequalities with non-Lipschitz mappings and their optimization applications, Appl. Set-
Valued Anal. Optim. 3 (2021), 165-192.

[21] E.C. Godwin, T.O. Alakoya, O.T. Mewomo, J.C. Yao, Approximation of solutions of the
split minimization problem with multiple output sets and common fixed point problems in
real Banach spaces, J. Nonlinear Var. Anal. 6 (2022), 333-358.

[22] V.A. Uzor, T.O. Alakoya, O.T. Mewomo, On split monotone variational inclusion problem
with multiple output sets with fixed point constraints, Comput. Meth. Appl. Math. (2022),



GENERALIZED VISCOSITY INERTIAL TSENG’S METHOD 213

DOI: 10.1515/cmam-2022-0199.
[23] H. Iiduka, I. Yamada, A use of conjugate gradient direction for the convex optimization

problem over the fixed point set of a nonexpansive mapping, SIAM J. Optim. 19 (2008),
1881-1893.
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Appendix 7.1. (Algorithm 3.3 in [35])
Take x1 ∈ H, ψ1 > 0, ω ∈ (0, 1−β

2 ], and φ ∈ (0,1). Choose the sequences {αn} and {γn}
satisfying the assumptions made on the control parameters
Step 1. Compute

yn = PC(xn−ψnA(xn)).

Step 2. Compute
zn = PHn(xn−ψnA(yn)),

where
Hn := {x ∈ H : 〈xn−ψnA(xn)− yn,x− yn〉 ≤ 0},

and

ψn+1 :=

{
min{ φ ||xn−yn||

||A(xn)−A(yn)|| ,ψn}, if A(xn)−A(yn) 6= 0,

ψn, otherwise.
Step 3. Compute

tn := (1−ρn)xn +ρnzn.

Step 4. Compute
vn = tn− γnG(tn).

Step 5. Compute
xn+1 = [(1−ω)I +ωU ]vn.

Let n = n+1 and return to Step 1.

Appendix 7.2. (Algorithm 1 in [36])
Initial step: Give x0,x1 ∈ H arbitrarily and let λ > 0, m ∈ (0,1),µ ∈ (0,1)
Iteration steps: Compute xn+1 below:
Step 1. Put vn = xn−σn(xn−1− xn) and calculate un = PC(vn− lnAvn), where ln is picked to be
the largest l ∈ {λ ,λ m,λ m2

, ...} s.t

l‖Avn−Aun‖ ≤ µ‖vn−un‖.
Step 2. Calculate

zn = (1−αn)PCn(vn− lnA(un))+αn f (xn),

where
Cn := {v ∈ H : 〈vn− lnAvn−un,un− v〉 ≥ 0}.

Step 3. Compute
xn+1 = γnPCn(vn− lnAun)+µnTnzn + τnxn.

Update n = n+1 and return to Step 1.

Appendix 7.3. (Algorithm 2 in [36])
Initial step: Give x0,x1 ∈ H arbitrarily, and let λ > 0, m ∈ (0,1),µ ∈ (0,1)
Iteration steps: Compute xn+1 below:
Step 1. Put vn = xn−σn(xn−1− xn) and calculate un = Pc(vn− lnAvn), where ln is picked to be
the largest l ∈ {λ ,λ m,λ m2

, ...} s.t

l‖Avn−Aun‖ ≤ µ‖vn−un‖
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Step 2. Calculate
zn = (1−αn)PCn(vn− lnA(un))+αn f (xn),

where
Cn := {v ∈ H : 〈vn− lnAvn−un,un− v〉 ≥ 0}.

Step 3. Compute
xn+1 = γnPCn(vn− lnAun)+µnTnzn + τnvn

Update n = n+1 and return to Step 1.
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