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OPTIMALITY AND SCALARIZATION OF APPROXIMATE SOLUTIONS FOR
VECTOR EQUILIBRIUM PROBLEMS VIA MICHEL-PENOT SUBDIFFERENTIAL
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Abstract. This paper is devoted to the investigation of the optimality and scalarization for approximate
solutions to a Constrained Vector Equilibrium Problem (CVEP). The optimality conditions are given in
terms of Michel-Penot subdifferentials, and the scalarization theorems are proposed via a strongly mono-
tone cone convex function. We firstly establish a necessary condition for an approximate quasi weakly
efficient solution to problem (CVEP). Then, a sufficient condition for approximate quasi Benson proper
efficient solutions to problem (CVEP) is examined under the newly introduced generalized convexity as-
sumptions. Finally, by using the properties of Bishop-Phelps cone, we present the scalarization theorems
for approximate quasi weakly (Benson proper) efficient solutions.
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Vector equilibrium.
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1. INTRODUCTION

The Vector Equilibrium Problems (VEP) are natural extensions of vector variational inequal-
ities and complementarity problems. Various kinds of solutions of VEP were considered re-
cently, such as, efficiency, weakly efficiency, Henig proper efficiency, Benson proper efficiency
and super efficiency, and so on; see [1]. The optimality conditions and scalarization are of two
important topics in VEP. The necessary condition is the condition that the optimal solution must
satisfy, and the sufficient condition refers to the condition that a feasible solutions becomes an
optimal solution. In general, scalarization means the replacement of an equilibrium problem
by a suitable scalar equilibrium problem which is an vector equilibrium problem with a real-
valued objective functional. The purpose of this paper is to study the optimality conditions and
scalarizations of approximate solutions for a class of Constrained Vector Equilibrium Problems
(CVEP). It is worth noting that most mathematical models are usually non-smooth, that is, the
objective and constraint functions are nondifferentiable. The subgradient and subdifferential are
powerful tools to characterize non-smooth analysis. In recent years, there are abundant works
related to optimality conditions for VEP via different subdifferentials. For example, Feng and
Qiu [2] and Gong [3] established optimality conditions for weakly efficiency, efficiency, Henig
efficiency, and super efficiency of VEP by utilizing the approximate subdifferential; Vau and
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Hang [4, 5] derived optimality theorems for (weakly) efficient solutions of VEP in terms of the
Clarke subdifferentials; Zhang and Yu [6] focused on the approximate quasi weakly efficient
solution of VEP via the Clarke subdifferentials. Michel-Penot subdifferentials is an important
non-smooth analysis tool; see, e.g.,[7, 8]. It is the refinement of Clarke subdifferential and has
many attractive properties. Most recently, Luu and Mai [9] and Su and Hang [10] derived opti-
mality conditions for Henig efficiency and super efficiency of VEP in the sense of Michel-Penot
subdifferentials. It is one of the main aim of this paper to establish the necessary conditions for
approximate quasi weakly efficient solutions to problem CVEP via Michel-Penot subdifferen-
tials. In addition, we propose the notion of approximate pseudoconvex functions in the form of
Michel-Penot subdifferentials, and use it to examine the sufficient optimality conditions.

Scalarization turns out to be of great importance for the vector equilibrium theory. Based on
Tammer nonlinear function, Qiu and Hao [11] obtained the scalarization theorems for approx-
imate Henig proper and weakly efficient solutions of VEP. Gong [12] established the scalar-
izations of super efficient solutions to VEP via Baire theorem. Gasimov introduced a scalar
function, termed the strongly monotone cone convex function, and applied it to present the
characterization for Benson properly efficiency. It should be pointed out that the properties of
Bishop-Phelps cones play an vital role in Gasimov’s work. In this paper, we establish the scalar-
ization theorms to problem CVEP with respect to approximate quasi weakly (Benson proper)
efficient solutions by employing strongly monotone cone convex functions and Bishop-Phelps
cones.

The article is organized as follows: Section 2 gives some symbols, concepts, and lemmas
which are used in the subsequent sections. Section 3 and Section 4 present the optimality con-
ditions and scalarization theorems for the approximate quasi weakly (Benson proper) efficient
solutions to problem CVEP, respectively.

2. PRELIMINARIES

Throughout this paper, let X , Y and Z be Banach spaces, and let their topological dual spaces
be denoted by X∗, Y ∗ and Z∗, respectively. Rn denotes the n dimension Euclidean space, and

Rn
+ = {x ∈ Rn : xi ≥ 0, i = 1, ...,n}, Rn

++ = {x ∈ Rn : xi > 0, i = 1, ...,n}.
For a set K ⊂ X , we use intK, clK, coK, and coneK to represent the interior, closure, convex
hull, and cone hull of K, respectively. Let B(x̄,r) stand for the open ball of radius r > 0 around
x̄ ∈ X , and let ‖ · ‖ denote the norm of X . The value of linear functional x∗ ∈ X∗ at point x ∈ X
is denoted by 〈x,x∗〉. Let C be a pointed convex cone in Y . The dual cone C∗ to C is defined as
(see [13]) C∗ = {y∗ ∈ Y ∗ : 〈y,y∗〉 ≥ 0, ∀y ∈C}.

Lemma 2.1. (see [13]) Let C ⊂ Y be pointed, closed, and convex cone, and let intC 6= /0. Then
(i) If λ ∈C∗\{0}, y ∈ intC, then 〈λ ,y〉> 0;
(ii) If λ ∈ intC∗, y ∈C\{0}, then 〈λ ,y〉> 0.

Let K be a nonempty subset of X . The Clarke contingent cone and normal cone associated
with set K at point x̄ ∈ K are denoted by (see [13])

T (x̄,K) = {v ∈ X : ∃ tn→ 0, vn→ v, s.t x̄+ tnvn ∈ K, ∀ n ∈ N}
and

NC(x̄;K) = {ξ ∈ X∗ : 〈ξ ,v〉 ≤ 0, ∀ v ∈ T (x̄;K)}.
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If K is a convex set, Clarke normal cone associated with set K at point x̄ ∈ K is characterized
by (see [13])

NC(x̄;K) = {ξ ∈ X∗ : 〈ξ ,x− x̄〉 ≤ 0, ∀x ∈ K}.
The indicator function of the set K is defined by (see [13])

δK(x) =

{
0, x ∈ K,

+∞, x /∈ K.

If K is a closed set, then δK(x) is a lower semicontinuous function and

NC(x;K) = ∂δK(x), (2.1)

where ∂ is the symbol of Clarke subdifferential.
Let F : X → Y be a vector valued mapping. F is said to be locally Lipschitz at x̄ ∈ X if there

exist constant L > 0 and r > 0 such that

‖ F(x1)−F(x2) ‖≤ L ‖ x1− x2 ‖, ∀ x1,x2 ∈ B(x̄,r).

If, for any x ∈ X , F is locally Lipschitz at x, then F is called a locally Lipschitz mapping.
Let f : X →R (R denotes the real number set) be a real valued local Lipschitz function. The

Michel-Penot generalized directional derivative of f at x̄ ∈ X with respect to the direction v ∈ X
is defined as (see [14])

f MP(x̄;d) = sup
y∈X

limsup
t→0+

f (x+ ty+ td)− f (x+ ty)
t

.

The Michel-Penot subdifferential of f at x̄ ∈ X is given by (see [14])

∂
MP f (x̄) = {ξ ∈ X∗ : f MP(x̄;d)≥ 〈ξ ,d〉, ∀d ∈ X}.

We summarize some properties of Michel-Penot subdifferential as follows, which are used in
later sections.

Lemma 2.2. (see [14]) Let f , g : X → R be local Lipschitz functions at x ∈ X. Then the
following assertions hold.

(i) ∂ MP f (x) is a non-empty, compact, and convex set;
(ii) for all t ∈ R, ∂ MP f (tx) = t∂ MP f (x);
(iii) ∂ MP( f +g)(x)⊂ ∂ MP f (x)+∂ MPg(x);
(iv) ∂ MP f (x)⊂ ∂ f (x);
(v) if x is a local minimum or maximum point of f , then 0 ∈ ∂ MP f (x).

Lemma 2.3. (see [8]) Let F be a local Lipschitz function from X to Rn at x̄ ∈ X, and let f be a
local Lipschitz function from Rn to R at F(x̄). Then

∂
MP( f ◦F)(x̄)⊂ cl

(
co(

⋃
Λ̄∈∂ MP f (F(x̄))

∂
MP(Λ̄◦F)(x̄))

)
.

Tammer’s function is an important nonlinear scalarization function, which was proved to be
one of the effective tools to study vector optimization problems (see [2]). The concept and some
important properties of Tammer’s function are given below.
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Lemma 2.4. (see [11, 15]) Let C ⊂ Y be a pointed, closed, and convex cone, ê ∈ intC 6= /0.
Tammer’s function Ψê : Y → R is defined as Ψê(y) = inf{r ∈ R : y ∈ rê−C}, y ∈ Y. Then

(i) Ψê is a continuous local Lipschitz function;
(ii) Ψê(y)≤ r⇔ y ∈ rê−C;
(iii) Ψê(y)≥ r⇔ y /∈ rê− intC;
(iv) ∂Ψê(y) = {λ ∈C∗ : 〈λ ,y〉= Ψê(y)};
(v) ∂Ψê(y)⊂C∗\{0}.

From now on, we assume that K ⊂ X is a nonempty and closed set, C ⊂ Y and D ⊂ Z are
pointed closed and convex cones with intC 6= /0 and intD 6= /0, F : K×K→Y and G : K→ Z are
two vector valued mappings. Consider the following Constrained Vector Equilibrium Problem
(CVEP):

find a x̄ ∈ K such that F(x̄,x) /∈ −intC, ∀ x ∈Ω,

where Ω := {x ∈ K : G(x) ∈ −D}. Let Fx̄(y) = F(x̄,y). It is supposed that Fx̄(x̄) = 0.

Definition 2.1. (see [6]) Let ε ≥ 0, e ∈ intC ,and x̄ ∈ Ω. x̄ is called to be an εe-quasi weakly
efficient solution to (CVEP) if Fx̄(x)+ ε‖x− x̄‖e /∈ −intC, ∀ x ∈Ω.

Based on the concept of Benson proper efficiency (see [16]), we propose the following defi-
nition of approximate quasi Benson proper efficient solutions to problem (CVEP).

Definition 2.2. Let ε ≥ 0, e ∈ intC and x̄ ∈ Ω. x̄ is called to be an εe-quasi Benson proper
efficient solution with respect to cone C to problem (CVEP) if

clcone(Fx̄(x)+C+ ε‖x− x̄‖e)∩ (−C) = {0}, ∀ x ∈Ω.

Here is an example of approximate quasi weakly (Benson proper) efficient solution for prob-
lem (CVEP).

Example 2.1. In problem (CVEP), let K =R+, x̄ = 0, C = D =R2
+, e ∈ intC =R2

++, F : K×
K→ R2, and G : K→ R2 be defined as

Fx̄(x) = (ex− |x− x̄|
2
−1, x2− |x− x̄|

3
)

and G(x) = (−|sinx|, −|cosx|). Obviously, Ω =R+. Taking ε = 1,e = (1
2 ,

1
3) ∈R2

++, for any
x ∈Ω, we have

Fx̄(x)+ ε‖x− x̄‖e = (ex− |x− x̄ |
2
−1, x2− |x− x̄|

3
)+(

1
2
,

1
3
)|x− x̄|

= (ex− |x− x̄|
2

+
|x− x̄|

2
−1, x2− |x− x̄|

3
+
|x− x̄|

3
)

= (ex−1, x2) 6∈ −R2
++.

Hence, for all x ∈Ω,

Fx̄(x)+C+ ε‖x− x̄‖e = (ex−1, x2)+C = (ex−1, x2)+R2
+ = R2

+,

and cl cone(Fx̄(x) +C + ε‖x− x̄‖e) = cl coneR2
+ = R2

+ = C. Therefore, x̄ = 0 is not only a
1 · (1

2 ,
1
3)-quasi weakly efficient solution, but also a 1 · (1

2 ,
1
3)-quasi Benson proper efficient

solution to problem (CVEP).



OPTIMALITY AND SCALARIZATION OF APPROXIMATE SOLUTIONS 237

3. OPTIMALITY CONDITIONS

In this section, we firstly present a necessary optimality condition for approximate quasi
weakly efficient solutions for problem (CVEP). Then, the concepts of quasiconvex and ap-
proximate pseudoconvex functions in the form of Michel-Penot subdifferential are introduced.
Under their assumptions, we propose a sufficient optimality condition for approximate quasi
Benson proper efficient solutions to problem (CVEP).

Theorem 3.1. In problem (CVEP), let x̄ ∈ Ω, ε ≥ 0, (e, ē) ∈ intC× intD, and Fx̄ and G be
locally Lipschitz at x̄. If x̄ is an εe-quasi weakly efficient solution to (CVEP), then there exists
(λ , µ) ∈ (C∗×D∗)\{(0, 0)} such that

0 ∈ ∂
MP(λ ◦Fx̄)(x̄)+∂

MP(µ ◦G)(x̄)+ 〈λ ,e〉εBX∗+NC(x̄;K), (3.1)

〈µ,G(x̄)〉= 0, (3.2)

where BX∗ be closed unit ball in X∗.

Proof. Since x̄ is an εe-quasi weakly efficient solution to (CVEP), then Fx̄(x)+ ε‖x− x̄‖e /∈
−intC for all x ∈Ω, which means that

(Fx̄(x)+ ε‖x− x̄‖e, G(x)) /∈ −int(C×D), ∀ x ∈ K.

From Lemma 2.4 (iii), we have Ψ(e×ē)(Fx̄(x)+ ε‖x− x̄‖e, G(x))≥ 0 for all x ∈ K. Let H(x) =
(Fx̄(x)+ ε‖x− x̄‖e, G(x)). It follows that

Ψ(e×ē)(H(x))≥ 0, ∀ x ∈ K. (3.3)

It is clear that

Ψ(e×ē)(H(x̄))≥ 0. (3.4)

Noting that Fx̄(x̄) = 0 and (0, G(x̄)) ∈ −(C×D), we see from Lemma 2.4 (ii) that

Ψ(e×ē)(H(x̄)) = Ψ(e×ē)(0, G(x̄))≤ 0.

From (3.4), we arrive at Ψ(e×ē)(H(x̄)) = 0. In view if (3.3), we have

Ψ(e×ē)(H(x))≥Ψ(e×ē)(H(x̄)) = 0, ∀ x ∈ K,

which means that x̄ is the minimum point to function Ψ(e×ē) ◦H on K. Furthermore, this leads
to that x̄ is a minimal solution to function Ψ(e×ē) ◦H(·)+δK(·) on X . By Lemma 2.2 (iii) and
(v), we have

0 ∈ ∂
MP(Ψ(e×ē) ◦H +δK)(x̄)⊂ ∂

MP(Ψ(e×ē) ◦H)(x̄)+∂
MP

δK(x̄). (3.5)

Noting that K is a closed set, we obtain from Lemma 2.2 (iv) and (2.1) that

∂
MP

δK(x̄)⊂ ∂δK(x̄) = NC(x̄;K).

From (3.5), we have 0 ∈ ∂ MP(Ψ(e×ē) ◦H)(x̄)+NC(x̄;K). Since Fx̄, G, ‖ ·−x̄‖e, and Tammer’s
function Ψ(e×ē) are locally Lipschitz, we conclude from Lemma 2.3 that H is also locally Lip-
schitz and

∂
MP(

Ψ(e×ē) ◦H)(x̄))⊂ cl
(
co

⋃
Λ̄∈∂ MPΨ(e×ē)(H(x̄))

∂
MP(Λ̄◦H)(x̄)

)
.
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Therefore, there exists Λ = (λ , µ) ∈ ∂ MPΨ(e×ē)(H(x̄)) such that

0 ∈ cl
(
co∂

MP((λ , µ)◦H)(x̄))
)
+NC(x̄;K). (3.6)

From Lemma 2.2 (iv) and Lemma 2.4 (v), we can deduce that

∂
MP

Ψ(e×ē)(H(x̄)) ⊂ ∂Ψ(e×ē)(H(x̄))⊂ (C×D)∗\{(0,0)}= (C∗×D∗)\{(0,0)}.

Hence, (λ , µ) ∈ (C∗×D∗)\{(0,0)}. Since H(x) = (Fx̄(x)+ ε‖x− x̄‖e, G(x)), we derive from
(3.6) that

0 ∈ cl
(
co∂

MP((λ , µ)◦H)(x̄))
)
+NC(x̄;K)

= cl
(
co∂

MP((λ , µ)◦ (Fx̄ + ε‖ ·−x̄‖e, G))(x̄)
)
+NC(x̄;K)

= cl
(
co(∂ MP(λ ◦ (Fx̄ + ε‖ ·−x̄‖e))(x̄)+∂

MP(µ ◦G)(x̄))
)
+NC(x̄;K).

By Lemma 2.2 (iii) and (iv), we obtain

0 ∈ cl
(
co(∂ MP(λ ◦ (Fx̄ + ε‖ ·−x̄‖e))(x̄)+∂

MP(µ ◦G)(x̄))
)
+NC(x̄;K)

⊂ cl
(
co(∂ MP(λ ◦Fx̄)(x̄))+∂

MP(µ ◦G)(x̄)+ 〈λ ,e〉ε∂
MP‖ ·−x̄‖)

)
+NC(x̄;K)

⊂ cl
(
co(∂ MP(λ ◦Fx̄)(x̄)+∂

MP(µ ◦G)(x̄)+ 〈λ ,e〉ε∂
C‖ ·−x̄‖)

)
+NC(x̄;K)

= cl
(
co(∂ MP(λ ◦Fx̄)(x̄)+∂

MP(µ ◦G)(x̄)+ 〈λ ,e〉εBX∗)
)
+NC(x̄;K).

From Lemma 2.2 (i), we have

0 ∈ ∂
MP(λ ◦Fx̄)(x̄)+∂

MP(µ ◦G)(x̄)+ 〈λ ,e〉εBX∗+NC(x̄;K).

Now, we prove that (3.2) holds. Observe that (λ , µ)∈ ∂Ψ(e×ē)(0,G(x̄)). By Lemma 2.4 (iv),
we have 〈(λ , µ), (0,G(x̄))〉= Ψ(e×ē)(0,G(x̄)) = Ψ(e×ē)(H(x̄)) = 0, that is, 〈µ,G(x̄)〉= 0. �

The following example verifies the conclusion of Theorem 3.1.

Example 3.1. In problem (CVEP), let ε ≥ 0, K = R2, C = D = R2
+, e ∈ intC = R2

++, and
F : K×K→ R2, G : K→ R2 be defined as

Fx̄(x) = (max{|x1|,−x2)}(1+ x̄1 ln(1+ x̄2)), |x1|(1− x̄1 cos(x̄2 +
π

2
))),

and G(x) = (−|x1|,−|x2|). Taking x̄ = (0, 0), one has

Fx̄(x) = (max{|x1|,−x2)}(1+ x̄1 ln(1+ x̄2)), |x1|(1− x̄1 cos(x̄2 +
π

2
)))

= (max{|x1|,−x2)}, |x1|).

Obviously, Ω = R2, NC(x̄;K) = (0, 0). Taking ε = 1, e = (1, 1) ∈ R2
++, for any x ∈ Ω, we

have
Fx̄(x)+ ε‖x− x̄‖e = (F1,x̄(x), F2,x̄(x))+ ε‖x− x̄‖e

= (max{|x1|,−x2}, |x1|)+(1, 1)‖x− x̄‖
= (max{|x1|,−x2}+‖x‖, |x1|+‖x‖)

/∈ −R2
++.

Hence, x̄ is 1 · (1, 1) approximate quasi efficient weakly solution.
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Taking (λ , µ) = ((0, 1), (1, 0)) ∈C∗×D∗ \{((0,0),(0,0))}, we derive

(λ ◦Fx̄)(x) = 〈(0, 1), (max{|x1|,−x2)}, |x1|)〉= |x1|.
(µ ◦G)(x) = 〈(1, 0), (−|x1|,−|x1|)〉=−|x1|.
〈µ, G(x̄)〉= 〈(1, 0), (0, 0)〉= 0.

Then ∂ MP(λ ◦Fx̄)(x̄) = {(ξ1,0) : ξ1 ∈ [−1, 1]} and ∂ MP(µ ◦Gx̄)(x̄) = {(ν1,0) : ν1 ∈ [−1, 1]}.
Hence

(0, 0) ∈ ∂
MP(λ ◦Fx̄)(x̄)+∂

MP(µ ◦G)(x̄)+ 〈λ ,e〉εBR2 +NC(x̄;K).

In [9], the following concept of quasiconvex functions in the form of Michel-Penot subdif-
ferential was presented.

Definition 3.1. Let K ⊂ X be a nonempty set, and let f : K→R be a locally Lipschtiz function
in x̄ ∈ K. f is said to be quasiconvex at x̄ ∈ K if there exists ξ ∈ ∂ MP f (x̄) such that

f (x)− f (x̄)≤ 0⇒ 〈ξ ,x− x̄〉 ≤ 0, ∀x ∈ K.

Motivated by the quasiconvexity above, we propose the following definition of approximate
pseudoconvex functions, which contribute to the sufficient optimality conditions for approxi-
mate quasi Benson proper efficient solutions to problem (CVEP).

Definition 3.2. Let K ⊂ X be a nonempty set, ε ≥ 0, and f : K → R be locally Lipschitz at
x̄ ∈ K. f is said to be ε-pseudoconvex at x̄ if there exists ξ ∈ ∂ MP f (x̄) satisfying

〈ξ ,x− x̄〉+ ε‖x− x̄‖ ≥ 0⇒ f (x)− f (x̄)+ ε‖x− x̄‖ ≥ 0, ∀ x ∈ K.

Remark 3.1. It is worth noting that if ε = 0, then the ε-pseudoconvexity degenerates to the
pseudoconvex function defined in [10] (See Definition 2.1). If f is pseudoconvex at x̄, then f is
also ε-pseudoconvex at x̄. However, the opposite conclusion does not necessarily hold.

Example 3.2. Let K = R+, ε ≥ 0. The function f : K→ R is defined by

f (x) =

{
ln(x+1)+ x, x ∈ [0,3],
−2x+3, x ∈ (3,+∞).

Obviously, ∂ MP f (0) = {2}, Taking x̄ = 0, ε = 2, and ξ = 2, one has

〈2,x−0〉+2 ‖ x−0 ‖= 2x+ |x|= 3x≥ 0, ∀x ∈ R+.

Hence

f (x)− f (0)+2 ‖ x−0 ‖=

{
ln(x+1)+3x, x ∈ [0,3],
3, x ∈ (3,+∞).

So, f is 2-pseudoconvex at 0. For ξ = 2 ∈ ∂ MP f (0), we have 〈2,x−0〉 ≥ 0 for all x ∈ R+ and
f (x)− f (0) =−2x+3 < 0 for all x ∈ (3,+∞). Therefore, f is not pseudoconvex at x̄ = 0.

Theorem 3.2. In problem (CVEP), let x̄ ∈ Ω, ε ≥ 0, (e, ē) ∈ intC× intD, and Fx̄ and G be
locally Lipschitz at x̄. Assume that there exist λ ∈C∗\{0} and µ ∈ D∗\{0} such that (3.1) and
(3.2) hold. If (λ ◦Fx̄) and (µ ◦G) are ε-pseudoconvex and quasiconvex at x̄, respectively, then
x̄ is an εe-quasi Bensen proper efficient solution to problem (CVEP).
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Proof. It follows from (3.1) that there exist α ∈ ∂ MP(λ ◦ Fx̄)(x̄), β ∈ ∂ MP(µ ◦G)(x̄), η ∈
NC(x̄;K), and ρ ∈ BX∗ such that α +β +η + 〈λ ,e〉ερ = 0. Thus, for any x ∈ K,

〈α,x− x̄〉+ 〈β ,x− x̄〉+ 〈η ,x− x̄〉+ 〈λ ,e〉ε〈ρ,x− x̄〉= 0, ∀x ∈ K. (3.7)

It follows from the fact that K is convex that 〈η ,x− x̄〉 ≤ 0 for all x ∈ K. From (3.7), we see that

〈α,x− x̄〉+ 〈β ,x− x̄〉+ 〈λ ,e〉ε〈ρ,x− x̄〉 ≥ 0. (3.8)

Since ρ ∈BX∗, then ‖ρ‖ ≤ 1, and 〈ρ,x− x̄〉 ≤ ‖x− x̄‖ for all x ∈K. Again, it follows from (3.8)
that

〈α,x− x̄〉+ 〈β ,x− x̄〉+ 〈λ ,e〉ε‖x− x̄‖ ≥ 0, ∀ x ∈ K. (3.9)

Assume that x̄ is not an εe-quasi Benson proper efficient solution to (CVEP). There exists x̂∈Ω

such that
cl cone(Fx̄(x̂)+C+ ε‖x̂− x̄‖e)∩ (−C \{0}) 6= /0.

Thus, there is a c ∈C such that Fx̄(x̂)+c+ε‖x̂− x̄‖e ∈−C\{0}. Since λ ∈C∗\{0}, we obtain

〈λ ,Fx̄(x̂)+ c+ ε‖x̂− x̄‖e〉< 0,

that is, 〈λ ,Fx̄(x̂)〉+ 〈λ ,c〉+ 〈λ ,e〉ε‖x̂− x̄‖< 0. Because Fx̄(x̄) = 0 and c ∈C, we have

〈λ ,Fx̄(x̂)〉−〈λ ,Fx̄(x̄)〉+ 〈λ ,e〉ε‖x̂− x̄‖< 0.

Combing with G(x̂)∈−D, µ ∈D∗ \{0} and (3.2), we arrive at 〈µ,G(x̂)−G(x̄)〉 ≤ 0. It follows
from the ε-pseudoconvexity of (λ ◦Fx̄) and quasiconvexity of (µ ◦G) at x̄ that 〈α, x̂− x̄〉+
〈λ ,e〉ε‖x̂− x̄‖< 0 and 〈β , x̂− x̄〉 ≤ 0, which leads to 〈α, x̂− x̄〉+〈β , x̂− x̄〉+〈λ ,e〉ε‖x̂− x̄‖< 0.
This contradicts (3.9). Thus, x̄ is an εe-quasi Benson efficient solution to (CVEP). �

4. SCALARIZATION

In order to obtain the scalarization theorems with respect to the approximate quasi weakly
(Benson proper) efficient solutions to problem (CVEP), we start with introducing the next
monotonicity concepts.

Definition 4.1. (see [17]) Let C⊂Y be closed and convex cone with intC 6= /0, and let ϕ : Y →R
be a given function.

(i) ϕ is called monotonically increasing if, for all y, ȳ∈Y such that y− ȳ∈C⇒ ϕ(ȳ)≤ ϕ(y).
(ii) ϕ is called strongly monotonically increasing if, for any y, ȳ ∈ Y , y− ȳ ∈ intC⇒ ϕ(ȳ)<

ϕ(y).
(iii) ϕ is called strictly monotonically increasing, if for any y, ȳ∈Y , y− ȳ∈C\{0}⇒ ϕ(ȳ)<

ϕ(y).

The following set U and Bishop-Phelps cone were defined in [18] and [19]:

U := {(α,y∗) ∈ R+×C∗ : α‖y‖−〈y,y∗〉< 0, y ∈C \{0}},

C(α,y∗) := {(α,y∗) ∈ (0, 1]×Y ∗ : α‖y‖−〈y,y∗〉 ≤ 0, y ∈C \{0},‖y∗‖= 1}.
From now on, we suppose that the interior of Bishop-Phelps cone is nonempty, i.e., intC(α,y∗) 6=
/0.

Lemma 4.1. (see [18]) Let (α,y∗) ∈ U, and let function ψ : Y → R be defined as ψ(y) :=
α‖y‖+ 〈y,y∗〉 for all y ∈ Y. Then, ψ is strongly monotonically increasing on Y .
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Let x̄ ∈ Ω, ε ≥ 0. Consider the following scalar optimization problem (Pψ) associated with
(CVEP)

(Pψ) minψ(Fx̄(x)), s.t. x ∈Ω.

It is said that x̄ is a quasi ε solution to problem (Pψ) (see [6]) if

ψ(Fx̄(x))−ψ(Fx̄(x̄))+ ε‖x− x̄‖ ≥ 0, ∀ x ∈Ω.

Theorem 4.1. Let x̄ ∈ Ω, ε ≥ 0, and e ∈ intC. If, for any ᾱ ∈ [0,1), x̄ ∈ Ω is a quasi ᾱε‖e‖
solution to problem (Pψ), then x̄ is an εe-quasi weakly efficient solution to problem (CVEP).

Proof. Since x̄ ∈Ω is a quasi ᾱε‖e‖ solution of problem (Pψ), we have

ψ(Fx̄(x))−ψ(Fx̄(x̄))+ ᾱε‖e‖‖x− x̄‖ ≥ 0, ᾱ ∈ [0,1), x ∈Ω. (4.1)

Assume that x̄ is not an εe-quasi weakly efficient solution of problem (CVEP). There exists
x̂ ∈Ω such that Fx̄(x̂)+ ε‖x̂− x̄‖e ∈ −intC. In view of Fx̄(x̄) = 0, one has

Fx̄(x̂)− (Fx̄(x̄)− ε‖x̂− x̄‖e) ∈ −intC.

Since ψ is strongly monotonically function on Y , then ψ(Fx̄(x̂))< ψ(Fx̄(x̄)−ε‖x̂− x̄‖e). Based
upon sublinear of ψ , we obtain ψ(Fx̄(x̂))< ψ(Fx̄(x̄))+ψ(−ε‖x̂− x̄‖e). According to the defi-
nition of function ψ , for any (α,y∗) ∈ U, we arrive at

ψ(Fx̄(x̂))< ψ(Fx̄(x̄))+ εα‖e‖‖x̂− x̄‖− ε‖x̂− x̄‖〈e, y∗〉
= ψ(Fx̄(x̄))+ ε‖x̂− x̄‖(α‖e‖−〈e, y∗〉).

(4.2)

From the definition of U, we get that α‖e‖< 〈e, y∗〉. Hence, there exists ᾱ ′ ∈ [0, 1) such that
(α + ᾱ ′)‖e‖ ≤ 〈e, y∗〉. Furthermore, it follows from (4.2) that

ψ(Fx̄(x̂))< ψ(Fx̄(x̄))+ ε‖x̂− x̄‖(α‖e‖−〈e, y∗〉)
≤ ψ(Fx̄(x̄))+ ε‖x̂− x̄‖(α‖e‖− (α + ᾱ

′)‖e‖)
= ψ(Fx̄(x̄))− εᾱ

′‖x̂− x̄‖‖e‖.
This is a contradiction to (4.1). Therefore, x̄ is an εe-quasi weakly efficient solution to problem
(CVEP). �

Example 4.1 is to illustrate the conclusion of Theorem 4.1.

Example 4.1. Let K = R+, ε ≥ 0, C = D = R2
+, e ∈ R2

++, and let Fx̄ : K ×K → R2 and
G(x) : K→R2 be defined by Fx̄(x) = (x+sin x̄, x+cos(x̄− π

2 )) and G(x) = (−|sinx|, −|cosx|).
Let

U= {(α,y∗) ∈ R+×R2
+ : α‖y‖−〈y, y∗〉< 0, y ∈ R2

+ \{(0, 0)}.
Taking x̄ = 0, one has Fx̄(x) = (x, x). It is obvious that Ω = K =R+ and ψ(Fx̄(x̄)) = ψ(0) = 0.
For any ε ≥ 0, ᾱ ∈ [0,1), (α, y∗) ∈ U, x ∈Ω, we derive

ψ(Fx̄(x))−ψ(Fx̄(x̄))+ ᾱε‖x− x̄‖‖e‖= α‖Fx̄(x)‖+ 〈Fx̄(x), y∗〉+ ᾱε‖x‖‖e‖
= α‖(x, x)‖+ 〈(x, x),(y∗1, y∗2)〉+ ᾱεx‖e‖
= α‖(x, x)‖+ xy∗1 + xy∗2 + ᾱεx‖e‖
≥ 0,

which leads to that x̄ is a quasi ᾱε‖e‖ solution to problem (Pψ ).
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Furthermore, let us verify that x̄ is an εe-quasi weakly efficient solution to problem (CVEP).
Indeed, for e = (e1, e2) ∈ R2

++ and x≥ 0, one has

Fx̄(x)+ ε‖x− x̄‖e = (x, x)+ ε‖x‖(e1, e2)

= (x+ εxe1, x+ εxe2)

=
(
(1+ εe1)x, (1+ εe2)x

)
6∈ −R2

++.

Therefore, x̄ is an εe-quasi weakly efficient solution to problem (CVEP).

The following theorem proves that an εe-quasi Benson proper efficient solution to problem
(CVEP ) with respect to Bishop-Phelps cone C(α,y∗) is a quasi approximate solution to problem
(Pψ ). From now on, we suppose that the interior of Bishop-Phelps cones is nonempty.

Theorem 4.2. Let x̄ ∈Ω, ε ≥ 0, and e ∈ intC(α,y∗). If x̄ is an εe-quasi Benson proper efficient
solution to (CVEP) with respect to C(α,y∗), then x̄ is a quasi ε ′‖e‖ (ε < ε ′ ≤ 2ε) solution to
problem (Pψ).

Proof. Since x̄ ∈ Ω is an εe-quasi Benson proper efficient solution to problem (CVEP), we
obtain

cl
(
cone(Fx̄(x)+C(α,y∗)+ ε‖x− x̄‖e

)
∩
(
−C(α,y∗)

)
= {0}, ∀x ∈Ω.

Hence, we have

(Fx̄(x)+C(α,y∗)+ ε‖x− x̄‖e)∩
(
−C(α,y∗)

)
= {0}. (4.3)

Noticing that −C(α,y∗) =
{

y ∈ Y : α‖y‖+ 〈y, y∗〉 ≤ 0
}

(See [18] pp. 193), we obtain from
(4.3) that, for all x ∈Ω, c ∈C(α,y∗), and (α,y∗) ∈ U,

α‖Fx̄(x)+ c+ ε‖x− x̄‖e‖+ 〈Fx̄(x)+ c+ ε‖x− x̄‖e, y∗〉 ≥ 0.

So, one has

0≤ α‖Fx̄(x)+ c+ ε‖x− x̄‖e‖+ 〈Fx̄(x)+ c+ ε‖x− x̄‖e, y∗〉
≤ α‖Fx̄(x)‖+α‖c‖+αε‖e‖‖x− x̄‖+ 〈c, y∗〉+ 〈Fx̄(x), y∗〉+ ε‖x− x̄‖〈e, y∗〉
= α‖Fx̄(x)‖+αε‖e‖‖x− x̄‖+ 〈Fx̄(x),y∗〉+ ε‖x− x̄‖‖e‖+α‖c‖+ 〈c, y∗〉
= ‖Fx̄(x)‖+ 〈Fx̄(x), y∗〉+(1+α)ε‖x− x̄‖‖e‖+α‖c‖+ 〈c, y∗〉.

Because above equation holds for any c ∈C(α,y∗), it follows that

α‖Fx̄(x)‖+ 〈Fx̄(x), y∗〉+ ε
′‖x− x̄‖‖e‖ ≥ 0,

where ε ′ = (1+α)ε . Since α ∈ (0,1], then ε < ε ′ ≤ 2ε . Noting that Fx̄(x̄) = 0 and ψ(0) = 0,
we derive ψ(Fx̄(x))−ψ(Fx̄(x̄))+ ε ′‖e‖‖x− x̄‖ ≥ 0. Therefore, x̄ is a quasi ε ′‖e‖ solution to
problem (Pψ). �
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5. CONCLUSIONS

A necessary optimality condition in the form of Michel-Penot subdifferential was proved
for approximate quasi weakly efficient solutions to problem (CVEP). A sufficient optimality
condition with respect to the approximate quasi Benson prpper efficiency was presented. Fi-
nally, two scalarization theorems were established for the approximate quasi weakly (Benson
proper) efficiency to problem (CVEP) by utilizing a strongly monotone function and Bishop-
Phelps cone. The definitions and main conclusions presented in this paper were also verified by
specific examples.
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