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Abstract. In this paper, we study some characterizations of the class of weakly subdifferentiable func-
tions and formulate optimality conditions for nonconvex mathematical programming problems described
by the class of weakly subdifferentiable functions in real normed spaces. The necessary and sufficient
optimality conditions for a nonconvex scalar function with a global minimum/or a global maximum at a
given vector via the weak subdifferentials and augmented normal cones are established. Additionally, the
necessary and sufficient optimality conditions for a nonconvex vector function with a weakly efficient
solution/or an efficient solution at a given vector via the augmented weak subdifferentials and normal
cones are presented too. Finally, our optimality conditions are used to derive the necessary optimal-
ity conditions for nonsmooth nonconvex mathematical programming problems with set, inequality, and
equality constraints.
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1. INTRODUCTION

The tool of weak subdifferentials and augmented normal cones plays a crucial role from
viewpoint of developing optimality conditions in nonsmooth and nonconvex optimization; see,
e.g., [1,2,3,4,5, 6,7, 8] and the references therein. Applying the notion of weak subd-
ifferentials and augmented normal cones, the necessary and sufficient optimality conditions
given in the kind of variational inequality of nonsmooth convex optimization are generalized
to the nonconvex case, e.g., in Kasimbeyli and Mammadov [9]. Up to our knowledge, for
the problem of minimizing/maximizing a convex function / over a closed convex feasible set
C in a n-dimensional Euclidean space, the necessary and sufficient optimality conditions for
the global optimality were formulated by Rockafellar [6, 7, 8] and some other related authors,
using the tool of subdifferentials and normal cones in the case of convex analysis. However,
the classic subdifferentials and normal cones are not particularly useful tools in deriving opti-
mality conditions for any nonsmooth nonconvex mathematical programming problem, which
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makes it very interesting to look for concepts of weak subdifferentials and augmented normal
cones for any nonsmooth nonconvex real-valued function. The theory of weak subdifferentials
and augmented normal cones was naturally introduced and independently developed by Azi-
mov and Gasimov [10], in which they used the class of supperlinear functions defined as an
augmented norm term (with degree equal to one) with a linear part added. The fundamental
characterization of weak subdifferentials and augmented normal cones with a class of lower
Lipschitz functions in real normed spaces was investigated in [10, 11, 12, 13, 14, 15, 16]. To
the best of our knowledge, the weakly subdifferentiable nonconvex functions on the feasible
set at the point under consideration was investigated in [10] and also [13, 14]. The question
of whether a nonconvex extended-real-valued function attains a global minimum (or a global
maximum) on a set is weakly subdifferentiable on that set is still an open problem. Additionally,
a similar question whether a nonconvex vector function that attains a weakly efficient solution
(or an efficient solution) on a set is augmented weakly subdifferentiable on that set remains is
also an open problem. This is the motivation for our current work. To answer the previous
open problems, let us give a mapping / : X — Y and a nonempty subset C C X, where X is the
normed space with norm ||.|| and (Y, || .]|) is the other normed space, which is partially ordered
by a convex cone Q. Let X € C. We pointed out here that if / : X — R attains, either a global

minimum on C at X, or, a global maximum on C at X with sup % < oo, then [ is
xeC\{%}

weakly subdifferentiable on C at X. Additionally, if [ : X — Y attains, either a weakly efficient
solution on C at X with intQ # 0, or an efficient solution on C at X in which there exists a pointed
convex cone H in Y with 0 # Q\ {0} C intH, then [/ is augmented weakly subdifferentiable
on C at X (see Theorems 3.1, 3.7, and 3.8). These results are applied directly to the problem
of minimizing/maximizing function / : C — R over the subset C C X as well as the nonconvex
mathematical programming problems in normed spaces, which makes a huge contribution to
the nonconvex mathematical programs. It is important to mention that these results are still
very few; see, e.g., [9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and the references therein.

The current paper is the continuation of the investigation initialed in [11] and is related to
the new nonconvex mathematical programming theory described by the class of weakly sub-
differentiable functions in normed spaces. This paper is organized as follows. In Section 2,
we briefly review the definitions of weak subdifferentials, augmented weak subdifferentials,
augmented normal cones and provide some preliminaries results. Section 3 provides the nec-
essary and sufficient optimality conditions for a nonconvex real-valued function with a global
minimum (resp., maximum)/and for a nonconvex vector function with a weakly efficient solu-
tion (resp., efficient solution) at a given point via the weak subdifferentials and the augmented
normal cones in real normed spaces. Section 4 derives the necessary optimality conditions for
nonconvex mathematical programming problems by means of the weak subdifferentials and
augmented normed cones in real normed spaces without convexity assumptions. Finally, Sec-
tion 5 presents some conclusions.

2. PRELIMINARIES

We consider the real normed space (X, ||.||) and the real normed space (Y, ||.||), where Y is
partially ordered by a convex cone Q; X*,Y* the topological duals of X,Y respectively, and the
Euclidean space R” with norm ||x|| = 1/ (x,x), where (.,.) is the scalar product. In the product
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space X x R, a norm is taken as ||(x,r)|| = ||x|| + || for every (x,r) € X x R. For simplicity, one

writes 0 instead of the origin of any real normed space X; &7 means the set of all continuous

positively homogeneous subadditive convex functions on Y; intC, clC, bdC, coC, coneC, and

spanC stand for the interior, the closure, the boundary, the convex hull, the generated cone, and

the linear hull of a nonempty subset C C X, respectively, where coneC := {rc|t € Ry, ¢ € C}

inwhich R, = {x e Rjx >0}, R, = (Ry)"and R’ | = {(x1,...,x,) € R"|x; >0,...,x, > 0}.
We propose for the case O\ {0} # 0 the following set

Py ={P e P|y2—y1 € Q\{0} = (P.y1) <(Py2) (Vy,;2€Y)}.
For the case intQ # (), we also propose the following set
PV :={Pe Py, —y €intQ = (P,y1) < (P,y2) (Vy1,y2€Y)}.
Proposition 2.1. We have the following assertions:

(1) IfintQ # 0, then &% is nonempty.
(ii) If there exists a pointed convex cone H with 0 # Q \ {0} C intH, then &, is nonempty.

Proof. (i): By the hypotheses intQ # (0, we see that there exists e € intQ. Defining the Gerstewitz
mapping P; : Y — R by Py(y) = inf{a € R|y € ae — Q} for all y € Y, we have that P| € &
satisfying y, — y; € intQ, implies (Py,y;) < (Py,y,) for every y;,y, € Y. By the notion of ",
one can obtain P € &2V,

(ii): Let H be a pointed convex cone such that @ # Q\ {0} C intH. We take é € intH, and then
define the Gerstewitz mapping P, : Y — R by P»(y) =inf{a € R|y € aé — H} for all y € Y. Thus
P, € & satisfying y, — y; € intH implies (P>, y;) < (P>, y») for all y;,y, € Y. Since O\ {0} C
intH, one can achieve that if y, —y; € Q\ {0}, then (P>, y1) < (P3,y;) for any y;,y, € Y, that is,
P, € &, as we have to show. O

The notion of the weak subgradient, which is a generalization of the classic subgradient in the
case of convex analysis, was proposed by Azimov and Gasimov in [10, 14], where the authors
used a class of supperlinear conic functions defined as an augmented norm with a linear part
added, instead of (only) linear part used in convex analysis. For the illustration, let f: X —
R U {+eo} be a real-valued function and X € X be a given vector, where f(X) is finite. Then, we
recall that a pair (&,r) € X* x R is said to be the weak subgradient of f at x iff

f(x)—=f(x) > (&,x—Xx) —r||x—x|| forevery x € X. (2.1)

Definition 2.1. ([10, 14]) Let f : X — R be a real-valued function and X € X be a given vector,
where f(X) is finite. The set 9" f(X) := {(§,r) € X* x R4 | (2.1) is fulfilled} is said to be the
weak subdifferential of f at x. If 3" f(X) # 0, then f is said to be weakly subdifferentiable at x.
If (2.1) is satisfied only x € C, where C C X, then we say that f is weakly subdifferentiable at
X on C. One writes d f(X) stands for the weak subdifferential of f at ¥ on C. It can be verified
that 0" f(X) C 9Y' f(X).

It should be mentioned that if f is weakly subdifferentiable on C at X, then d f(X) is a closed
and convex set. By extending the weak subgradient notion in a natural way, we arrive at the
augmented weak subgradient notion, which can be illustrated as follows: let f: X — Y be a

vector-valued mapping and X € X be a given vector. Then, a triple (§,P,r) € X* x (£ \ {0}) x
R is said to be the augmented weak subgradient of f on a subset C C X at x € C iff

(P, f(x)— f(x)) > (&,x—x) —r||x—Xx|| forevery x € C. (2.2)
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Definition 2.2. Let f : X — Y be a vector-valued mapping, C C X, and X € C be a given vec-
tor. Then d)-f(X) := {(ﬁ,P, r) € X* x (Z\{0}) x R4|(2.2) is fulﬁlled} is said to be the
augmented weak subdifferential of f on a subset C at X. If )" f(X) # 0, then we say that f is

augmented weakly subdifferentiable on a subset C at X. In the case C = X, one writes 9 f(X)
instead of 9,y f(X). It can be verified that d;’ f(X) C 9}/ f(%).

a

Remark 2.1. Given a function P € &2\ {0}. Itis evident that (§,P,r) € X* x (£ \{0}) xR is
an augmented weak subgradient of f on a subset C C X atx € C if and only if (&,r) € X* xR
is a weak subgradient of Pyf on a subset C C X atx € C.

The next definition, which generalizes the notion of normal cone in the case of convex anal-
ysis, was introduced by Kasimbeyli and Mammadov in [9].

Definition 2.3. Let C C X and x € C be a given vector. Then
Ne(x) ={(&,r) € X" xRy [ (§,x—X) —rlx—%|| <0 (Vx € C)}
is said to be an augmented normal cone to C at X.

Remark 2.2. If (§,r) € X* x R, such that ||| < r, then, for any x € C, it is evident that
(&,x—X) —r|lx—x%|| <0, thatis, (§,r) € N4(X). An augmented normal cone consisting of only
such elements is called trivial and expressed as N’C’iv (x). It is an obviousness from the definitions
that N2 (x) C N&(x). Especially, for the case that C = X, one can achieve that

N (®) = {(8,r) € X xR |[[E]] < r} = NE(3).

Proposition 2.2. Let C C X and a vector X € C. Then NE(X) is a nonempty, closed, and convex
cone.

Proof. In view of (0,0) € NZ(X), it is obvious that N&(X) is 0. It is not hard to check that NZ (%)
is a cone. For two pairs (§,7),(n,s) € N&(X) arbitrarily taken and for every ¢ € [0, 1], we have

(t&+(1—1)n,x—%) — (tr+ (1 —1)s)[x—%|
=t((&x =% —rllx—=x[l) + (1 =) ((n,x = %) —s|lx— ) <0,

that is, #(§,7) 4+ (1 —1)(n,s) € N&(x). Thus NZ(%) is a convex cone. Finally, for any sequence
((&ns7n))n=1 C N&(x) with (En, 1) — (&, 7), it results that

0> (G x—X) = rallx —X[| — (&, x = %) —rllr—x]|.

Consequently, (§,x—X) — r|jx —X|| <0. It follows that (§,r) € N&(%) is fulfilled. So, N&(%) is
also closed and convex. 0

We mention that the closedness and convexity of d f(X) are similarly argumented as in the
proof of Proposition 2.2. Also, we recall that [ : X — RU {+4oo} is lower semicontinuous at
X € X, where [(X) is finite if, for every € > 0, there exists an open neighborhood U of X such that
I(x) > 1(x) — € for all x € U. Since X is a normed space, the condition above can be rewritten
as liminf,_,x1(x) > [(X).
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3. OPTIMALITY CONDITIONS FOR THE PROBLEM OF MINIMIZING/MAXIMIZING OF
NONCONVEX FUNCTIONS

By applying the weak subdifferentials and augmented normal cones, we derive some neces-
sary and sufficient optimality conditions for the problem of minimizing/maximizing of noncon-
vex functions in real normed spaces. To begin with, the problem of minimizing/maximizing
function / : X — R over the nonempty subset C C X is considered.

Definition 3.1. ([1, 18]) Let C be nonempty subset of X, the real-valued function [ : X — R,
and x € X. It is said that

(i) [ attains a global minimum at ¥ if /(x) > /() for all x € X;

(ii) [ attains a global maximum at X if /(x) < [(X) for all x € X;
(iii) / attains a global minimum at ¥ € C on C if I(x) > [(%) for all x € C;
(iv) [ attains a global maximum at X € C on C if /(x) < [(X) for all x € C.

The following theorems characterize the class of weakly subdifferentiable functions in normed
spaces.

Theorem 3.1. Let [ : X — R, C be subset of X, and x € C. Then the following assertions hold:

(1) If 1 attains a global minimum on C at X, then [ is weakly subdifferentiable on C at X and
NE(X) C IFL(X). (3.1)
i@ 1]

(1) If [ attains a global maximum on C at X with sup T < +oo, then | is weakly
xeC\ {7}

subdifferentiable on C at X.

Proof. (i) According to Proposition 2.2, NZ(X) is not null. By taking (&, r) € N (%), we obtain,
for every x € C, the (&,x —X) — r||x —X|| <0, which combined with / attains a global minimum
on C at x. This guarantees that (&,x—X) — r|lx —x|| < I(x) — [(X) for all x € C. Therefore,
(&,r) € 9Y1(x), and then (i) is fulfilled.

(i1) We set

B 1(x) —1(x)|
ri= sup ————.
rec\(® X=Xl

Then, (0,r) € X* x R. Since [ attains a global maximum on C at X, it yields that

-] 1@~ 1)

N T I TR for all x € C\ {x},
that is, (0,x —X) —r|lx —X|| < I(x) — (%) for all x € C. Thus (0,r) € J¥I(X), which completes
the proof. U
Remark 3.1. It should be noted that if sup ‘l(ﬁ—i(x)} = oo, then the obtained result in

xeC\{x}
Theorem 3.1 (ii) is not true. To illustrate this, let us take C =1[0,1],x=0€ C,and let/: X — R
be given by
— if x € C,
I(x) = { Ve

0 otherwise.
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By directly calculating, one can obtain that

o, \fo}  |x—0] xe]0,1] VX

while the set of the weak subdifferential 8{5 1}Z(O) is empty, as we need to check.

Theorem 3.2. Letl: X — R and x € X. If | attains, either a global minimum at X, or a global
1@ -1(x)|

e < oo then [ is lower semicontinuous at X.

maximum at X with sup
xeX\{¥}
Proof. By taking C = X, one sees from Theorem 3.1 that / is weakly subdifferentiable at X, that
is, there exists a subgradient pair (&,r) € "I(X) such that (x) —[(X) > (§,x —X) — r||x —X|| for
all x € X. By passing the limit inferior of the both sides of the inequality above when x — X,
one obtains li)rcriglf I(x) > 1(X), which proves the lower semicontinuity of / at X. O

Remark 3.2. We mention here that the converse of Theorem 3.2 may fail. To illustrate this, we
can let/ : R — R be defined by /(x) = —x? for all x € R, which can be verified that ¥ = 0 is not
a global minimum of /, where X = 0 is a global maximum of /. We further calculate that

10)—1(x)] B
-
wr\o) =0l im0}

while [ is a continuous function.

Corollary 3.1. Let | : X — R be Fréchet differentiable x € X. If | is either subdifferentiable at
X, or convex, then l is lower semicontinuous at Xx.

Proof. Since [ is convex and Fréchet differentiable X € X, then / is subdifferentiable at x. Thus
there exists a real number r > 0 such that (VI(x),r) € d"I(x), where VI(X) denotes the Fréchet
derivative of [ at X. It can be easily seen that [(x) —[(X) > (VI(X),x —X) — r||x —X|| forall x € X.
By passing the limit inferior of the both sides of the last inequality when x — X, it holds that
liggf I(x) > I(X), which ensures the lower semicontinuity of / at X. O

Remark 3.3. Observe that the converse of Corollary 3.1 is not true. In fact, let / be given
as in Remark 3.2, which guarantees the lower semicontinuity of / at x = 0, while / does not
subdifferentiable at X = 0, where d1(0) = 0.

Theorem 3.3. Let | : X — R, C be a subset of X, and x € C. If | attains a global maximum on a
subset C at X, then

NE(X) D IEI(X). (3.2)
Especially, for the case C =X = R", we have
N{ (%) D NYV (@) D 9™I(x). (3.3)

Proof. Without loss of generality, we may assume that

() — ()]
sup

< oo
rec\m X=X
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Taking into account Theorem 3.1 (i1) above, one sees that / is weakly subdifferentiable on C at x.
By taking (§,r) € dp1(X), one can reach, for every x € C, that I(x) — [(X) > (§,x —X) —r||x—X|],
which combined with [ attains a global maximum on a subset C at x. This guarantees

0> (£,x—X)—r|lx—x| forall xeC. (3.4)

Thus (&,r) € N&(X), and inclusion (3.2) is fulfilled. For the case C = X = R", it follows from
inequality (3.4) that (&, h) <r||h|| forall h € X, which means that || & || < r (by taking h = & € X).
Thus (€,r) € N¥™(X) C N&(%), which proves inclusion (3.3). This completes the proof. O

Remark 3.4. Inclusion (3.3) may be strict and the converse of Theorem 3.3 may fail. For exam-
ple, letuscantake C=X =R, x=0€ Rand let/: X — R be given by /(x) = —2023|x| for every
x € R. Then [ attains a global maximum at X¥. An easy computation gives that N (0) = {(&,r) €
RxRi||IE|l <r}and 0"1(0) ={(&,r) e RxR|||&|| < r—2023}. Therefore, 9"1(0) # Ng (0).
We observe that if / is defined by

l(x):{o if x € Q,

1  otherwise,
then 9"1(0) = N¢(0) = {(&,r) € Rx R4 |||§|| < r}, while [ attains only a global minimum at
x=0.

Theorem 3.4. Let ! : X — R, C be a subset of X, and x € C. Assume that [ is a constant function
on a subset C. Then [ is weakly subdifferentiable on C at X and furthermore,

NE(X) = 9Fl(x) D IVI(X). (3.5)
Especially, for the case C =X = R", one has
NE(x) = N¥V(x) = 9"1(%). (3.6)

Proof. The last inclusion in (3.5) is trivial because C C X. Since [ is a constant function on a
subset C, which can be verified that (0,r) € 9¥I(x) for every r > 0. Hence, [ is weakly subdif-
ferentiable on C at X. For every (§,r) € d'I(X) and x € C, one can obtain that

) =f(x) 2 (6, x=%) —rlx —x[| <= 0= (G, x =) — rlx — ],
that is, (§,7) € N&(X). Thus (3.5) is valid. In addition, if C = X = R", then it follows from (3.3)
that
N5 (%) O Ny™(%) D 9"I(3). 3.7)
Because [/ is a constant function, it attains a global minimum at X. Applying Theorem 3.1 (1) for

the case that C = X, one sees that [ is weakly subdifferentiable at x. Using inclusion (3.1) yields
that Ng (x) C 9"1(x), which together with (3.7) guarantees that (3.6) is satisfied. O

Proposition 3.1. Let C be a subset of X, x € C, and a distance function dc : X — R to the
subset C be defined by dc(x) = inf{|lx—c|||c € C} for all x € X. Then

(i) 9gdc(x) = NE(X) = Neje(X).-

(ii) If, in addition, X is a finite dimensional space, then d"dc(X) C {(é e N (®)||1€] <

r+1}.
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Proof. Infact, it is known that d¢(x) = 0 if and only if x € ¢IC. Making use of the result of Theo-
rem 3.4 deduces that conclusion (1) is valid. For the case that X is a finite dimensional space, for
apair (§,r) € d"dc(X), which is arbitrarily taken, we have d¢(x) —dc(X) > (§,x —X) — r||x —X]||
for every x € X = cI/CU (X \ ¢/ C), which implies that

0> (§,x—X)—r|lx—x|| forevery x € clC,
|x—x|| > (§,x—X) — r|lx—X]|| forevery x € X \ clC.

As a direct consequence, it follows that (§,7) € N.(X) = N{ (%) satisfies 0 > (&, h) — (r+1)|| |
for every h € X. By picking h = &, it yields that 7 € X due tp X* = X. We further observe that
1EN = /(&,&) < /(r+1)||&]|, which leads to ||| < r+ 1. This completes the proof. O

Theorem 3.5. (Necessary and sufficient optimality conditions) Ler [ : X — R be a scalar
function, C be a nonempty subset of X, and x € C. Then the following statements hold

(i) If I attains a global minimum on C at X, then there exists sequence ((&n,rn))n>1 C
X* x Ry with liT &n = 0 such that (Eu,r,) € IXL(X) for every n > 1. Additionally, if
n—r o0

liT r, = 0, then the necessary optimality condition becomes the sufficient optimality
n—s+oo

condition.
(ii) If 1 attains a global minimum on C at X, then there exists sequence ((En,rp))n>1 C X* X
R with lir_{_l &n = 0 such that (&,,r,) € IY1(X) + NE(X) for every n > 1. Additionally,
n— oo

if liI‘JIrl rn = 0, then the necessary optimality condition becomes the sufficient optimality
n—s—+oo

condition.

Proof. (i) Since [ attains a global minimum on C at X, in view of Theorem 3.1 (i), we see that [ is

weakly subdifferentiable on C at X and moreover, [(x) —I(X) > (&,,x —X) — r,||x —X|| for all x €

C,&,=0,r,>0,and n > 1. Thus there exists ((&,,7,))n>1 C X* x R4 with liIE &, = 0 such
- n—r—oo

that (&,,r,) € dY1(X) for any n > 1. Conversely, we suppose that there exists ((§,,7))n>1 C
X* xR, with nl_i)lf@é,, =0 and ,,ETJ" =0, satisfying (&,,7,) € 92 1(X) for all n > 1. By virtue
of the weak subdifferential notion, one obtains /(x) —[(X) > (&,,x —X) — ry||x —X|| for all x € C.
By passing the limit above as n — oo, it holds that /(x) — /(X) > 0 = (0,x —X) — O||x — X|| for
all x € C. Therefore, x € C is a global minimum of / on C, as required.

(i) Because (0,0) € NA(X), it holds that 9¥I(X) C 9ZI(X) + N&(x), which together with
result of (i), we arrive at the desired conclusion. Conversely, we assume that there exists
((Enyrn))n>1 C X* x Ry with ngrfmén =0and nEToor” = 0 satisfying (&,,7,,) € IF1(X) + NE(X)
for all n > 1. We set (1,,5,) € YI(X) such that (§, — n,,r, —s,) € N&(%) for all n > 1. Tak-
ing arbitrary x € C, we can reach the result (&,,x —X) — ry||x — X|| < (N, x—X) — s,||x — X]| for
all n > 1, which together with I(x) — [(X) > (N,,x —X) — s,||x — X|| for all n > 1 guarantees
I(x)—1(xX) > (&, x —X) — ry||lx — || for all n > 1. Since nl_i&looé” =0 and nl_i>rJrrloorn =0, one can

achieve the inequality, /(x) > [(X) for every x € C, and the claim follows. O

Corollary 3.2. Let [ : X — R be a scalar function, C be a nonempty subset of X, and X € C.
Then, the following statements holds
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(1) The function | attains a global minimum on C at X if and only if there exists a sequence
((Enyrn))n>1 CX* x R4 with ngr}rlw(gn,rn) =(0,0) such that (§,,r,) € Y1(X) for every
n>1.

(i1) The function | attains a global minimum on C at X if and only if there exists a sequence
((&nyrn))n>1 CX* X R4 with nl_i>111m(§n,rn) = (0,0) such that (§,,r,) € IX1(X) + N&(%))

foreveryn > 1.
Proof. From the proof of Theorem 3.5, we obtain the desired conclusion immediately. U

Remark 3.5. We mention that if ET r, = ro > 0, then the converse of Theorem 3.5 may fail.
n oo

Indeed, we can take C =[—1,1] C X =R, x = 0 € C, and consider the function / : R — R be
defined by f(x) = —|x| for all x € R. An easy computation shows that

3 1(0) = {(&,r) ER X Ry [IE| < r—1}
and
NLyp(0) ={(&,r) e RxRy[|g] < r}.
Thus, either for any sequence (&,,r,) € 8{117111 (0) (Vn > 1) with nliToo‘gn = 0, it holds that

|Ex| < rn—1 (Vn > 1), which means that HETJ" :=ro > 1, or, for any sequence

(&nsra) €9 1(0) + Ny 1y(0) (Yr > 1)

with lim &, =0, it results in |§,| <r,—1foralln > 1, thatis, lim r,:=ry>1, whilex=0
n—>—o0 n——-oo0

is not a global minimum of / on C.

Theorem 3.6. (Necessary optimality conditions) Let [ : X — R be a scalar function, C be
1@ -1(x)|

[lx—=x]]

a subset of X, and x € C. Suppose that sup
xeC\{x}

< +oo. Then the following assertions

hold:

() If the function | attains a global maximum on C at X, then there exists a sequence
((Enyrn))n>1 C X* X Ry with ET &n = 0 satisfying (En,ry) € Y 1(X) for everyn > 1.
n oo

(1) If the function | attains a global maximum on C at X, then there exists a sequence
((&nyrn))n>1 C X* X Ry with liIJIrl (&nirn) = (0,0) satisfying (&y,rn) € O 1(X) + NE(X)
= n——+oo
foreveryn > 1.

1@ 1)
[lx—x]]
subset C at X, taking into account Theorem 3.1 (i1), we obtain that / is weakly subdifferentiable
on C at X, that is, there exists a subgradient pair (§,79) € X* x R satisfying (&o,r0) € 921(X).
By virtue of the proof of Theorem 3.1 (ii) once again, it holds that &y = 0 and ry < +o0. We set,
foralln>1,&,:=0and r, := ro+ zln Then, it is easy to verify that ((&,,r,))n>1 C X* X R4

with nLlTwén = 0 satisfying (&,,r,) € 921(X).
(ii): Since 91(X) and N&(X) are nonempty convex sets, it follows from (0,0) € N§(x) and
case (i) that 5: (&, 70) + 2"2—;1(0, 0) € E1(X) + N&(X). In what follows, we define the sequence
)

of subgradient pairs ((&,,7,))n>1 C X* X R4, where &, = 5—2, rn= 3%, n=1,2,.... It is not

Proof. (i): Observe that sup,cc\ [z} < +oo. Since [ attains a global maximum on a
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difficult to verify that lil‘JIrl (&n,ra) = (0,0), where (&,,7,) € 9Y1(X) + N&(X). This completes
n—r—+o0
the proof. U

The following example demonstrates that the converse of the Theorem 3.6 may fail.

Example 3.1. Let C = {x € X |||x]| < 1}, X =0 € C, and the real-valued function / : X — R be

defined by
0 if 1
o {0 i<,
||x|| otherwise.
Then, we compute that
(x)—1(x)| =l
sup — =1

— = =1 < Hoo.
eovm =3 e Il

Additionally, dpl(X) = N&(X) = {(ﬁ,r) eX*xR4|&] < r}. For every x € X, ||x|| = 1, one
can achieve that /(x) = ||x|| = 1 > 0. Hence X = 0 is not a global maximum of / on C because
[(x) =0 < 1. For x € C fixed, consider a sequence ((&,,r,))n>1 C X* x R4, which is given by

—1
x—Ey(x) = =l ,n=12...,
n
and r, = % for all n = 1,2,.... It is obvious that ||&,| = 1_)1‘5” — 0 and r, = % — 0 as

n — oo, which prove liT (&nyrn) = (0,0). For every n > 1, one has (&,,x —X) — ry|lx —X|| <
n— oo

0 <I(x) =I(x) —I(x) for all x € X. Therefore, (&,,r,) € 0VI(X) C I¥I(X) C IY1(X)+ N§(x) for
alln=1,2,....

In the sequel, the problem of minimizing the vector function / : X — Y over the nonempty
subset C C X is considered.

Definition 3.2. ([1, 18]) Let C be nonempty subset of X and x € X.

(i) A vector function / : X — Y has a weakly efficient solution atx € C on C if [(x) —[(X) &
—intQ forall x € C.

(ii) A vector function [ : X — Y has an efficient solution at x € C on C if [(x) — [(X) &
—(Q\{0}) forallx € C.

The following theorems characterize the class of augmented weakly subdifferentiable func-
tions.

Theorem 3.7. Let [ : X — Y, where intQ # 0, C be a subset of X, and x € C. If | has a weakly
efficient solution on C at X, then | is augmented weakly subdifferentiable on C at x. Furthermore,
there exists P € &V satisfying N&(X) C 0¥ (Rol)(%).

Proof. Suppose that [ has a weakly efficient solution at X on a subset C. Since intQ # 0, there
exists e € intQ. Consider the Gerstewitz mapping P; : Y — R being given as in the proof of
Proposition 2.1 (i). Then, P, € &?" satisfies the variational inequality (Py,/(x) — (X)) > 0 for
every x € C. Thus, the scalar function Pjg/ : X — R attains a global minimum at X on a subset
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C. Based on the result of Theorem 3.1 (i), we assert that P/ is weakly subdifferentiable at x on
a subset C, that is, there exists a weak subgradient (§,r) € 92 (Pyol)(X). It follows that

(&,r) € IF(Pipl)(X) <= (P1,1(x) — (X)) > (&,x—X) —r|lx—X|| Vx € C.

Consequently, (§,Py,r) € 9 -I(X), which means that [ is augmented weakly subdifferentiable
at x on a subset C. According to Theorem 3.1 (i) once again, we obtain the desired inclusion for
P := Py, which terminates the proof. O

Theorem 3.8. Let [ : X — Y, where 0 # Q\ {0} C intH with H be a pointed convex cone in'Y,
C be a subset of X, and x € C. If | has an efficient solution on C at X, then | is augmented weakly
subdifferentiable on C at X. Furthermore, there exists P € 2,, satisfying N3(X) C 92 (Pl ) (X).

Proof. Notice that / has an efficient solution at X on C. Since H is a pointed convex cone in
Y such that @ # Q\ {0} C intH, we see that there exists é € intH. Consider the Gerstewitz
mapping P; : Y — R being given as in the proof of Proposition 2.1 (ii). Then, P, € &,, sat-
isfies the variational inequality (P»,l(x) — (X)) > O for every x € C. Therefore, Pyl : X — R
attains a global minimum at X on C. Arguing similarly as in Theorem 3.7, we obtain the desired
conclusion. O

Theorem 3.9. (Necessary and sufficient optimality conditions) Let [ : X — Y be a vector
function, C be a nonempty subset of X, and x € C. Then the following statements hold:

(1) If intQ # 0 and the vector function | has a weakly efficient solution on C at X, then
there exist P € 22" and a sequence ((&y,rn))n>1 C X* x Ry with ngIrl & = 0 such
n o)

that (§,,r,) € OF (Pol) (%) for any n > 1. If, in addition, lim r, = 0, then the necessary

n——+oo
optimality condition becomes the sufficient optimality condition.

(i1) If intQ # O and the vector function | has a weakly efficient solution on C at X, then

there exist P € 22" and a sequence ((Ey,ry))n>1 C X* X Ry with liIJIrl &, = 0 such
= n—s—+oo

that (§,,1y,) € O (Pol)(X) + N&(X) for any n > 1. If, in addition, lim r, =0, then the

n—r—+too
necessary optimality condition becomes the sufficient optimality condition.

(iii) If there exists a pointed convex cone H with O # Q\ {0} C intH and the vector func-
tion | has an efficient solution on C at X, then there exist P € &,, and a sequence
((Enyrn))n>1 CX* X R4 with ET &y =0 such that (§,,ry) € 0F (Pol)(X) for anyn > 1.

n oo
If, in addition, ngrrl r, = 0, then the necessary optimality condition becomes the suffi-
n oo
cient optimality condition.

(iv) If there exists a pointed convex cone H with @ # Q \ {0} C intH and the vector func-
tion | has an efficient solution on C at X, then there exist P € &, and a sequence
((émrn))nZl C X" xRy with LHE &n = 0 such that (§,,rn) € aé‘v(POZ)()_C) +Ng(7f) for

n oo
any n > 1. If, in addition, EI—E r, =0, then the necessary optimality condition becomes
n oo
the sufficient optimality condition.

Proof. (i) Thanks to the proof of Theorem 3.7, one can find P, € &% such that Pjol : X — R

attains a global minimum at X on a subset C. Following the result of Theorem 3.5 (i), one

sees that there exists a sequence ((&,,7,))n>1 C X* X R4 with ET &, = 0 such that (§,,r,) €
n oo

dg (P101)(x) for every n > 1. Also, if liIB rp = 0, then the necessary optimality condition
n—r+oo

becomes the sufficient optimality condition.
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(i1) Its proof is similar with the proof of (i).

(iii) Based on the proof of Theorem 3.8, there exists P» € &, such that Pyl : X — R at-
tains a global minimum at X on set C. According to the proof of (i), there exists a sequence
((Enyrn))n>1 C X* x Ry with nngén = 0 such that, for every n > 1, (&,,r,) € 9% (P,00)(X).

Additionally, if EI:IFI r, = 0, then the necessary optimality condition becomes the sufficient
n oo

optimality condition.
(iv) Since it is similar with the proof of Case (ii), we here omit the proof. 0

Corollary 3.3. Let [ : X — Y be a vector function, C be a subset of X, and x € C.

If intQ # O, then the following statements hold:
(1) The vector function | has a weakly efficient solution on C at X if and only if there exist
P € 22" and a sequence ((&,,rn))n>1 C X* x Ry with EI_I'_I (&nyrn) = (0,0) such that
n oo
(&nin) € OY (Pol)(X) for everyn > 1.
(i1) The vector function | has a weakly efficient solution on C at X if and only if there exist
P € 2" and a sequence ((Ey,ry))n>1 C X* X Ry with ET (&nyrn) = (0,0) such that
n oo
(&nirn) € OY (Pol)(X) +NE(%)) for everyn > 1.
If there exists a pointed convex cone H with O # Q\ {0} C intH, then the following
statements hold:

(iii) The vector function | has an efficient solution on C at X if and only if there exist P € &,
and a sequence ((Eq,1n))n>1 C X* x Ry with gr}rl (&nyrn) = (0,0) such that (§,,r,) €
> e
o (Pyl)(x) for everyn > 1.
(iv) The vector function l has an efficient solution on C at X if and only if there exist P € &,
and a sequence ((Ey,rm))n>1 C X* X Ry with EH—I (Enyrn) = (0,0) such that (§,,r,) €
n )

O (Pol)(X) + NE(X)) for every n > 1.

Proof. From Theorem 3.8, the desired conclusions can be obtain immediately. 0

4. OPTIMALITY CONDITIONS FOR NONSMOOTH NONCONVEX PROBLEMS

Our aim in this section is to establish necessary optimality conditions in terms of the weak
subdifferentials and augmented normal cones for the efficiency of nonsmooth nonconvex math-
ematical programming problems with set, inequality, and equality constraints in real normed
spaces. It is important to mention that the achieved results in this section are still true for the
case X (or Y) is a n-dimensional Euclidean space.

We focus on the following nonsmooth nonconvex mathematical programming problem with
set, inequality, and equality constraints:

min f(x)

subject to g;(x) >0, i=1,2,...,m,
hi(x) =0, j=1,2,....p,
xeC,

(NMPP)

where f: X =Y, gi,hj: X —R,i=1,2,...,m; j=1,2,..., p are given real-valued functions,
and C is a nonempty subset of X.
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Definition 4.1. The feasible set of problem (NMPP) is denoted by K and is defined by
K:={xeClgi(x)>0,i=1,2,....m; hj(x) =0, j=1,2,...,p}.
X is said to be a feasible solution to problem (NMPP) if x € K.

Let a vector-valued mapping [ = (I1,l2,...,lut2p) : X — R™"2P be given by
16) 1= (1), 2(5), 2 ()
= <81(X), o 8m(x), A (x), . hp(x), —hi (x),. .., —hp(x)> forallx € X.

For this case, the feasible set to problem (NMPP) can be rewritten as
K:={xeC|lix)>0,i=1,2,...,m+2p}.

Definition 4.2. A vector X € K is said to be a (resp., weakly) efficient solution to problem
(NMPP) if f has a (resp., weakly) efficient solution on K at X.

Remark 4.1. It is not difficult to verify that N&(X) C Ng(x) for every feasible solution X. Ad-
ditionally, for the case ¥ = R, problem (NMPP) is called the problem of minimizing scalar
function f : X — R over the feasible set K and is denoted by (P).

We start by recalling that

1, ify>0,
sign(y) =< —1 if y<O,
0 ify=0,

Vi={Pe€ Py, —y1 €intQ = (P,y1) < (P,y2) (Vy1,)2€Y)},
Py ={P€ P|yy—y1 € 2\ {0} = (Py1) <(Py2) (Vy1,y2€Y)}.

Theorem 4.1. (Necessary optimality condition for problem (P)) Let x € K. If [ attains a
global minimum on K at X, then there exist 1 := (N1, M2,...,Mm) € R, v:= N, %,..-,%) €
RP?, and a sequence ((Ey,1rn))n>1 C X* X Ry with gl}rl (&q,rn) = (0,0) such that

p
(Enyrn) € I f(E +Zn,a,<g, X)+ Y |70 (sign(y))h) (X) + NE(X) (Yn>1); (4.1
i=1 j=1

nigi(¥) = 0, i=1,2,....m (4.2)
Yihi(x) =0, i=12,...,p. (4.3)

Proof. Suppose that f attains a global minimum on K at X. In view of Theorem 3.1 (i), one

sees that f is weakly subdifferentiable at X on K. Since (0,0) € NZ(X), taking into account

Corollary 3.2, one can find a sequence ((&;,r))n>1 C X* x Ry with LII_E (&nyrn) = (0,0)
n oo

such that (&,,r,) € I¢ f(X) +NE(X). In other words, taking 1 := (11,M2,...,Mm) € R satis-

fies (4.2), which can be verified that n;g; (i = 1,2,...,m) have a global minimum on K at X.

Thus (0,0) € d¢(nigi) (%) fori=1,2,...,m. We observe thatif g;(x) =0 (i=1,2,...,m), then

ni >0 (i=1,2,...,m). It further follows that 8}(”(171-&-)(_) =nd¢gi(X)i=1,2,....m;if n; =0

fori=1,2,...,m, then (0,0) € d¢(0g;)(x) for i = 1,2,...,m. Thus (0,0) € n,&Kg,( ) for i =
)

1,2,...,m. Slmllarly to the argument above, one sees that there exists y<1 ]/1( ), 72( yeens 71(7 ))
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€ R such that (0,0) € 8[2”(}/51)@)()?) for j=1,2,..., p and there exists Y2 := }/1( ),’)/2(2), . .7%(72)
€ R”, such that (0,0) € 9 (—7{h;)(x) for j=1,2,..., p. Forany x € K, it results (7, k) (x) -
(V1) (x) > 0fori=1,2,...,p, and (—}/J(-Z)hj)(x)—(—yj(-z)hj)()_c) >0fori=1,2,...,p. There-

fore, (11— yPh) (x )_(y]m ._y]<.2>h.)(—)>0fori:1 2,....p, thatis, (0,0) € (1" -

yj(.z))hj)(x) for j=1,2,...,p. By setting y = }{1) — {2) € R”, we see that

(0,0) € ZnﬂKgl +Z i1 9K (sign(7)h;j) (%),

which is due to (0,0) € d¢(vjh;) (%) = |y;|o¢ (szgn(yj) j)(®) for j=1,2,..., p. This proves the
conclusions (4.1) and (4.3). O

Theorem 4.2. (Necessary optimality condition for problem (NMPP)) Let X € K and intQ # 0.
If f has a weakly efficient solution on K at X, then there exist P € &% 1 := (N1,M2,-..,Nm) €
R%, v:=(N,%,---,Y) € RP, and a sequence ((&y,ry))n>1 C X* x Ry with 1—1>r41rl (&nyrn) =

(0,0) satisfying (4.2), (4.3), and

m p
(&n,7n) € OK (Pof)(X) + Y Midk'gi(®) + Y 710K (sign(yj)h;)(X) + Ne(®) (Vn > 1).
i=1 j=1
Proof. By invoking the result of Corollary 3.3, we see that there exists P € &% such that Py f
attains a global minimum on a feasible subset K at x. Applying the result of Theorem 4.1, we
obtain the desired conclusion immediately. 0

Theorem 4.3. (Necessary optimality condition for problem (NMPP)) Let X € K and suppose
that there exists a pointed convex cone H with O # Q\ {0} C intH. If f has an efficient so-
lution on K at X, then there exist P € Z,,, N := (N1,N2,..,NMm) ERY, vy :=(N,%,...,7p) €
RP?, and a sequence ((Ey,rn))n>1 C X* x Ry with lim (ﬁn,rn) = (0,0) such that (&,,r,) €

dg f(X) + Xili nidK gi(x )"‘Zp 117i19% (sign(y;)h; )( )"‘Na( ) for all n > 1; migi(x) =0 for
i=1,2,...,m,and yjh;(X) = Ofor]_l,Z,...,p.

Proof. Arguing similarly as for proving Theorem 4.2, we see that there exists P € &, such that
Pyf attains a global minimum on a feasible subset K at X. From Theorem 4.1, we obtain the
desired conclusion immediately. 0J

Theorem 4. 4 ( Necessary optimality condition for problem (P)) Let X € K and assume that
|f < Hoo. If f attains a global maximum on K at X, then there exist 1N :=
Mi,M2,-- M) ERY, Y= N,%,-.-,%) € RP and a sequence ((&,,14))n>1 C X* x Ry with
Jm (Su,7a) = (0,0) such that (Gu,ra) € I f (%) + L7y M0k 8i(X) + X, |79 (sign(v)h)) (%)
+NE(%) for alln > 1, n;gi(x) =0 fori=1,2,...,m, and yjhj(x) =0 for j=1,2,...,p.

Proof. Since K C C, it yields from the initial assumption that sup,c g\ (s f(ﬁ:){r) < +o0. Ap-
plying Theorem 3.1 (ii), we see that f is weakly subdifferentiable at X on K. Because f at-
tains a global maximum on K at X, we find from Theorem 3.6 that there exists a sequence
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((Eny1n))n>1 C X* xR with lir£ (&n,rn) = (0,0) such that, for all n > 1, (&,,7,) € I f(X) +
- n——+oo
N{(%). Then, in a similar way to prove Theorem 4.1, one can find Lagrangian multipliers

n:=M,N,....Mm) ERTand y:= (11,%,...,%) € R satisfying n;g;(x) =0, i=1,2,...,m
Yihj(X) =0, j=1,2,..., p; and the following relation

(&nyrn) € I [(F) +anal(gl + Z |7]|aK (sign(v;)h;)(X) + N (%),

j=
which completes the proof. U

Remark 4.2. We remark that the results obtained above are still true if the augmented normal

cone N{(X) is removed and replaced by an other augmented normal cone Ng(X). In addition,

based on the results achieved in Section 4, if we replace the limit gr}rl (Enyrn) = (0,0) by the
n o)

limit lirf &, = 0, then the result obtained in all the preceding statements is still true, where the
n—y+o0

relation
p
(&nsn) € I f(X) + Z MoK &i(X) + Y, 719K (sign(y;)h;) (%) + NE(), Vn > 1
j=1
is removed and replaced by the relation

14
(&n,rn) € 0K f(X) + Z Mo 8i(X) + Y. 7,10k (sign(y;)h))(x), Vn > 1.
=1

5. CONCLUSION

In this paper, we obtained necessary and sufficient optimality conditions for the problem
of minimizing/maximizing nonsmooth nonconvex functions / : X — Y and [ : X — R over a
feasible set C at the vector under consideration by means of the weak subdifferentials, the aug-
mented weak subdifferentials, and the weak subdifferentials. As an application, the necessary
optimality conditions for nonsmooth nonconvex mathematical programming problems (P) and
(NMPP) via the weak subdifferentials, the augmented weak subdifferentials, and the augmented
normal cones in normed spaces were presented. In addition, the characterization of the class
of weakly subdifferentiable and augmented weakly subdifferentiable functions are provided ac-
cordingly. It is of interest to use these optimality conditions to construct algorithms for finding
the (weakly) efficient solutions of the class of nonsmooth nonconvex mathematical program-
ming problems in terms of the weak subdifferentials notion and the augmented normal cones
notion in the future.
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