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Abstract. The main goal of this article is to develop a general method to improve some new power
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1. INTRODUCTION

Concave functions have played a key role in different fields, including mathematical inequal-
ities, optimization, functional analysis, applied mathematics and mathematical physics, to men-
tion a few. We recall that a function f : J→ R is said to be concave on the interval J if

f ((1−α)a+αb)≥ (1−α) f (a)+α f (b);a,b ∈ J,0≤ α ≤ 1.

If this inequality is reversed, then f is said to be convex. On the other hand, if log f is a
concave function, then f is called log-concave, and it is called log-convex if log f is convex.
Consequently, a log-concave (log-convex) function is necessarily a positive function. If f : J→
(0,∞) is log-concave function, then it satisfies

f ((1−α)a+αb)≥ f 1−α(a) f α(b);a,b ∈ J,0≤ α ≤ 1,

while a log-convex function satisfies the reversed inequality.
Consequently, it is readily seen that a concave function is necessarily log-concave, while a

log-convex function is convex. The opposite of these statements are not valid. We observe that
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when f is a log-concave, three quantities appear to be significant. Namely,

f ((1−α)a+αb),(1−α) f (a)+α f (b) and f 1−α(a) f α(b).

If a = 0 and b = 1, then these quantities reduce to

f (α),(1−α) f (0)+α f (1) and f 1−α(0) f α(1).

The primary objective of this paper is to find new explicit delicate mixed relations involving the
three quantities.

We emphasize that the following inequality is not true for a log-concave function

(1−α) f (0)+α f (1)≤ f (α).

Indeed, on one side the function f (α) := ((1−α)ap +αbp)
1
p for a,b > 0, and p ∈ (0,1) is

log-concave. On the other side, via the increasing property of the power mean, we have

(1−α) f (0)+α f (1)≥ f (α).

The second primary purpose of this paper is to find a positive term that we can add or subtract
from each side of this inequality and make it true.

The structure of this paper is outlined in the following manner. In the next section, we provide
a brief overview of the motivation behind this work, followed by the demonstration of several
results for log-concave functions that contribute to achieving our objective. After completing
the basic form, we proceed to establish a more complicated version of the desired inequalities
for log-concave functions. Applications that include scalar inequalities and operator inequalities
will be discussed then.

2. MOTIVATION

In this section, we describe the motivation behind this work. An essential and significant
inequality in functional analysis is the well-known Young’s inequality, which states that

aαb1−α ≤ αa+(1−α)b, a,b > 0, 0≤ α ≤ 1

with equality if and only if a = b. This inequality has many proofs. The easiest proof is done
by using the notion of convexity. Namely, the function f (α) = aαb1−α is convex. Hence,
f (α)≤ (1−α) f (0)+α f (1), which is equivalent to Young’s inequality.

Kittaneh and Manasrah [10] refined Young’s inequality as follows

aαb1−α + r0

(√
a−
√

b
)2
≤ αa+(1−α)b, (2.1)

where r0 = min{α,1−α} and 0≤ α ≤ 1.
Earlier, the following squared version was shown in [1]

(aαb1−α)2 + r2
0(a−b)2 ≤ (αa+(1−α)b)2, (2.2)

where r0 = min{α,1−α}.
Reverses of (2.1) and (2.2) were shown in [11], as follows

(αa+(1−α)b)2 ≤ (aαb1−α)2 +R2
0(a−b)2,

and
αa+(1−α)b≤ aαb1−α +R0

(√
a−
√

b
)2

,
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respectively, where R0 = max{α,1−α} and 0≤ α ≤ 1.
Ighachane and Akkouchi in [3] obtained a generalization of inequalities (2.1) and (2.2) as

follows:

Theorem 2.1. Let a,b > 0 and 0 < α < 1. Then, for all positive integers m,(
aαb1−α

)m

+ rm
0

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)
≤
(

αa+(1−α)b
)m

. (2.3)

Recently, Zhao [17] obtained a reverse of inequality (2.3) in the following manner:

Theorem 2.2 ([17]). Let a,b > 0 and 0 < α < 1. Then, all positive integers m,(
αa+(1−α)b

)m

≤
(

aαb1−α

)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)
, (2.4)

where
(m

k

)
is the binomial coefficient and Rm := max{

(m
k

)
αk(1−α)m−k, k = 0, . . . ,m}.

Afterwards, Ighachane [2] obtained the following refinement of (2.4).

Theorem 2.3. Let a,b > 0,0 < α < 1 and let m be a positive integer such that Rm = max{
(m

k

)
αk(1−α)m−k, k = 0, . . . ,m}.

(1) If 0 < α < 1
4 , then(

αa+(1−α)b
)m

≤
(

aαb1−α

)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

−2α
m
(
(ab)

m
4 −a

m
2

)2

− rm

(
a

m
2 − (a3b)

m
8

)2
,

where rm = min{4αm,Rm−3αm}.
(2) If 1

4 ≤ α < 1
2 , then(

αa+(1−α)b
)m

≤
(

aαb1−α

)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

− (1−2α)m
(
(ab)

m
4 −a

m
2

)2

−2(1−2α)m
(
(ab)

m
4 − (a3b)

m
8

)2

.

(3) If 1
2 ≤ α < 3

4 , then(
αa+(1−α)b

)m

≤
(

aαb1−α

)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

− (2α−1)m
(
(ab)

m
4 −b

m
2

)2

−2(2α−1)m
(
(ab)

m
4 − (ab3)

m
8

)2

.
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(4) If 3
4 ≤ α < 1, then(

αa+(1−α)b
)m

≤
(

aαb1−α

)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

−2Rm

(
(ab)

m
4 −b

m
2

)2
− rm

(
b

m
2 − (ab3)

m
8

)2

,

where rm = min{4(1−α)m,Rm−3(1−α)m}.

For recent progress in this direction, we refer to [4, 5, 6, 8, 9, 13, 14, 15] and the references
therein. The main motivation of our paper is to discuss some results for log-concave functions.
Those results are used to obtain a general inequality that extends and unifies Theorems 2.2 and
2.3. At this stage, we encourage the reader to see Section 5 below to be able to oversee the
purpose of this introduction. In the following, we list some lemmas that we will need in our
analysis.

Lemma 2.1 ([7]). Let m be a positive integer and let α a positive number such that 0 ≤
α ≤ 1. Then ∑

m
k=1
(m

k

)
kαk(1−α)m−k = mα, ∑

m−1
k=0

(m
k

)
(m− k)αk(1−α)m−k = m(1−α), and

∑
m
k=1
(m

k

)
k = ∑

m−1
k=0

(m
k

)
(m− k) = m2m−1.

Lemma 2.2 ([7]). Let α be a positive number such that 0≤ α ≤ 1 and m be a positive integer
such that Rm =max

{(m
k

)
αk(1−α)m−k, k = 0, . . . ,m

}
. (1) If 0≤α ≤ 1

4 , then Rm−3αm≥ (1−
α)m−3αm≥ 0. (2) If 1

4 ≤α ≤ 1
2 , then Rm−αm−(1−2α)m≥ (1−α)m−αm−(1−2α)m≥ 0.

The following lemma can be easily established by some elementary calculus.

Lemma 2.3. Let f : [0,1] −→ (0,∞) be a given function, and let m,n be two positive integers
with n≥ 2, and 0≤ α ≤ 1. Then

Mn :=
n

∑
k=2

2k−1
(√

f m(1)− 2k
√

f m(0) f m(2k−1−1)(1)
)2

= (2n−2) f m(1)+2( f (0) f (1))
m
2 −2n f

m
2 (1) 2n

√
f m(0) f m(2n−1−1)(1),

and

Nn := ( f (0) f (1))
m
2

n

∑
k=2

2k−2

 2k

√
f m(1)
f m(0)

−1

2

= (2n−1−1)( f (0) f (1))
m
2 + f m(1)−2n−1 f

m(2n−1−1)
2n (0) f

m(2n−1+1)
2n (1).

Lemma 2.4 ([7]). Let n,m be two positive integers such that n≥ 2 and α be a positive number.

(1) If α ∈ [0, 1
2n ], then Rm−αm− (2n−2)αm ≥ (1−α)m−αm− (2n−2)αm ≥ 0.

(2) If α ∈ [0, 1
2 ], then Rm−αm− (1−2α)m ≥ (1−α)m−αm− (1−2α)m ≥ 0.

3. THE SIMPLE FORM

Now, we are ready to state and prove our first main result about log-concave functions.



ON SOME POWER INEQUALITIES FOR LOG-CONCAVE FUNCTIONS 295

Theorem 3.1. Let f : [0,1]−→ (0,∞) be a log-concave function, 0≤α ≤ 1, and m be a positive
integer such that Rm = max

{(m
k

)
αk(1−α)m−k, k = 0, . . . ,m

}
.

(1) If 0 < α < 1
4 , then(

α f (1)+(1−α) f (0)
)m

≤ f m(α)+Rm

(
f m+1(0)− f m+1(1)

f (0)− f (1)
− (m+1)( f (0) f (1))

m
2

)

−2α
m
(
( f (1) f (0))

m
4 − f

m
2 (1)

)2

− rm

(
f

m
2 (1)−

(
f 3(1) f (0)

)m
8
)2

,

(3.1)

where rm = min{4αm,Rm−3αm}.
(2) If 1

4 ≤ α < 1
2 , then(

α f (1)+(1−α) f (0)
)m

≤ f m(α)+Rm

(
f m+1(0)− f m+1(1)

f (0)− f (1)
− (m+1)( f (0) f (1))

m
2

)

− (1−2α)m
(
( f (1) f (0))

m
4 − f

m
2 (1)

)2

−2(1−2α)m
(
( f (1) f (0))

m
4 −
(

f 3(1) f (0)
)m

8
)2

.

(3.2)

(3) If 1
2 ≤ α < 3

4 , then(
α f (1)+(1−α) f (0)

)m

≤ f m(α)+Rm

(
f m+1(0)− f m+1(1)

f (0)− f (1)
− (m+1)( f (0) f (1))

m
2

)

− (2α−1)m
(
( f (1) f (0))

m
4 − f

m
2 (0)

)2

−2(2α−1)m
(
( f (1) f (0))

m
4 −
(

f (1) f 3(0)
)m

8
)2

.

(3.3)

(4) If 3
4 ≤ α < 1, then(

α f (1)+(1−α) f (0)
)m

≤ f m(α)+Rm

(
f m+1(0)− f m+1(1)

f (0)− f (1)
− (m+1)( f (0) f (1))

m
2

)

−2Rm

(
( f (1) f (0))

m
4 − f

m
2 (0)

)2
− rm

(
f

m
2 (0)− ( f 3(0) f (1))

m
8

)2

,

(3.4)

where rm = min{4Rm,α
m−3Rm}.

Proof. (1) Let 0 < α < 1
4 . We claim that

Rm
f m+1(0)− f m+1(1)

f (0)− f (1)
−
(

α f (1)+(1−α) f (0)
)m

+ f m(α)

−2α
m
(
( f (1) f (0))

m
4 − f

m
2 (1)

)2

− rm

(
f

m
2 (1)− ( f 3(1) f (0))

m
8

)2

≥ (m+1)Rm( f (0) f (1))
m
2 .

(3.5)
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We have the following identity

Rm
f m+1(0)− f m+1(1)

f (0)− f (1)
−
(

α f (1)+(1−α) f (0)
)m

+ f m(α)

−2α
m
(
( f (1) f (0))

m
4 − f

m
2 (1)

)2

− rm

(
f

m
2 (1)− ( f 3(1) f (0))

m
8

)2

=
m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)+ f m(α)

+

(
Rm−3α

m− rm

)
f m(1)−2α

m( f (0) f (1))
m
2

+

(
4α

m− rm

)(
f (0) f 3(1)

)m
4
+2rm

(
f 7(1) f (0)

)m
8
.

Thus inequality (3.5) is equivalent to

((m+1)Rm +2α
m)−1

m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)

+ f m(α)+

(
Rm−3α

m− rm

)
f m(1)

+

(
4α

m− rm

)
( f (0) f 3(1))

m
4 +2rm

(
f 7(1) f (0)

)m
8

≥ ( f (0) f (1))
m
2 .

It follows that

((m+1)Rm +2α
m)−1

m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)

f m(α)+

(
Rm−3α

m− rm

)
f m(1)

+

(
4α

m− rm

)
( f (0) f 3(1))

m
4 +2rm( f 7(1) f (0))

m
8


=

m+3

∑
k=0

αk((m+1)Rm +2α
m)−1xk,

where

xk =


f k(1) f m−k(0), 0≤ k ≤ m−1

f m(1), k = m
f m(α), k = m+1

( f (0) f 3(1))
m
4 , k = m+2

( f (0) f 7(1))
m
8 , k = m+3,
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and

αk =



(
Rm−

(m
k

)
αk(1−α)m−k

)
, 0≤ k ≤ m−1

Rm−3αm− rm, k = m
1, k = m+1

4αm− rm, k = m+2
2rm, k = m+3.

By Lemma 2.2, we have
(a) xk > 0 for all k ∈ {0,1, . . . ,m+3},
(b) αk ≥ 0 for all k ∈ {0,1, . . . ,m+3}, with ∑

m+3
k=0 ((m+1)Rm +2αm)−1αk = 1.

The arithmetic-geometric mean inequality yields

m+3

∑
k=0

((m+1)Rm +2α
m)−1

αkxk ≥
m+3

∏
k=0

xαk
k = f α(m)(1) f β (m)(0) f γ(m)(α),

where

α(m) = ((m+1)Rm +2α
m)−1

m−1

∑
k=1

k

(
Rm−

(
m
k

)
α

k(1−α)m−k

)

+ m
(

Rm−3α
m− rm

)
+

3m
4

(
4α

m− rm

)
+

7m
8

2rm


=

m(m+1)
2 Rm−mα +mαm

(m+1)Rm +2αm , (by Lemma 2.1)

β (m) = ((m+1)Rm +2α
m)−1

m−1

∑
k=0

(m− k)

(
Rm−

(
m
k

)
α

k(1−α)m−k

)

+
m
4

(
4α

m− rm

)
+

m
8

2rm


=

m(m+1)
2 Rm−m(1−α)+mαm

(m+1)Rm +2αm , (by Lemma 2.1)

and

γ(m) =
m

(m+1)Rm +2αm .

Applying the log-concavity of the function f , we arrive at

f α(m)(1) f β (m)(0) f γ(m)(α)≥ f α(m)(1) f β (m)(0) f αγ(m)(1) f (1−α)γ(m)(0) = ( f (0) f (1))
m
2 .

This completes the proof of (3.1).
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(2) Let 1
4 ≤ α < 1

2 . We claim that

Rm
f m+1(0)− f m+1(1)

f (0)− f (1)
−
(

α f (1)+(1−α) f (0)
)m

+ f m(α)

− (1−2α)m
(
( f (1) f (0))

m
4 − f

m
2 (1)

)2

−2(1−2α)m
(
( f (1) f (0))

m
4 − ( f 3(1) f (0))

m
8

)2

≥ (m+1)Rm( f (0) f (1))
m
2 .

(3.6)

Furthermore, we have

Rm
f m+1(0)− f m+1(1)

f (0)− f (1)
−
(

α f (1)+(1−α) f (0)
)m

+ f m(α)

(1−2α)m
(
( f (1) f (0))

m
4 − f

m
2 (1)

)2

−2(1−2α)m
(
( f (1) f (0))

m
4 − ( f 3(1) f (0))

m
8

)2

=
m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)+ f m(α)

+

(
Rm−α

m− (1−2α)m
)

f m(1)−3(1−2α)m( f (0) f (1))
m
2 +4(1−2α)m( f 5(1) f 3(0))

m
8 .

Therefore, (3.6) is equivalent to

((m+1)Rm +3(1−2α)m)−1

m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)

+ f m(α)+

(
Rm−α

m− (1−2α)m
)

f m(1)+4(1−2α)m( f 5(1) f 3(0))
m
8

≥ ( f (0) f (1))
m
2 .

Thus

((m+1)Rm +3(1−2α)m)−1

m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)

+ f m(α)+

(
Rm−α

m− (1−2α)m
)

f m(1)+4(1−2α)m
(

f 5(1) f 3(0)
)m

8


=

m+2

∑
k=0

αk((m+1)Rm +3(1−2α)m)−1xk,

where

xk =


f k(1) f m−k(0), 0≤ k ≤ m−1

f m(1), k = m
f m(α), k = m+1

( f 5(1) f 3(0))
m
8 , k = m+2,
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and

αk =



(
Rm−

(m
k

)
αk(1−α)m−k

)
, 0≤ k ≤ m−1

Rm−αm− (1−2α)m, k = m
1, k = m+1

4(1−2α)m, k = m+2.

Lemma 2.2 implies that
(a) xk > 0 for all k ∈ {0,1, . . . ,m+2},
(b) αk ≥ 0 for all k ∈ {0,1, . . . ,m+2}, with

m+2

∑
k=0

((m+1)Rm +3(1−2α)m)−1
αk = 1.

By the arithmetic-geometric mean inequality, we may write

m+2

∑
k=0

((m+1)Rm +3(1−2α)m)−1
αkxk ≥

m+2

∏
k=0

xαk
k

= f α(m)(1) f β (m)(0) f γ(m)(α),

where

α(m) = ((m+1)Rm +3(1−2α)m)−1

m−1

∑
k=1

k

(
Rm−

(
m
k

)
α

k(1−α)m−k

)

+ m
(

Rm−α
m− (1−2α)m

)
+

5m
8

4(1−2α)m


=

m(m+1)
2 Rm−mα + 3m

2 (1−2α)m

(m+1)Rm +3(1−2α)m , (by Lemma 2.1)

β (m) = ((m+1)Rm +3(1−2α)m)−1

m−1

∑
k=0

(m− k)

(
Rm−

(
m
k

)
α

k(1−α)m−k

)

+
3m
8

4(1−2α)m


=

m(m+1)
2 Rm−m(1−α)+ 3m

2 (1−2α)m

(m+1)Rm +3(1−2α)m , (by Lemma 2.1)

and
γ(m) =

m
(m+1)Rm +3(1−2α)m .

Applying the log-concavity of the function f , we see that

f α(m)(1) f β (m)(0) f γ(m)(α)≥ f α(m)(1) f β (m)(0) f αγ(m)(1) f (1−α)γ(m)(0) = ( f (0) f (1))
m
2 .
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(3) If 1
2 ≤ β ≤ 3

4 , then 1
4 ≤ 1− β ≤ 1

2 . By changing f (x) and β by f (1− x) and 1− β

respectively in inequality (3.2), we see that inequality (3.3) is obtained.
(4) If 3

4 ≤ β ≤ 1, then 0≤ 1−β ≤ 1
4 . So by changing f (x) and β by f (1− x) and f (1− x)

respectively in inequality (3.1), we see that inequality (3.4) is obtained.

This completes the proof. �

In the following remark, we describe the inequalities in Theorem 3.1. In particular, we shed
some light on (3.1).

Remark 3.1. Inequality (3.1) states that(
α f (1)+(1−α) f (0)

)m

≤ f m(α)+Rm

(
f m+1(0)− f m+1(1)

f (0)− f (1)
− (m+1)( f (0) f (1))

m
2

)

−2α
m
(
( f (1) f (0))

m
4 − f

m
2 (1)

)2

− rm

(
f

m
2 (1)−

(
f 3(1) f (0)

)m
8
)2

,

for 0 < α < 1
4 and for any positive integer m, where rm = min{4αm,Rm−3αm}.

(1) Since

2α
m
(
( f (1) f (0))

m
4 − f

m
2 (1)

)2

+ rm

(
f

m
2 (1)− ( f 3(1) f (0))

m
8

)2

≥ 0,

we obtain the following weaker inequality(
α f (1)+(1−α) f (0)

)m

≤ f m(α)+Rm

(
f m+1(0)− f m+1(1)

f (0)− f (1)
− (m+1)( f (0) f (1))

m
2

)
.

(3.7)
If m = 1, then the previous inequality becomes

α f (1)+(1−α) f (0)≤ f (α)+2(1−α)

(
f (1)+ f (0)

2
−
√

f (1) f (0)
)
.

This is an interesting inequality concerning log-concave functions, as we discussed in
the introduction. It should be emphasized that

α f (1)+(1−α) f (0)≤ f (α)

is not true for a general log-concave function. This illustrates the significance of (3.7),
when m = 1.

4. MORE GENERAL DISCUSSION

Now, we are ready to state and prove our second main result about log-concave functions.

Theorem 4.1. Let f : [0,1]−→ (0,+∞) be a log-concave function and 0≤ α ≤ 1. Let m and n
be two positive integers such that n≥ 2 and Rm = max{

(m
k

)
αk(1−α)m−k, k = 0, . . . ,m}.
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(1) If α ∈ [0, 1
2n ], then

(
α f (1)+(1−α) f (0)

)m

≤ f m(α)+Rm

(
f m+1(0)− f m+1(1)

f (0)− f (1)
− (m+1)( f (0) f (1))

m
2

)

−
n

∑
k=2

2k−1
α

m
(√

f m(1)− 2k
√

( f (0) f 2k−1−1(1))m

)2

. (4.1)

(2) If α ∈ [ 1
2n ,

1
2 ], then

(
α f (1)+(1−α) f (0)

)m

≤ f m(α)+Rm

(
f m+1(0)− f m+1(1)

f (0)− f (1)
− (m+1)( f (0) f (1))

m
2

)

− (1−2α)m
√

( f (1) f (0))m
n

∑
k=2

2k−2

 2k

√
f m(1)
f m(0)

−1

2

. (4.2)

(3) If α ∈ [1
2 ,

2n−1
2n ], then

(
α f (1)+(1−α) f (0)

)m

≤ f m(α)+Rm

(
f m+1(0)− f m+1(1)

f (0)− f (1)
− (m+1)( f (0) f (1))

m
2

)

− (2α−1)m
√
( f (1) f (0))m

n

∑
k=2

2k−2

 2k

√
f m(0)
f m(1)

−1

2

. (4.3)

(4) If α ∈ [2n−1
2n ,1], then

(
α f (1)+(1−α) f (0)

)m

≤ f m(α)+Rm

(
f m+1(0)− f m+1(1)

f (0)− f (1)
− (m+1)( f (0) f (1))

m
2

)

−
n

∑
k=2

2k−1Rm

(√
f m(0)− 2k

√
( f (1) f 2k−1−1(0))m

)2

. (4.4)

Proof. It suffices to prove the first and second inequality. The proofs of the other two inequali-
ties are similar.

(1) Suppose that α ∈
[
0, 1

2n

]
. We claim that

Rm
f m+1(0)− f m+1(1)

f (0)− f (1)
−
(

α f (1)+(1−α) f (0)
)m

+ f m(α)

−
n

∑
k=2

2k−1
α

m
(√

f m(1)− 2k
√
( f (0) f 2k−1−1(1))m

)2

≥ (m+1)Rm( f (0) f (1))
m
2 .

(4.5)
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We have the following identity

Rm
f m+1(0)− f m+1(1)

f (0)− f (1)
−
(

α f (1)+(1−α) f (0)
)m

+ f m(α)

−
n

∑
k=2

2k−1
α

m
(√

f m(1)− 2k
√

( f (0) f 2k−1−1(1))m

)2

=
m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)+ f m(α)

+

(
Rm−α

m− (2n−2)αm
)

f m(1)−2α
m( f (0) f (1))

m
2

+2n
α

m f
m
2 (1) 2n

√
( f (0) f 2n−1−1(1))m.

It remains to show the following inequality, which is equivalent to (4.5):

((m+1)Rm +2α
m)−1

m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)

+ f m(α)+

(
Rm−α

m− (2n−2)αm
)

f m(1)

+2n
α

m f
m
2 (1) 2n

√
( f (0) f 2n−1−1(1))m

≥ ( f (0) f (1))
m
2 . (4.6)

To prove this, we notice that

((m+1)Rm +2α
m)−1

m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)

+ f m(α)+

(
Rm−α

m− (2n−2)αm
)

f m(1)

+2n
α

m f
m
2 (1) 2n

√
( f (0) f 2n−1−1(1))m


=

m+2

∑
k=0

αk((m+1)Rm +2α
m)−1xk,

where

xk =


f k(1) f m−k(0), 0≤ k ≤ m−1

f m(1), k = m
f m(α), k = m+1

f
m
2 (1) 2n

√
( f (0) f 2n−1−1(1))m, k = m+2,
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and

αk =



(
Rm−

(m
k

)
αk(1−α)m−k

)
, 0≤ k ≤ m−1

Rm−αm− (2n−2)αm, k = m
1, k = m+1

2nαm, k = m+2.

Using Lemma 2.2, we have
(a) xk > 0 for all k ∈ {0,1, . . . ,m+2},
(b) αk ≥ 0 for all k ∈ {0,1, . . . ,m+2}, and ∑

m+2
k=0 ((m+1)Rm +2αm)−1αk = 1.

Applying the arithmetic-geometric mean inequality, we have
m+2

∑
k=0

((m+1)Rm +2α
m)−1

αkxk ≥ f α(m)(1) f β (m)(0) f γ(m)(α),

where

α(m) = ((m+1)Rm +2α
m)−1

m−1

∑
k=1

k

(
Rm−

(
m
k

)
α

k(1−α)m−k

)

+ m
(

Rm−α
m− (2n−2)αm

)
+m2n

α
m
(

1
2
+

(2n−1−1)
2n

)
=

m(m+1)
2 Rm−mα +mαm

(m+1)Rm +2αm , (by Lemma 2.1)

β (m) = ((m+1)Rm +2α
m)−1

m−1

∑
k=0

(m− k)

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
+m2n

α
m 1

2n


=

m(m+1)
2 Rm−m(1−α)+mαm

(m+1)Rm +2αm , (by Lemma 2.1)

and
γ(m) =

m
(m+1)Rm +2αm .

Applying the log-concavity of the function f , we see that

f α(m)(1) f β (m)(0) f γ(m)(α)≥ f α(m)(1) f β (m)(0) f αγ(m)(1) f (1−α)γ(m)(0) = ( f (0) f (1))
m
2 .

This proves (4.6), and hence the first desired inequality is obtained.
(2) Suppose that α ∈ [ 1

2n ,
1
2 ]. We claim that

Rm
f m+1(0)− f m+1(1)

f (0)− f (1)
−
(

α f (1)+(1−α) f (0)
)m

+ f m(α)

− (1−2α)m
√

( f (1) f (0))m
n

∑
k=2

2k−2

 2k

√
f m(1)
f m(0)

−1

2

≥ (m+1)Rm( f (0) f (1))
m
2 .

(4.7)
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We have

Rm
f m+1(0)− f m+1(1)

f (0)− f (1)
−
(

α f (1)+(1−α) f (0)
)m

+ f m(α)

− (1−2α)m
√
( f (1) f (0))m

n

∑
k=2

2k−2

 2k

√
f m(1)
f m(0)

−1

2

=
m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)+ f m(α)

+
(
Rm−α

m− (1−2α)m) f m(1)− (2n−1−1)(1−2α)m( f (0) f (1))
m
2

+2n−1(1−2α)m f
m(2n−1−1)

2n (0) f
m(2n−1+1)

2n (1).

Thus we need to prove the following inequality, which is equivalent to (4.7):

((m+1)Rm +(2n−1−1)(1−2α)m)−1

×

m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)

+ f m(α)+

(
Rm−α

m− (1−2α)m
)

f m(1)

+2n−1(1−2α)m f
m(2n−1−1)

2n (0) f
m(2n−1+1)

2n (1)

≥ ( f (0) f (1))
m
2 . (4.8)

Observe that (
(m+1)Rm +(2n−1−1)(1−2α)m

)−1

×

m−1

∑
k=0

(
Rm−

(
m
k

)
α

k(1−α)m−k

)
f k(1) f m−k(0)

+ f m(α)+

(
Rm−α

m− (1−2α)m
)

f m(1)

+2n−1(1−2α)m f
m(2n−1−1)

2n (0) f
m(2n−1+1)

2n (1)


=

m+2

∑
k=0

αk

(
(m+1)Rm +(2n−1−1)(1−2α)m

)−1
xk,

where

xk =


f k(1) f m−k(0), 0≤ k ≤ m−1

f m(1), k = m
f m(α), k = m+1

f
m(2n−1−1)

2n (0) f
m(2n−1+1)

2n (1), k = m+2,



ON SOME POWER INEQUALITIES FOR LOG-CONCAVE FUNCTIONS 305

and

αk =



(
Rm−

(m
k

)
αk(1−α)m−k

)
, 0≤ k ≤ m−1

Rm−αm− (1−2α)m, k = m
1, k = m+1

2n−1(1−2α)m, k = m+2.

Lemma 2.2 again implies
(a) xk > 0 for all k ∈ {0,1, . . . ,m+2},
(b) αk ≥ 0 for all k ∈ {0,1, . . . ,m+2}, with

m+2

∑
k=0

((m+1)Rm +(2n−1−1)(1−2α)m)−1
αk = 1.

Then the arithmetic-geometric mean inequality implies
m+2

∑
k=0

(
(m+1)Rm +(2n−1−1)(1−2α)

)m
)−1

αkxk ≥ f α(m)(1) f β (m)(0) f γ(m)(α),

where

α(m) =
(
(m+1)Rm +(2n−1−1)(1−2α)m

)−1

×

m−1

∑
k=1

k

(
Rm−

(
m
k

)
α

k(1−α)m−k

)

+ m
(

Rm−α
m− (1−2α)m

)
+2n−1(1−2α)m m(2n−1 +1)

2n


=

m(m+1)
2 Rm−mα + m

2 (2
n−1−1)(1−2α)m

(m+1)Rm +(2n−1−1)(1−2α)m , (by Lemma 2.1)

β (m) =
(
(m+1)Rm +(2n−1−1)(1−2α)m

)−1

×

m−1

∑
k=0

(m− k)

(
Rm−

(
m
k

)
α

k(1−α)m−k

)

+ 2n−1(1−2α)m m(2n−1−1)
2n


=

m(m+1)
2 Rm−m(1−α)+ m

2 (2
n−1−1)(1−2α)m

(m+1)Rm +(2n−1−1)(1−2α)m , (by Lemma 2.1)

and
γ(m) =

m
(m+1)Rm +(2n−1−1)(1−2α)m .

Applying the log-concavity of the function f , we obtain

f α(m)(1) f β (m)(0) f γ(m)(α)≥ f α(m)(1) f β (m)(0) f αγ(m)(1) f (1−α)γ(m)(0) = ( f (0) f (1))
m
2 .
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This completes the proof of (4.8), and hence the second desired inequality has been
shown.

(3) If β ∈ [1
2 ,

2n−1
2n ], then 1−β ∈ [ 1

2n ,
1
2 ]. By changing f (x), and β by f (1− x) and 1−β

respectively in (4.2), the desired inequality (4.3) is obtained immediately.
(4) If β ∈ [2n−1

2n ,1], then 1− β ∈ [0, 1
2n ]. Changing f (x), and β by f (1− x) and 1− β

respectively in y (4.1), the desired inequality (4.4) is obtained immediately.
�

5. APPLICATIONS TO SCALAR MEANS

In this section, we present some scalar applications by using our main results, which present
new refinement of some classical inequalities between the difference of arithmetic-power and
arithmetic-geometric means for scalars.

Let a,b > 0, x ∈ [0,1] and p ∈ R\{0}. It is widely known that

f (x) = a]p,xb := (xap +(1− x)bp)
1
p

is increasing on R \ {0}. In particular, a∇αb ≤ a]p,αb, for every p ∈ (1,+∞), where a∇αb =

αa+(1−α)b. Furthermore, it is known that limp→0
p6=0

a]p,αb = a]αb = aαb1−α .

On the other hand, we can easily show that, for every p ∈ (0,+∞), λ 7→ a]p,λ b is a log-
concave function on [0,1]. By applying Theorems 3.1 and 4.1, we obtain the following new
reverse for the difference between the arithmetic and power means.

Theorem 5.1. Let a,b > 0,0 < α < 1, Rm = max{
(m

k

)
αk(1−α)m−k, k = 0, . . . ,m}, and let m

be a positive integer.
(1) If 0 < α < 1

4 , then(
αa+(1−α)b

)m

≤
(

a]p,αb
)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

−2α
m
(
(ab)

m
4 −a

m
2

)2

− rm

(
a

m
2 − (a3b)

m
8

)2

,

(5.1)

where rm = min{4αm,Rm−3αm}.
(2) If 1

4 ≤ α < 1
2 , then(

αa+(1−α)b
)m

≤
(

a]p,αb
)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

− (1−2α)m
(
(ab)

m
4 −a

m
2

)2

−2(1−2α)m
(
(ab)

m
4 − (a3b)

m
8

)2

.

(5.2)

(3) If 1
2 ≤ α < 3

4 , then(
αa+(1−α)b

)m

≤
(

a]p,αb
)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

− (2α−1)m
(
(ab)

m
4 −b

m
2

)2

−2(2α−1)m
(
(ab)

m
4 − (ab3)

m
8

)2

.

(5.3)
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(4) If 3
4 ≤ α < 1, then(

αa+(1−α)b
)m

≤
(

a]p,αb
)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

−2Rm

(
(ab)

m
4 −b

m
2

)2
− rm

(
b

m
2 − (ab3)

m
8

)2

,

(5.4)

where rm = min{4Rm,α
m−3Rm}.

Theorem 5.2. Let a,b > 0,0 < α < 1 and m,n be two positive integers such that n ≥ 2 and
Rm = max{

(m
k

)
αk(1−α)m−k, k = 0, . . . ,m}.

(1) If α ∈ [0, 1
2n ], then(

αa+(1−α)b
)m

≤
(

a]p,αb
)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

−
n

∑
k=2

2k−1
α

m
(√

am− 2k
√

(ba2k−1−1)m

)2

. (5.5)

(2) If α ∈ [ 1
2n ,

1
2 ], then(

αa+(1−α)b
)m

≤
(

a]p,αb
)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

− (1−2α)m
√

(ab)m
n

∑
k=2

2k−2

(
2k
√

am

bm −1

)2

. (5.6)

(3) If α ∈ [1
2 ,

2n−1
2n ], then(

αa+(1−α)b
)m

≤
(

a]p,αb
)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

− (2α−1)m
√

(ab)m
n

∑
k=2

2k−2

(
2k
√

bm

am −1

)2

. (5.7)

(4) If α ∈ [2n−1
2n ,1], then(

αa+(1−α)b
)m

≤
(

a]p,αb
)m

+Rm

(
bm+1−am+1

b−a
− (m+1)(ab)

m
2

)

−
n

∑
k=2

2k−1Rm

(√
bm− 2k

√
(ab2k−1−1)m

)2

. (5.8)

Remark 5.1. Let p−→ 0 in Theorem 5.1 and Theorem 5.2, we obtain Theorem 3.1 and Theo-
rem 3.2 presented in [2], respectively.
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6. APPLICATIONS TO OPERATORS

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space
H . An operator A ∈ B(H ) is called positive, denoted by A ≥ 0, if 〈Ax,x〉 ≥ 0 for all x ∈H .
The set of all positive operators is denoted by B(H )+. The set of all invertible operators in
B(H )+ is denoted by B(H )++. When H is finite dimensional, we identify B(H ) with the
algebra Mn of all n× n complex matrices. Among the most important operator means are the
arithmetic, geometric, harmonic and power means defined, respectively, for A,B ∈ B(H )++

and α ∈ [0,1], as follows:

A∇αB :=(1−α)A+αB,A]αB :=A1/2
(

A−1/2BA−1/2
)α

A1/2,A!αB :=((1−α)A−1+αB−1)−1,

and

A]p,αB := A1/2
(
(1−α)I +α(A−1/2BA−1/2)p

) 1
p

A1/2; p ∈ R\{0}.

If p−→ 0, then

A]0,αB = A]αB := A1/2
(

A−1/2BA−1/2
)α

A1/2.

Furthermore, the values p = 1,−1 give the arithmetic and harmonic means, respectively.
The following lemma is crucial for establishing operator inequalities from their correspond-

ing scalar counterparts.

Lemma 6.1 ([12, p. 3]). Let A ∈ B(H ) be self-adjoint. If f and g are both continuous real
valued functions with f (t)≥ g(t) for t ∈ Sp(A) (where the sign Sp(A) denotes the spectrum of
A,), then f (A)≥ g(A).

The following theorem presents the operator version of Theorem 5.1.

Theorem 6.1. Let A,B ∈ B(H )++, p ∈ (0,+∞) and 0 ≤ α ≤ 1. Let m be a positive integer
such that Rm = max

{(m
k

)
αk(1−α)m−k, k = 0, . . . ,m

}
.

(1) If 0 < α < 1
4 , then

A]m(A∇αB)≤ A]m(A]p,αB)+Rm

(
A]m(2A∇B)−2mA]m

2
B
)

−2α
m
(

A]m
2
B+A]mB−2A] 3m

4
B
)
− rm

(
A] 3m

4
B+A]mB−2A] 7m

8
B
)
,

where rm = min{4αm,Rm−3αm}.
(2) If 1

4 ≤ α < 1
2 , then

A]m(A∇αB)≤ A]m(A]p,αB)+Rm

(
A]m(2A∇B)−2mA]m

2
B
)

− (1−2α)m
(

A]m
2
B+A]mB−2A] 3m

4
B
)
−2(1−2α)m

(
A]m

2
B+A] 3m

4
B−2A] 5m

8
B
)
.



ON SOME POWER INEQUALITIES FOR LOG-CONCAVE FUNCTIONS 309

(3) If 1
2 ≤ α < 3

4 , then

A]m(A∇αB)≤ A]m(A]p,αB)+α
m
(

A]m(2A∇B)−2mA]m
2
B
)

− (2α−1)m
(

A+A]m
2
B−2A]m

4
B
)
−2(1−2α)m

(
A]m

2
B+A]m

4
B−2A] 3m

8
B
)
.

(4) If 3
4 ≤ α < 1, then

A]m(A∇αB)≤ A]m(A]p,αB)+α
m
(

A]m(2A∇B)−2mA]m
2
B
)

−2Rm

(
A+A]m

2
B−2A]m

4
B
)
− rm

(
A+A]m

4
B−2A]m

8
B
)
,

where rm = min{4Rm,α
m−3Rm}.

Proof. We prove the first inequality. The other inequalities are shown similarly. Let b = 1 in
inequality (5.1). Then

(αa+(1−α))m ≤ (αap +(1−α))
m
p +Rm((a+1)m−2ma

m
2 )

−2α
m
(

am +a
m
2 −2a

3m
4

)
− rm

(
am +a

3m
4 −2a

7m
8

)
.

(6.1)

Since r C = A
−1
2 BA

−1
2 has a positive spectrum, Lemma 6.1 and inequality (6.1) imply

(αC+(1−α)I)m ≤ (αCp +(1−α)I)
m
p +Rm((C+ I)m−2mC

m
2 )

−2α
m
(

Cm +C
m
2 −2C

3m
4

)
− rm

(
Cm +C

3m
4 −2C

7m
8

)
.

(6.2)

Finally, multiplying (6.2) by A
1
2 on the left and the right side, we see the following inequality

A]m(A∇αB)≤ A]m(A]p,αB)+α
m
(

A]m(2A∇B)−2mA]m
2
B
)

−2Rm

(
A+A]m

2
B−2A]m

4
B
)
− rm

(
A+A]m

4
B−2A]m

8
B
)
.

�

Theorem 6.2. Let A,B ∈ B(H )++, p ∈ (0,+∞), 0 ≤ α ≤ 1. Let m and n be two positive
integers such that n≥ 2 and Rm = max{

(m
k

)
αk(1−α)m−k, k = 0, . . . ,m}.

(1) If α ∈ [0, 1
2n ], then

A]m(A∇αB)≤ A]m(A]p,αB)+Rm

(
A]m(2A∇B)−2mA]m

2
B
)

−
n

∑
k=2

2k−1
α

m

(
A]mB+A]m(2k−1−1)

2k−1
B−2A]m(2k−1)

2k
B

)
.
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(2) If α ∈ [ 1
2n ,

1
2 ], then

A]m(A∇αB)≤ A]m(A]p,αB)+Rm

(
A]m(2A∇B)−2mA]m

2
B
)

−
n

∑
k=2

2k−2(1−2α)m

(
A]m

2
B+A]m(2k−2+1)

2k−1
B−2A]m(2k−1+1)

2k
B

)
.

(3) If α ∈ [1
2 ,

2n−1
2n ], then

A]m(A∇αB)≤ A]m(A]p,αB)+α
m
(

A]m(2A∇B)−2mA]m
2
B
)

−
n

∑
k=2

2k−2(1−2α)m

(
A]m

2
B+A]m(2k−2+1)

2k−1
B−2A]m(2k−1+1)

2k
B

)
.

(4) If α ∈ [2n−1
2n ,1], then

A]m(A∇αB)≤ A]m(A]p,αB)+α
m
(

A]m(2A∇B)−2mA]m
2
B
)

−
n

∑
k=2

2k−1Rm

(
A+A] m

2k−1
B−2A] m

2k
B
)
.

Proof. Here, we only prove the first inequality. For the other inequalities, they can be demon-
strated similarly. Letting b = 1 in inequality (5.5), we have

(αa+(1−α))m ≤ (αap +(1−α))
m
p +Rm

(
(a+1)m−2ma

m
2

)
−

n

∑
k=2

2k−1
α

m

(
am +a

m(2k−1−1)
2k−1 −2a

m(2k−1)
2k

)
.

(6.3)

Since C = A
−1
2 BA

−1
2 has a positive spectrum, we find by Lemma 6.1 and inequality (6.3) that

(αC+(1−α)I)m ≤ (αCp +(1−α)I)
m
p +Rm((C+ I)m−2mC

m
2 )

−
n

∑
k=2

2k−1
α

m

(
Cm +C

m(2k−1−1)
2k−1 −2C

m(2k−1)
2k

)
.

(6.4)

Finally, as before by multiplying (6.4) by A
1
2 on the left and right side, one obtains that

A]m(A∇αB)≤ A]m(A]p,αB)+Rm

(
A]m(2A∇B)−2mA]m

2
B
)

−
n

∑
k=2

2k−1
α

m

(
A]mB+A]m(2k−1−1)

2k−1
B−2A]m(2k−1)

2k
B

)
.

�

Lemma 6.2 ([16]). Let A,B ∈ B(H )++ and let α,β be two real numbers. Then A]α(A]β B) =
A]αβ B.
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At the end of this paper, we mention that by using the previous lemma and passing to the
limit p→ 0 in Theorem 6.1 and Theorem 6.2, we can obtain Theorem 4.1 and Theorem 4.2
presented in [2], respectively.
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