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Abstract. In this paper, we present some of the latest applications of our minimax theorems established
recently. These applications concern: The exact computation of the infimum of certain functionals on
Lp spaces; the multiplicity of global minima under a non-convexity condition; the multiplicity of peri-
odic solutions for Lagrangian systems of relativistic oscillators; and a new property of strictly convex
functions. In addition, a challenging conjecture is proposed in this paper.
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1. INTRODUCTION

Let X ,Y be two non-empty sets and f : X ×Y → R be a given function. It is obvious that
supY infX f ≤ infX supY f . The classical minimax problem, in the sense of von Neumann, is to
provide suitable conditions under which the equality

sup
Y

inf
X

f = inf
X

sup
Y

f . (1.1)

holds. The ancestor of the minimax theorems was the one proved by von Neumann in [7]. This
result was then extended and improved by Ky Fan in [4]. In turn, Fan’s result was improved by
Sion in [28] who established the following result.

Theorem 1.A. Let X ,Y be two convex sets, each in a topological vector space. Assume that one
of them is compact. Let f : X ×Y → R be lower semicontinuous and quasi-convex in X, and
upper semicontinuous and quasi-concave in Y . Then, equality (1.1) holds.

There is no doubt that Theorem 1.A, out of the circle of specialists, is considered as the
standard reference minimax theorem. Notice that Theorem 1.A fully lies in a convex setting.
But, what about minimax theorems in non-convex contexts? We provided several answers to
this question, and the first one was given in [9]. Here, in particular, we proved the following
result.

Theorem 1.1. Let X be a topological space and Y be a real interval. Let f : X×Y →R be lower
semicontinuous in X, and upper semicontinous and quasi-concave in Y . Moreover, assume that
there is a set D⊆ Y , dense in Y , such that for each y ∈ D and each r ∈ R, {x ∈ X : f (x,y)< r}
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is connected. Finally, assume that either Y is compact, or there is some y0 ∈Y such that f (·,y0)
is inf-compact in X. Then, equality (1.1) holds.

More precisely, Theorem 1.1 was obtained in [9] for D = Y . The current statement was
proved in [15]. Since its appearance, wide applications of Theorem 1.1 to integral functionals
in Lp spaces were made possible thanks to the following very interesting result obtained in
([27]).

Theorem 1.B. Let (T,F ,µ) be a σ -finite non-atomic measure space, let E be a Banach space,
and let ϕ : T ×E → R be a function such that ϕ(·,u(·)) is µ-measurable for every µ-strongly
measurable function u : T → E. Let p ≥ 1 and let A ⊆ Lp(T,E) be a decomposable set. Then,
for every r ∈ R,

{
u ∈ A : ϕ(·,u(·)) ∈ L1(T ),

∫
T ϕ(t,u(t))dµ ≤ r

}
is connected in the norm-

topology.

For instance, a joint application of Theorem 1.1 and Theorem 1.B gives the following re-
markable variational property (see [10, 12, 13]):

Theorem 1.C. Let (T,F ,µ) be a σ -finite non-atomic measure space, let E be a Banach space,
and let ϕ : T ×E → R be a function such that ϕ(·,u(·)) is µ-measurable for every µ-strongly
measurable function u : T → E. Let p ≥ 1 and assume that there exist α ∈ L1(T ), γi ∈]0,1[,
and βi ∈ L

p
p−γi , i = 1, ...,k, such that −α(t)≤ ϕ(t,x)≤ α(t)+∑

k
i=1 βi(t)‖x‖γi for µ-a.e. t ∈ T

and for all x ∈ E. Then, for every decomposable linear subspace F ⊆ Lp(T,E), for every
ψ ∈ F∗ \{0}, and for every r ∈ R, infu∈Lp(T,E)

∫
T ϕ(t,u(t))dµ = infu∈ψ−1(r)

∫
T ϕ(t,u(t))dµ.

Other related papers are [11] and [6]. Consider now the following proposition.

Proposition 1.A. Let X be a Hausdorff topological space and let ϕ : X → R be a lower semi-
continuous function such that, for some r > infX ϕ , the set ϕ−1(]−∞,r]) is compact and dis-
connected. Then, ϕ has at least two local minima.

In view of Proposition 1.A, a direct consequence of Theorem 1.1 is as follows.

Theorem 1.D. Let X be a Hausdorff topological space and Y be a real interval. Let f : X×Y →
R be lower semicontinuous and inf-compact in X, and upper semicontinous and quasi-concave
in Y . Also, assume that

sup
Y

inf
X

f < inf
X

sup
Y

f . (1.2)

Then, there exists a non-empty open set A⊂Y such that, for each y ∈ A, the function f (·,y) has
at least two local minima in X.

Theorem 1.D has an enormous impact for the multiplicity of solutions of nonlinear equations
of variational nature. Actually, applying it jointly with [8, Corollary 1], we have the following.

Theorem 1.E. Let X be a reflexive real Banach space and Y be a real interval. Let f : X ×
Y → R be sequentially weakly lower semicontinuous, coercive, continuously differentiable and
satisfying the Palais-Smale condition in X, and upper semicontinuous and quasi-concave in Y .
Also, assume that (1.2) holds. Then, there exists a non-empty open set A⊂Y such that, for each
y ∈ A, the function f (·,y) has at least three critical points in X.
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Theorem 1.E is from [14]. Other related results were established in [16, 17, 19]. As an easy
inspection to the relevant literature shows, such three critical point theorems have been proven
to be very powerful and flexible tools, having been successfully applied in several hundred pa-
pers dealing with the multiplicity of solutions of nonlinear equations; see [2, 18]. In view of
Theorems 1.D and 1.E, the following remark becomes a must. Starting from [7], mathemati-
cians working in this area studied solely the problem of ensuring the validity of equality (1.1).
After [14], to the contrary, it became likewise important to know when (1.2) holds. In [20], we
built a theory devoted to (1.2). Recently, in [23], we obtained the following variant of Theorem
1.1.

Theorem 1.2. Let X be a topological space, Y be a compact real interval and f : X ×Y → R
be an upper semicontinuous function which is continuous in X. Assume that there exists a set
D⊆Y , dense in Y , such that, for each y ∈D and each r ∈R, {x ∈ X : f (x,y)< r} is connected.
Moreover, assume that, for each x ∈ X, the set of all global maxima of the function f (x, ·) is
connected. Then, equality (1.1) holds.

A common feature of Theorems 1.1 and 1.2 is that the space Y must be a real interval. As
simple examples show that these results are no longer true when Y is a convex set of dimension
at least two. In [22], we established another very general minimax theorem (for non-convex
functions in X), where Y is an arbitrary convex set. It reads as follows.

Theorem 1.3. Let X be a topological space, let Y be a non-empty convex set in a real topolog-
ical vector space and let f : X ×Y → R be lower semicontinuous and inf-compact in X, and
quasi-concave and continuous in Y . Then, at least one of the following assertions holds:

(a) supY infX f = infX supY f ;
(b) there exists ỹ ∈ Y such f (·, ỹ) has at least two global minima.

The aim of this paper is to provide an account of some of the latest applications of Theorems
1.2 and 1.3.

2. EXACT COMPUTATION OF THE INFIMUM OF CERTAIN FUNCTIONALS ON Lp SPACES

As we mentioned in Introduction, the connectedness result of Saint Raymond permits ap-
plications of Theorems 1.1 and 1.2 to integral functionals on Lp spaces under very general
assumptions. In this section, we report some recent results on the subject obtained in [1] and
[5].

Throughout this section, (T,F ,µ) is used to denote a measure space, with µ(T ) < +∞,
E is used to denote a real Banach space and p ≥ 1. We denote by Lp(T,E) the space of all
equivalence classes of strongly µ-measurable functions u with

∫
T ‖u(t)‖pdµ < +∞, equipped

with the norm ‖u‖Lp(T,E) =
(∫

T ‖u(t)‖pdµ
) 1

p .
We write Lp(T ) instead of Lp(T,R). A set D ⊆ Lp(T,E) is said to be decomposable if, for

every u,v∈D and every A∈F , t→ χA(t)u(t)+(1−χA(t))v(t) is an element of D, where χA is
the characteristic function of A. A function f : T ×E→R is said to be a Carathéodory function
if it is measurable in T and continuous in E.

First, joint applications of Theorem 1.1 and Theorem 1.B give the following.

Theorem 2.A. Let X ⊆ Lp(T,E) a decomposable set, [a,b] a compact real interval, and γ :
[a,b]→R a convex (resp. concave) and continuous function. Moreover, let ϕ,ψ,ω : T×E→R
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be three Carathéodory functions such that, for some M ∈ L1(T ), k ∈ R,

max{‖ϕ(t,x)‖,‖ψ(t,x)‖,‖ω(t,x)‖} ≤M(t)+ k‖x‖p

for all (t,x) ∈ T ×E and

γ(a)
∫

T
ψ(t,u(t))dµ +a

∫
T

ω(t,u(t))dµ 6= γ(b)
∫

T
ψ(t,u(t))dµ +b

∫
T

ω(t,u(t))dµ

for all u ∈ X such that
∫

T ψ(t,u(t))dµ > 0 (resp.
∫

T ψ(t,u(t))dµ < 0). Then,

sup
λ∈[a,b]

inf
u∈X

(∫
T

ϕ(t,u(t))dµ + γ(λ )
∫

T
ψ(t,u(t))dµ +λ

∫
T

ω(t,u(t))dµ

)
= inf

u∈X
sup

λ∈[a,b]

(∫
T

ϕ(t,u(t))dµ + γ(λ )
∫

T
ψ(t,u(t))dµ +λ

∫
T

ω(t,u(t))dµ

)
.

Theorem 2.B. Let X ⊆ Lp(T,E) be a decomposable set, [a,b] a compact real interval and
γ,δ ∈C0([a,b])∩C1(]a,b[) two functions such that γ ′(λ ) 6= 0 for all λ ∈ [a,b] and δ ′

γ ′ is strictly
monotone in ]a,b[. Moreover, let ϕ,ψ,ω : T ×E → R be three Carathéodory functions such
that, for some M ∈ L1(T ), k ∈ R, max{‖ϕ(t,x)‖,‖ψ(t,x)‖,‖ω(t,x)‖} ≤M(t)+ k‖x‖p for all
(t,x) ∈ T ×E and

γ(a)
∫

T
ψ(t,u(t))dµ +δ (a)

∫
T

ω(t,u(t))dµ 6= γ(b)
∫

T
ψ(t,u(t))dµ +δ (b)

∫
T

ω(t,u(t))

in each of the two following cases:
- δ ′

γ ′ is strictly increasing, u ∈ X and γ ′(λ )
∫

T ω(t,u(t))dµ > 0 for all λ ∈]a,b[;
- δ ′

γ ′ is strictly decreasing, u ∈ X and γ ′(λ )
∫

T ω(t,u(t))dµ < 0 for all λ ∈]a,b[.
Then

sup
λ∈[a,b]

inf
u∈X

(∫
T

ϕ(t,u(t))dµ + γ(λ )
∫

T
ψ(t,u(t))dµ +δ (λ )

∫
T

ω(t,u(t))dµ

)

= inf
u∈X

sup
λ∈[a,b]

(∫
T

ϕ(t,u(t))dµ + γ(λ )
∫

T
ψ(t,u(t))dµ +δ (λ )

∫
T

ω(t,u(t))dµ

)
.

Let I ⊆ E be a non-empty set. We denote by AI the class of all pairs of continuous functions
ω,ψ : E→ R, with ω(x)≥ 0 and ψ(x)> 0 for all x ∈ I, such that

sup
x∈E

|ω(x)|+ |ψ(x)|
1+‖x‖p <+∞

and

sup
x∈I

ω(x)
ψ(x)

<+∞ .

Moreover, we denote by BI the family of all decomposable subsets X of Lp(T,E) such that
u(T )⊆ I for all u ∈ X , and it contains each constant function taking its value in I.

Remark 2.1. If (ω,ψ) ∈AI and X ∈BI , then

inf
x∈I

ω(x)
ψ(x)

≤
∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

≤ sup
x∈I

ω(x)
ψ(x)
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for all u ∈ X .

The following six results are the consequences of Theorem 2.A. Precisely, Theorems 2.1, 2.2,
2.3, and 2.6 were obtained by Giandinoto, while Theorems 2.4 and 2.5 were obtained by Ait
Mansour, Lahrache, and Ziane.

Theorem 2.1. Let (ω,ψ) ∈ AI , X ∈BI , and let r > 1. Set a :=
(

1
r infx∈I

ω(x)
ψ(x)

) 1
r−1

and b :=(
1
r supx∈I

ω(x)
ψ(x)

) 1
r−1

. Then,

inf
u∈X

(∫
T ω(u(t))dµ

)r∫
T ψ(u(t))dµ

=

(
µ(T )

r
r

r−1

r−1
sup

λ∈[a,b]
inf
x∈I

(
λω(x)−λ

r
ψ(x)

))r−1

. (2.1)

Proof. By Remark 2.1, we have
( ∫

T ω(u(t))dµ

r
∫

T ψ(u(t))dµ

) 1
r−1

: u ∈ X

⊆ [a,b] .

Since X contains each constant function taking its value in I, we clearly have

inf
u∈X

(∫
T

(
λω(u(t))−λ

r
ψ(u(t))

)
dµ

)
= µ(T ) inf

x∈I

(
λω(x)−λ

r
ψ(x)

)
for all λ ∈ [a,b]. Hence,

sup
λ∈[a,b]

inf
u∈X

(∫
T

(
λω(u(t))−λ

r
ψ(u(t))

)
dµ

)
= µ(T ) sup

λ∈[a,b]
inf
x∈I

(
λω(x)−λ

r
ψ(x)

)
. (2.2)

Now, since
∫

T ψ(u(t))dµ > 0 for all u ∈ X , we find by using Theorem 2.A with γ(λ ) = −λ r

and ϕ = 0 that

sup
λ∈[a,b]

inf
u∈X

(∫
T

(
λω(u(t))−λ

r
ψ(u(t))

)
dµ

)
= inf

u∈X
sup

λ∈[a,b]

(
λ

∫
T

ω(u(t))dµ−λ
r
∫

T
ψ(u(t))dµ

)
.

(2.3)

Fixing u ∈ X , one sees that λ → λ
∫

T ω(u(t))dµ −λ r ∫
T ψ(u(t))dµ is concave in [0,+∞[ and

its derivative vanishes at
( ∫

T ω(u(t))dµ

r
∫

T ψ(u(t))dµ

) 1
r−1 , which lies in [a,b]. Consequently, we have

inf
u∈X

sup
λ∈[a,b]

(
λ

∫
T

ω(u(t))dµ−λ
r
∫

T
ψ(u(t))dµ

)

= inf
u∈X

( ∫
T ω(u(t))dµ

r
∫

T ψ(u(t))dµ

) 1
r−1 ∫

T
ω(u(t))dµ−

( ∫
T ω(u(t))dµ

r
∫

T ψ(u(t))dµ

) r
r−1 ∫

T
ψ(u(t))dµ


= inf

u∈X

r−1

r
r

r−1

((∫
T ω(u(t))dµ

)r∫
T ψ(u(t))dµ

) 1
r−1

.
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In view of (2.2) and (2.3), one has

inf
u∈X

r−1

r
r

r−1

((∫
T ω(u(t))dµ

)r∫
T ψ(u(t))dµ

) 1
r−1

= µ(T ) sup
λ∈[a,b]

inf
x∈I

(
λω(x)−λ

r
ψ(x)

)
,

which is equivalent to (2.1). �

In addition, we have the following result from Theorem 2.1.

Theorem 2.2. Let (ω,ψ) ∈AI , X ∈BI and let r > 1. Let infx∈I(ω(x)−λψ(x)) =−∞ for all

λ > 0. Then, infu∈X
(
∫

T ω(u(t))dµ)
r∫

T ψ(u(t))dµ
= 0.

Proof. Writing

ω(x)−λψ(x) = ψ(x)
(

ω(x)
ψ(x)

−λ

)
,

we infer that infx∈I
ω(x)
ψ(x) = 0. Thus(2.1) holds with a = 0 and the right-hand side of (2.1) is 0, as

claimed. �

In turn, a particular case of Theorem 2.2 is as follows.

Theorem 2.3. Let I be an unbounded set whose closure does not contain 0, and let q,r,s be three

positive numbers such that s< q≤ p and r > 1. Then, for each X ∈BI , infu∈X
(
∫

T ‖u(t)‖sdµ)
r∫

T ‖u(t)‖qdµ
= 0.

Proof. It is sufficient to notice that (‖ ·‖s,‖ ·‖q) belongs to AI and that infx∈I(ω(x)−λψ(x)) =
−∞ for all λ > 0 is satisfied. �

Theorem 2.4. Let (ω,ψ) ∈ AI , X ∈ BI , and r > 1, and set a := infx∈I

(
ω(x)
ψ(x)

) 1
r−1

and b :=

supx∈I

(
ω(x)
ψ(x)

) 1
r−1

. If b <+∞, then

inf
u∈X

(r−1)(
∫

T ω(u(t))dµ)
r

r−1 +(
∫

T ψ(u(t)dµ)
r

r−1(∫
T ψ(u(t)dµ

) 1
r−1

= µ(T ) sup
λ∈[a,b]

inf
x∈I

(rλω(x)+(1−λ
r)ψ(x)) .

Proof. By Remark 2.1, we have

a≤

(∫
T ω(u(t))dµ∫
T ψ(u(t))dµ

) 1
r−1

≤ b

for all u ∈ X . Since X contains each constant function taking its value in I, we clearly have, for
all λ ∈ [a,b],

inf
u∈X

(
rλ

∫
T

ω(u(t))dµ− (λ r−1)
∫

T
ψ(u(t))dµ

)
= µ(T ) inf

x∈I
(rλω(x)+(1−λ

r)ψ(x)).

Hence,

sup
λ∈[a,b]

inf
u∈X

(
rλ

∫
T

ω(u(t))dµ− (λ r−1)
∫

T
ψ(u(t))dµ

)
= µ(T ) sup

λ∈[a,b]
inf
x∈I

(rλω(x)+(1−λ
r)ψ(x)).

(2.4)
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Using Theorem 2.A with ϕ = 0, γ(λ ) = 1−λ r (and rω instead of ω), one has

sup
λ∈[a,b]

inf
u∈X

(
rλ

∫
T

ω(u(t)dµ +(1−λ
r)
∫

T
ψ(u(t)dµ

)
= inf

u∈X
sup

λ∈[a,b

(
rλ

∫
T

ω(u(t)dµ +(1−λ
r)
∫

T
ψ(u(t)dµ

)
.

(2.5)

Fixing u ∈ X , one sees that F : λ → rλ
∫

T ω(u(t)dµ + (1− λ r)
∫

T ψ(u(t)dµ is concave in
[0,+∞[ and its derivative is given by F ′(λ ) = r

∫
T ω(u(t)dµ− rλ r−1 ∫

T ψ(u(t)dµ, which van-

ishes at
( ∫

T ω(u(t))dµ∫
T ψ(u(t))dµ

) 1
r−1 , which lies in [a,b]. Consequently,

inf
u∈X

sup
λ∈[a,b]

(
rλ

∫
T

ω(u(t))dµ +(1−λ
r)
∫

T
ψ(u(t))dµ

)

= inf
u∈X

(r−1)(
∫

T ω(u(t))dµ)
r

r−1 +(
∫

T ψ(u(t)dµ)
r

r−1(∫
T ψ(u(t)dµ

) 1
r−1

,

which, jointly with (2.4) and (2.5), gives the conclusion immediately. �

Now, from Theorem 2.4, we have the following result.

Theorem 2.5. Let E = R, I =]c,d[, and let (ω,ψ) ∈AI . Let ω,ψ be continuous and concave
in [c,d]. Assume that ω(d) = 0, ψ(c)< ψ(d), and supx∈I

ω(x)
ψ(x) = 1. Set δ := ω(c)

ψ(d)−ψ(c) . Assume

that
√

δ 2 +1−δ ≤ ω(c)
ψ(c) provided ψ(c)> 0, Then, for every X ∈BI ,

inf
u∈X

(
∫

T ω(u(t))dµ)2 +(
∫

T ψ(u(t)dµ)2∫
T ψ(u(t)dµ

= 2µ(T )δ (
√

δ 2 +1−δ )ω(c) .

Proof. Fix λ ∈ [0,1]. Since 2λω +(1−λ 2)ψ is concave in [c,d], its infimum is attained either
at c or at d. That is, (recalling that ω(d) = ψ(c) = 0)

inf
x∈I

(2λω(x)+(1−λ
2)ψ(x)) = min{2λω(c),(1−λ

2)ψ(d)} .

On the other hand, we have 2λω(c)≤ (1−λ 2)ψ(d) if and only if λ ≤−δ +
√

δ 2 +1. Conse-
quently

inf
x∈I

(2λω(x)+(1−λ
2)ψ(x)) =


2λω(c)+(1−λ

2)ψ(x) if λ ∈
[
0,−δ +

√
δ 2 +1

]
(1−λ

2)ψ(d) if λ ∈
[
−δ +

√
δ 2 +1,1

]

From this, it clearly follows that

sup
λ∈[0,1]

inf
x∈I

(2λω(x)+(1−λ
2)ψ(x)) = 2δ (

√
δ 2 +1−δ )ψ(d) .

Now, the conclusion follows directly from Theorem 2.4 with r = 2. �
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Remark 2.2. Concerning Theorem 2.5, it is important to observe that the infimum of the re-
striction of functional

u→ (
∫

T ω(u(t))dµ)2 +(
∫

T ψ(u(t)dµ)2∫
T ψ(u(t)dµ

to the set of all constant functions taking their values in ]c,d[ (say X̃) can be strictly larger
than 2µ(T )δ (

√
δ 2 +1− δ )ψ(d). To see this, it is enough to consider the following setting:

[c,d] = [0,1], ω(x) = 1− x, and ψ(x) = x+1. Indeed, in this case, we have δ = 1 and

inf
u∈X̃

(
∫

T (1−u(t))dµ)2 +(
∫

T (u(t)+1)dµ)2∫
T (u(t)+1)dµ

= µ(T )
50
27

> 4µ(T )(
√

2−1).

Applying Theorem 2.B, Giandinoto obtained the following result.

Theorem 2.6. Let I⊆E be a non-empty set, X ∈BI and ω,ψ : R→R two continuous functions
such that ω(x)> 0 for all x ∈ I and supx∈E

ω(x)+|ψ(x)|
1+‖x‖p <+∞. Then,

inf
u∈X

√(∫
T

ψ(u(t))dµ

)2

+

(∫
T

ω(u(t))dµ

)2

= µ(T ) sup
λ∈[− π

2 ,
π

2 ]

inf
x∈I

(ψ(x)sinλ +ω(x)cosλ ).
(2.6)

Proof. We need to apply Theorem 2.B by taking [a,b] = [−π

2 ,
π

2 ], γ(λ ) = sinλ , and δ (λ ) =

cosλ . Since δ ′

γ ′ is strictly decreasing and γ ′(λ )
∫

T ω(u(t))dµ > 0 for all λ ∈]a,b[, u ∈ X , no
other condition has to be satisfied. Consequently, we have

inf
u∈X

sup
λ∈[− π

2 ,
π

2 ]

(∫
T

ψ(u(t))dµ sinλ +
∫

T
ω(u(t))dµ cosλ

)
= sup

λ∈[− π

2 ,
π

2 ]

inf
u∈X

(∫
T

ψ(u(t))dµ sinλ +
∫

T
ω(u(t))dµ cosλ

)
.

(2.7)

On the other hand, since X ∈BI , we have

sup
λ∈− π

2 ,
π

2 ]

inf
u∈X

(∫
T

ψ(u(t))dµ sinλ +
∫

T
ω(u(t))dµ cosλ

)
= µ(T ) sup

λ∈[− π

2 ,
π

2 ]

inf
x∈I

(ψ(x)sinλ +ω(x)cosλ ).
(2.8)
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Fix u ∈ X . An easy checking shows that λ →
∫

T ψ(u(t))dµ sinλ +
∫

T ω(u(t))dµ cosλ reaches

its maximum at arctan
( ∫

T ψ(u(t))dµ∫
T ω(u(t))dµ

)
. Thus

sup
λ∈[− π

2 ,
π

2 ]

(∫
T

ψ(u(t))dµ sinλ +
∫

T
ω(u(t))dµ cosλ

)

= sin

arctan

(∫
T ψ(u(t))dµ∫
T ω(u(t))dµ

)∫
T

ψ(u(t))dµ

+ cos

arctan

(∫
T ψ(u(t))dµ∫
T ω(u(t))dµ

)∫
T

ω(u(t))dµ

=

∫
T ψ(u(t))dµ∫

T ω(u(t))dµ

√
1+
( ∫

T ψ(u(t))dµ∫
T ω(u(t))dµ

)2

∫
T

ψ(u(t))dµ

+
1√

1+
(∫

T ψ(u(t))dµ
∫

T ω(u(t))dµ
)2

∫
T

ω(u(t))dµ

=

√(∫
T

ψ(u(t))dµ

)2

+

(∫
T

ω(u(t))dµ

)2

.

Now (2.6) follows directly from (2.7) and (2.8) immediately. �

Remark 2.3. Let X , ω and ψ be as in Theorem 2.6. Consider the set

K =

{(∫
T

ω(u(t))dµ,
∫

T
ψ(u(t))dµ

)
: u ∈ X

}
⊆ R2 .

Theorem 2.6 gives us the exact value of the distance of 0 from K. Since, by the Lyapunov
convexity theorem, K is convex, this information is very useful in applying Theorem 1 of [21]
to K.

3. MULTIPLE GLOBAL MINIMA UNDER A NON-CONVEXITY CONDITION

In this section, as an application of Theorem 1.3, we present the following general multiplic-
ity result ([24]).

Theorem 3.1. Let X be a topological space, E be a real normed space, I : X → R, ψ : X → E,
and S ⊆ E∗ be a convex set weakly-star dense in E∗. Assume that ψ(X) is not convex and that
I +η ◦ψ is lower semicontinuous and inf-compact for all η ∈ S. Then, there exists η̃ ∈ S such
that the function I + η̃ ◦ψ has at least two global minima in X.

First, we prove the following result.

Proposition 3.1. Let X be a non-empty set, E be a real vector space, I : X→R, and ψ : X→ E.
Let x1, ...,xn ∈ X, λ1, ...,λn ∈ [0,1], with ∑

n
i=1 λi = 1. Then,

sup
η∈E ′

inf
x∈X

I(x)+η

(
ψ(x)−

n

∑
i=1

λiψ(xi)

)≤ max
1≤i≤n

I(xi) .
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Proof. Fix η ∈ E
′
. Clearly, for some j′ ∈ {1, ...,n}, we have

η

(
ψ(x j′)−

n

∑
i=1

λiψ(xi)

)
≤ 0. (3.1)

Indeed, if not, then η(ψ(x j)) > ∑
n
i=1 λiη(ψ(xi)) for each j ∈ {1, ...,n}. By multiplying by λ j

and summing, we see that ∑
n
j=1 λ jη(ψ(x j)) > ∑

n
i=1 λiη(ψ(xi)), a contradiction. In view of

(3.1), we have

inf
x∈X

I(x)+η

(
ψ(x)−

n

∑
i=1

λiψ(xi)

)≤ I(x j′)+η

(
ψ(x j′)−

n

∑
i=1

λiψ(xi)

)
≤ I(x j′)≤ max

1≤i≤n
I(xi).

From the arbitrariness of η , we obtain the desired conclusion immediately. �

Proof of Theorem 3.1. Fix u0 ∈ conv(ψ(X))\ψ(X) and consider the function g : X ×E∗→ R
defined by g(x,η) = I(x) + η(ψ(x)− u0) for all (x,η) ∈ X × E∗. By Proposition 3.1, we
know that supE∗ infX g < +∞. On the other hand, for each x ∈ X , since ψ(x) 6= u0, we have
supη∈E∗ η(ψ(x)−u0) = +∞. Since S is weakly-star dense in E∗ and g(x, ·) is weakly-star con-
tinuous, we have supη∈S g(x,η) = +∞. Thus supS infX g < infX supS g. Now, we can apply The-
orem 1.3 to g|X×S . We see there exists η̃ ∈ S such that g(·, η̃) (and so I+ η̃ ◦ψ) has at least two
global minima in X , as claimed.

Based on Theorem 3.1, we also have the following result.

Theorem 3.2. Let E be a real normed space, V be a reflexive real Banach space, x0 ∈V , r > 0,
X be the open ball in V with radius r, centered at x0, γ : [0,r[→ R, with limξ→r− γ(ξ ) = +∞,
and I : X → R and ψ : X → E be two Gâteaux differentiable functions. Moreover, let I be
sequentially weakly lower semicontinous, ψ be sequentially weakly continuous, be ψ(X) is
bounded and non-convex, and γ(‖x− x0‖) ≤ I(x) for all x ∈ X. Then, for every convex set
S⊆ E∗ weakly-star dense in E∗, there exists η̃ ∈ S such that the equation I′(x)+(η̃ ◦ψ)′(x) = 0
has at least two solutions in X.

Proof. We apply Theorem 3.1 by considering X equipped with the relative weak topology. Let
η ∈ E∗. Since ψ(X) is bounded, we have c := infx∈X η(ψ(x)) > −∞ . Letting s ∈ R, we see
that

{x ∈ X : I(x)+η(ψ(x))≤ s} ⊆ {x ∈ X : I(x)≤ s− c} ⊆ {x ∈ X : γ(‖x− x0‖)≤ s− c}. (3.2)

Since limξ→r− γ(ξ ) = +∞, one sees that there exist δ ∈]0,r[ such that γ(ξ ) > s− c for all
ξ ∈]δ ,r[. Consequently, from (3.2), we obtain

{x ∈ X : I(x)+η(ψ(x))≤ s} ⊆ {x ∈V : ‖x− x0‖ ≤ δ}. (3.3)

From the assumptions, it follows that I +η ◦ψ is sequentially weakly lower semicontinuous
in X . Since δ < r and V is reflexive, we infer from (3.3) that {x ∈ X : I(x)+η(ψ(x)) ≤ s}
is sequentially weakly compact and hence weakly compact, by the Eberlein-Smulyan theorem.
Therefore, we can apply Theorem 3.1. Accordingly, there exists η̃ ∈ S such that I + η̃ ◦ψ has
at least two global minima in X , which are critical points of it since X is open. �

We now present an application of Theorem 3.2 to a class of singular Kirchhoff-type problems.
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Theorem 3.3. Let f : R→ R be a continuous function, let ρ > 0, and let ω : [0,ρ[→ [0,+∞[

be a continuous increasing function such that limξ→ρ−
∫ ξ

0 ω(x)dx =+∞. Consider C0([0,1])×
C0([0,1]) endowed with the norm ‖(α,β )‖ =

∫ 1
0 |α(t)|dt +

∫ 1
0 |β (t)|dt. Then, the following

assertions are equivalent:
(a) the restriction of f to

[
−
√

ρ

2 ,
√

ρ

2

]
is not constant;

(b) for every convex set S⊆C0([0,1])×C0([0,1]) dense in C0([0,1])×C0([0,1]), there exists
(α,β ) ∈ S such that

−ω

(∫ 1
0 |u′(t)|2dt

)
u′′ = β (t) f (u)+α(t) in [0,1]

u(0) = u(1) = 0∫ 1
0 |u′(t)|2dt < ρ

has at least two classical solutions.

Proof. Consider the Sobolev space H1
0 (]0,1[) with the usual scalar product 〈u,v〉=

∫ 1
0 u′(t)v′(t)dt.

Let B√ρ be the open ball in H1
0 (]0,1[, of radius

√
ρ , centered at 0. Let g : [0,1]×R→ R be a

continuous function. Consider the functionals I,Jg : B√ρ → R defined by

I(u) =
1
2

ω̃

(∫ 1

0
|u′(t)|2dt

)
, Jg(u) =

∫ 1

0
g̃(t,u(t))dt

for all u ∈ B√ρ , where ω̃(ξ ) =
∫ ξ

0 ω(x)dx and g̃(t,ξ ) =
∫ ξ

0 g(t,x)dx. Baking into account that
if ω(x) = 0, then x = 0, it follows that the classical solutions of

−ω

(∫ 1
0 |u′(t)|2dt

)
u′′ = g(t,u) in [0,1]

u(0) = u(1) = 0∫ 1
0 |u′(t)|2dt < ρ

are exactly the critical points in B√ρ of I− Jg. Let us prove that (a)→ (b).
We next apply Theorem 3.2 by taking V = H1

0 (]0,1[), x0 = 0, r =
√

ρ , I as above, γ(ξ ) =
1
2ω̃(ξ 2), E = C0([0,1])×C0([0,1]), and ψ : B√ρ → E defined by ψ(u)(·) = (u(·), f̃ (u(·)))
for all u ∈ B√ρ , where f̃ (ξ ) =

∫ ξ

0 f (x)dx. Clearly, I is continuous and strictly convex (and
so weakly lower semicontinuous), while ψ is Gâteaux differentiable and sequentially weakly
continuous due to the compact embedding of H1

0 (]0,1[) into C0([0,1]). Recall that max[0,1] |u| ≤
1
2

√∫ 1
0 |u′(t)|2dt for all u ∈ H1

0 (]0,1[). Thus ψ

(
B√ρ

)
is bounded and non-convex, due to (a).

Hence, each assumption of Theorem 3.2 is satisfied. Now, we consider the operator T : E→ E∗

defined by

T (α,β )(u,v) =
∫ 1

0
α(t)u(t)dt +

∫ 1

0
β (t)v(t)dt

for all (α,β ),(u,v) ∈ E. It is obvious that T is linear and the linear subspace T (E) is total over
E. Hence, T (E) is weakly-star dense in E∗. Moreover, notice that T is continuous with respect
to the weak-star topology of E∗. Indeed, let {(αn,βn)} be a sequence in E converging to some
(0,0). Fix (u,v) ∈ E. We have to show that

lim
n→∞

T (αn,βn)(u,v) = 0. (3.4)
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Notice that

lim
n→∞

(∫ 1

0
|αn(t)|dt +

∫ 1

0
|βn(t)|dt

)
= 0. (3.5)

On the other hand, we have

|T (αn,βn)(u,v)|=

∣∣∣∣∣
∫ 1

0
αn(t)u(t)dt +

∫ 1

0
βn(t)v(t)dt

∣∣∣∣∣
≤

(∫ 1

0
|αn(t)|dt +

∫ 1

0
|βn(t)|dt

)
max

{
max
[0,1]
|u|,max

[0,1]
|v|

}
.

Hence (3.4) follows in view of (3.5).
Finally, fix a convex set S ⊆ C0([0,1])×C0([0,1]) dense in C0([0,1])×C0([0,1]). Then,

by the kind of continuity of T just now proved, the convex set T (−S) is weakly-star dense
in E∗. Thanks to Theorem 3.2, we see that there exists (α0,β0) ∈ −S such that, if we put
g(t,ξ ) = α0(t)+β0(t) f (ξ ), then functional I−Jg has at least two critical points in B√ρ , which
are the claimed solutions to the problem in (b) with α =−α0 and β =−β0.

Now, let us prove that (b)→ (a). Assume that the restriction of f to
[
−
√

ρ

2 ,
√

ρ

2

]
is constant.

Let c be such a value. So, the classical solutions of
−ω

(∫ 1
0 |u′(t)|2dt

)
u′′ = cβ (t)+α(t) in [0,1]

u(0) = u(1) = 0∫ 1
0 |u′(t)|2dt < ρ

are the critical points in B√ρ of u→ 1
2ω̃

(∫ 1
0 |u′(t)|2dt

)
−
∫ 1

0 (cα(t)+β (t))u(t)dt. But, since
ω is increasing and non-negative, this functional is strictly convex and so it possesses a unique
critical point. The proof is complete. �

4. MULTIPLICITY OF PERIODIC SOLUTIONS FOR LAGRANGIAN SYSTEMS OF

RELATIVISTIC OSCILLATORS

In this section, we present an application of Theorem 3.1 to Lagrangian systems of relativistic
oscillators ([25] ). In what follows, L,T are assumed to be two fixed positive numbers. For each
r > 0, we set Br = {x ∈ Rn : |x| < r} (| · | being the Euclidean norm on Rn) and Br is the
closure of Br. The scalar product on Rn is denoted by 〈·, ·〉. We denote by A the family of
all homeomorphisms φ from BL onto Rn such that φ(0) = 0 and φ = ∇Φ, where the function
Φ : BL →]−∞,0] is continuous and strictly convex in BL, and of class C1 in BL. Notice that
0 is the unique global minimum of Φ in BL. We denote by B the family of all functions
F : [0,T ]×Rn → R which are measurable in [0,T ], of class C1 in Rn and such that ∇xF is
measurable in [0,T ] and, for each r > 0, one has supx∈Br

|∇xF(·,x)| ∈ L1([0,T ]), with F(·,0) ∈
L1([0,T ]). Clearly, B is a linear subspace of R[0,T ]×Rn

.
Given φ ∈A and F ∈B, we consider the problem{

(φ(u′))′ = ∇xF(t,u) in [0,T ]
u(0) = u(T ) , u′(0) = u′(T ) .

(Pφ ,F)
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A solution of this problem is any function u : [0,T ]→ Rn of class C1, with u′([0,T ]) ⊂ BL,
u(0) = u(T ), u′(0) = u′(T ), such that the composite function φ ◦u′ is absolutely continuous in
[0,T ] and one has (φ ◦u′)′(t) = ∇xF(t,u(t)) for a.e. t ∈ [0,T ].

Now, we set

K = {u ∈ Lip([0,T ],Rn) : |u′(t)| ≤ L f or a.e. t ∈ [0,T ],u(0) = u(T )},

where Lip([0,T ],Rn) is the space of all Lipschitzian functions from [0,T ] into Rn.
Clearly, one has

sup
[0,T ]
|u| ≤ LT + inf

[0,T ]
|u| (4.1)

for all u ∈ K.
Next, we consider the functional I : K→R defined by I(u) =

∫ T
0 (Φ(u′(t))+F(t,u(t)))dt for

all u ∈ K. In [3], Brezis and Mawhin proved the following result.

Theorem 4.A. Any global minimum of I in K is a solution to problem (Pφ ,F).

Here is our result.

Theorem 4.1. Let φ ∈A , F,G ∈B and H ∈C1(Rn). Assume that
(a1) there exists q > 0 such that

lim
|x|→+∞

inft∈[0,T ]F(t,x)
|x|q

=+∞

and

limsup
|x|→+∞

supt∈[0,T ] |G(t,x)|+ |H(x)|
|x|q

<+∞ ;

(a2) there exist γ ∈ {infRn H,supRn H}, with H−1(γ) at most countable, and v,w ∈ H−1(γ)

such that
∫ T

0 G(t,v)dt 6=
∫ T

0 G(t,w)dt.
Then, for each α ∈ L∞([0,T ]) with a constant sign and meas(α−1(0)) = 0, there exists

(λ̃ , µ̃) ∈ R2 such that (φ(u′))′ = ∇x

(
F(t,u)+ λ̃G(t,u)+ µ̃α(t)H(u)

)
in [0,T ]

u(0) = u(T ) , u′(0) = u′(T )
(P)

has at least two solutions which are global minima in K to

u→
∫ T

0
(Φ(u′(t))+F(t,u(t))+ λ̃G(t,u(t))+ µ̃α(t)H(u(t)))dt.

Proof. Fix α ∈ L∞([0,T ]) with a constant sign and meas(α−1(0)) = 0. Let C0([0,T ],Rn) be the
space of all continuous functions from [0,T ] into Rn, with the norm sup[0,T ] |u|. We are going
to apply Theorem 3.1 by taking X = K, regarded as a subset of C0([0,T ],Rn) with the relative
topology, E = R2 and I : K→ R, ψ : K→ R2 defined by

I(u) =
∫ T

0
(Φ(u′(t))+F(t,u(t)))dt, ψ(u) =

(∫ T

0
G(t,u(t))dt,

∫ T

0
α(t)H(u(t))dt

)
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for all u ∈ K. Fix (λ ,µ) ∈ R2. By Lemma 4.1 of [3], we see that I(·)+ 〈ψ(·),(λ ,µ)〉 is lower
semicontinuous in K. Let us show that it is inf-compact too. First, observe that if P ∈B then,
for each r > 0, there exists M ∈ L1([0,T ]) such that

sup
x∈Br

|P(t,x)| ≤M(t) (4.2)

for all t ∈ [0,T ]. Indeed, by the mean value theorem, we have P(t,x)−P(t,0) = 〈∇xP(t,ξ ),x〉
for some ξ in the segment joining 0 and x. Consequently, for all t ∈ [0,T ] and x ∈ Br, by the
Cauchy-Schwarz inequality, we clearly have |P(t,x)| ≤ r supy∈Br

|∇xP(t,y)|+ |P(t,0)|. To reach
(4.2), we can choose M(t) := r supy∈Br

|∇xP(t,y)|+ |P(t,0)| which is in L1([0,T ]) since P ∈B.
Now, by (a1), we can fix c1,δ > 0 so that

|G(t,x)|+ |H(x)| ≤ c1|x|q (4.3)

for all (t,x)∈ [0,T ]×(Rn\Bδ ). We now set c2 := c1 max
{
|λ |, |µ|‖α‖L∞([0,T ])

}
. By (a1) again,

we fix c3 > c2 and δ1 > δ so that

F(t,x)≥ c3|x|q (4.4)

for all (t,x) ∈ [0,T ]× (Rn \Bδ1).
On the other hand, for what remarked above, there exists M ∈ L1([0,T ]) such that

sup
x∈Bδ1

(|F(t,x)|+ |λG(t,x)|+ |µα(t)H(x)|)≤M(t) (4.5)

for all t ∈ [0,T ]. From (4.3), (4.4), and (4.5), we infer that

F(t,x)≥ c3|x|q−M(t) (4.6)

and

|λG(t,x)|+ |µα(t)H(x)| ≤ c2|x|q +M(t) (4.7)

for all (t,x)∈ [0,T ]×Rn. Set b := T Φ(0)−2
∫ T

0 M(t)dt. For each u∈K, with sup[0,T ] |u| ≥ LT ,
taking (4.1), (4.6), and (4.7) into account, we have

I(u)+ 〈ψ(u),(λ ,µ)〉

≥ T Φ(0)+
∫ T

0
F(t,u(t))dt−

∫ T

0
|λG(t,u(t))|dt−

∫ T

0
|µα(t)H(u(t))|dt

≥ T Φ(0)+ c3

∫ T

0
|u(t)|qdt−

∫ T

0
M(t)dt− c2

∫ T

0
|u(t)|qdt−

∫ T

0
M(t)dt

≥ (c3− c2)T inf
[0,T ]
|u|q +b≥ (c3− c2)T

(
sup
[0,T ]
|u|−LT

)q

+b.

Consequently

sup
[0,T ]
|u| ≤

(
I(u)+ 〈ψ(u),(λ ,µ)〉−b

(c3− c2)T

) 1
q

+LT. (4.8)

Fix ρ ∈ R. By (4.8), we see that Cρ := {u ∈ K : I(u)+ 〈ψ(u),(λ ,µ)〉 ≤ ρ} turns out to be
bounded. Moreover, the functions belonging to Cρ are equi-continuous since they lie in K. As
a consequence, by the Ascoli-Arzelà theorem, Cρ is relatively compact in C0([0,T ],Rn). By
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lower semicontinuity, Cρ is closed in K. But K is closed in C0([0,T ],Rn). Thus Cρ is compact.
The inf-compactness of I(·)+ 〈ψ(·),(λ ,µ)〉 is obtained. Now, we are going to prove that ψ(K)

is not convex. By (a2), the set
{∫ T

0 G(t,x)dt : x ∈ H−1(γ)
}

is at most countable since H−1(γ)

is so. Hence, since
∫ T

0 G(t,v)dt 6=
∫ T

0 G(t,w)dt, we can fix λ ∈]0,1[ so that∫ T

0
G(t,x)dt 6=

∫ T

0
G(t,w)dt +λ

(∫ T

0
G(t,v)dt−

∫ T

0
G(t,w)dt

)
(4.9)

for all x ∈ H−1(γ). Since K contains the constant functions, the points(∫ T

0
G(t,v)dt,γ

∫ T

0
α(t)dt

)
and (∫ T

0
G(t,w)dt,γ

∫ T

0
α(t)dt

)
belong to ψ(K). To show that ψ(K) is not convex, it is enough to check that the point(∫ T

0
G(t,w)dt +λ

(∫ T

0
G(t,v)dt−

∫ T

0
G(t,w)dt

)
,γ
∫ T

0
α(t)dt

)
does not belong to ψ(K). Arguing by contradiction, we suppose that there exists u ∈ K such
that ∫ T

0
G(t,u(t))dt =

∫ T

0
G(t,w)dt +λ

(∫ T

0
G(t,v)dt−

∫ T

0
G(t,w)dt

)
, (4.10)

and ∫ T

0
α(t)H(u(t))dt = γ

∫ T

0
α(t)dt. (4.11)

Since α and H ◦ u− γ do not change sign, (4.11) implies that α(t)(H(u(t))− γ) = 0 a.e. in
[0,T ]. Consequently, since meas(α−1(0)) = 0, we have H(u(t)) = γ a.e. in [0,T ]. Hence,
H(u(t))= γ for all t ∈ [0,T ] since H ◦u is continuous. In other words, the connected set u([0,T ])
is contained in H−1(γ) which is at most countable. This implies that u must be constant and so
(4.10) contradicts (4.9). Therefore, I and ψ satisfy the assumptions of Theorem 3.1 and hence
there exists (λ̃ , µ̃) ∈ R2 such that I(·) + 〈ψ(·),(λ̃ , µ̃)〉 has at least two global minima in K.
Thanks to Theorem 4.A, they are solutions to Problem (P), and the proof is complete. �

Remark 4.1. It is obvious that (a2) is the leading assumption of Theorem 4.1. The request that
H−1(γ) must be at most countable cannot be removed. Indeed, if we remove such a request, we
could take H = 0, G(t,x) = 〈x,ω〉, with ω ∈Rn \{0} and F(t,x) = 1

p |x|
p, with p > 1. Now, we

observe that, by [3, Proposition 3.2], for all λ ∈ R,{
(φ(u′))′ = |u|p−2u+λω in [0,T ]

u(0) = u(T ) , u′(0) = u′(T )

has a unique solution. To the contrary, the question of whether
∫ T

0 G(t,v)dt 6=
∫ T

0 G(t,w)dt
(keeping v 6= w) can be dropped remains open at present. We feel, however, that it cannot be
removed. In this connection, we propose the following conjecture.
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Conjecture 4.1. There exist φ ∈ A , F ∈ B, H ∈ C1(Rn), α ∈ L∞([0,T ]), with α ≥ 0 and
meas(α−1(0)) = 0, and q > 0 for which the following assertions hold:

(b1)

lim
|x|→+∞

inft∈[0,T ]F(t,x)
|x|q

=+∞

and

limsup
|x|→+∞

|H(x)|
|x|q

<+∞;

(b2) H has exactly two global minima;
(b3) for each µ ∈ R, u→

∫ T
0 (Φ(u′(t))+F(t,u(t))+ µα(t)H(u(t)))dt has a unique global

minimum in K.

5. A PROPERTY OF STRICTLY CONVEX FUNCTIONS

In this section, we apply Theorem 1.3 to detect a new property of strictly convex functions
expressed in Theorem 5.1 below ([26] ).

When E is a real vector space and A⊆ E, a point x0 ∈ A is said to be an algebraically interior
point of A (with respect to E) if, for every y ∈ E, there exists δ > 0 such that x0+λy ∈ A for all
λ ∈ [0,δ ]. The algebraic interior of A is the set of all its algebraically interior points.

Theorem 5.1. Let E be a reflexive real Banach space and let X ⊂ E be a closed convex set,
with non-empty interior, whose boundary is sequentially weakly closed and non-convex. Then,
for every function ϕ : ∂X → R and for every convex set S ⊆ E∗ dense in E∗, there exists ψ̃ ∈ S
with the following property, for every strictly convex lower semicontinuous function J : X → R,
Gâteaux differentiable in int(X), such that J|∂X−ϕ is constant in ∂X and lim‖x‖→+∞

J(x)
‖x‖ =+∞

if X is unbounded, ψ̃ is an algebraically interior point of J′(int(X)) (with respect to E∗)

Now, some comments are in order. The main feature of Theorem 5.1 is the fact that ψ̃ does
not depend on J. But, for a moment, we consider simply the following by-product of Theorem
5.1.

If X is as before, then, for every stricly convex lower semicontinuous function J : X → R,
Gâteaux differentiable in int(X) and with lim‖x‖→+∞

J(x)
‖x‖ =+∞ if X is unbounded, the algebraic

interior of J′(int(X)) (with respect to E∗) is non-empty.
As far as we know, such a corollary itself is new when E is infinite-dimensional. To the

contrary, if E is finite-dimensional, due to the strict convexity of J, J′ is injective and continuous
in int(X), so J′(int(X)) turns out to be open, thanks to the invariance of domain theorem. The
facts that ∂X is sequentially weakly closed and that lim‖x‖→+∞

J(x)
‖x‖ = +∞ if X is unbounded

are both necessary. Actually, consider the following situation. Let f : R→ R be a continuous,
increasing and bounded function. Define the functional J : L2([0,1])→ R by

J(u) =
∫ 1

0

(∫ u(x)

0
f (t)dt

)
dx

for all u ∈ L2([0,1]). Clearly, J is stricly convex and C1, with J′(u) = f ◦u for all u ∈ L2([0,1])
(after identifying (L2([0,1])∗ to L2([0,1])). Notice that, since J′(L2([0,1])) ⊆ L∞([0,1]), for
each A⊆ L2([0,1]), the algebraic interior of J′(A) (with respect to L2([0,1])) is empty. Now, let
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X be any closed ball in L2([0,1]). Thus the restriction of J to X is weakly inf-compact. In this
case, the conclusion of the corollary fails since ∂X is not sequentially weakly closed. On the
other hand, when X is as in the corollary, the conclusion fails since the restriction of J to X is
not weakly inf-compact.

Now, come back to the full statement of Theorem 5.1. We observe that the non-convexity of
∂X is necessary. In this connection, assume that E is a Hilbert space. Fix w ∈ E, with ‖w‖= 1,
and consider the set X := {x ∈ E : 〈w,x〉 ≥ 0}. So, X is a closed convex set with non-empty
interior and convex boundary. For such set X the conclusion of Theorem 5.1 does not hold.
Indeed, suppose the contrary. Then, in particular, there would be some ψ̃ ∈ E such that, for
each strictly convex function lower semicontinous functional J : X →R, Gâteaux differentiable
in int(X), with J(x) = 1

2‖x‖
2 for all x ∈ ∂X and lim‖x‖→+∞

J(x)
‖x‖ = +∞, we have ψ̃ ∈ J′(X).

So, in particular, for each λ ∈ R, we have ψ̃ ∈ J′
λ
(X), where Jλ (x) := 1

2‖x‖
2 + λ 〈w,x〉. But

J′
λ
(x) = x+λw. Thus we have ψ̃ ∈ X +λw for all λ ∈ R. This means 〈w, ψ̃ −λw〉 ≥ 0, so
〈w, ψ̃〉 ≥ λ for each λ ∈ R, which is absurd.

We next obtain Theorem 5.1 as a consequence of an abstract result (Theorem 5.2 below)
whose proof is fully based on the use of Theorem 1.3. In what follows, E is a topological space
and Y is a convex set in a topological vector space. Let us introduce the two main classes of
functions we deal with. Let X ⊆C ⊆ E and let ϕ : X → R be a given function. We denote by
B(X ,C,ϕ) the class of all functions J : C→ R such that J|X −ϕ is constant in X . Let C ⊆ E
and S ⊆ Y . Let f : C× S→ R be a given function. We denote by C (C,S, f ) the class of all
functions J : C→ R such that, for each y ∈ S, f (·,y)+ J(·) has at most one global minimum in
C. Our main abstract result is as follows.

Theorem 5.2. Let X ⊆C ⊆ E, let S ⊆ Y be a convex set dense in Y , let f : C×Y → R, and let
ϕ : X → R. Assume that

(a) for each y ∈ S, f (·,y)+ϕ(·) is lower semicontinuous and inf-compact in X;
(b) for each x ∈ X, f (x, ·) is quasi-concave and continuous in Y ;
(c) supy∈Y infx∈X( f (x,y)+ϕ(x))< infx∈X supy∈Y ( f (x,y)+ϕ(x)).
Then, there exists a point y∗ ∈ S such that infx∈C( f (x,y∗)+ J(x)) < infx∈X( f (x,y∗)+ J(x))

for every J ∈B(X ,C,ϕ)∩C (C,S, f ).

Proof. Consider the function g : X × S→ R defined by g(x,y) = f (x,y)+ϕ(x) for all (x,y) ∈
X × S. For each x ∈ X , by continuity of f (x, ·) and density of S, we have supy∈S f (x,y) =
supy∈Y f (x,y), so supy∈S g(x,y) = supy∈Y g(x,y). In view of (c), we have

sup
S

inf
X

g≤ sup
Y

inf
X

g < inf
X

sup
Y

g = inf
X

sup
S

g.

The function g is lower semicontinuous and inf-compact in X , and quasi-concave and contin-
uous in S. Thanks to Theorem 1.3, there exists y∗ ∈ S such that ( f (·,y∗))|X +ϕ(·) has at least
two global minima in X . Now, fix J ∈B(X ,C,ϕ)∩C (C,S, f ). Since J|X −ϕ is constant in
X , ( f (·,y∗)+ J(·))|X and ( f (·,y∗))|X +ϕ(·) have the same global minima in X . Arguing by
contradiction, assume that

inf
x∈C

( f (x,y∗)+ J(x)) = inf
x∈X

( f (x,y∗)+ J(x)). (5.1)
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We know that ( f (·,y∗)+ J(·))|X has at least two global minima. In view of (5.1), they turn out
to be global minima of f (·,y∗)+ J(·) in C, against the fact that J ∈ C (C,S, f ). The proof is
complete. �

Next, we present a remarkable corollary of Theorem 5.2.

Theorem 5.3. Let X ⊆C ⊆ E, let S ⊆ Y be a convex set dense in Y , let f : C×Y → R, and let
ϕ : X → R. Assume that

(i) for each y ∈ S, f (·,y)+ϕ(·) is lower semicontinuous and inf-compact in X;
(ii) for each x ∈ X, f (x, ·) is quasi-concave and continuous in Y ;
(iii) infX supY f =+∞ and there exists a finite set A⊂ X such that supY infA f <+∞.
Then, there exists a point y∗ ∈ S such that infx∈C( f (x,y∗)+ J(x)) < infx∈X( f (x,y∗)+ J(x))

for every J ∈B(X ,C,ϕ)∩C (C,S, f ).

Proof. Observe that

sup
y∈Y

inf
x∈X

( f (x,y)+ϕ(x))≤ sup
Y

inf
A
+sup

A
ϕ <+∞ = inf

X
sup

Y
f = inf

x∈X
sup
y∈Y

( f (x,y)+ϕ(x)).

Thus the conclusion follows directly from Theorem 5.2. �

We now present a first consequence of Theorem 5.3. In the next two results, E is also a real
vector space (and the topology on E is still arbitrary).

Theorem 5.4. Let X ⊆ E, let F be a real normed space, let I : conv(X)→ R, and let ψ :
conv(X)→ F be such that ψ(X) is not convex. Then, for every convex set S ⊆ F∗ weakly-star
dense in F∗ and for every ϕ : X → R such that (I +η ◦ψ)|X +ϕ is lower semicontinuous and
inf-compact in X for all η ∈ S, there exists η̃ ∈ S with the following property: for every function
J : conv(X)→ R such that J|X −ϕ is constant in X and I + J +η ◦ψ is strictly convex for all
η ∈ S,

inf
x∈conv(X)

(I(x)+ J(x)+ η̃(ψ(x)))< inf
x∈X

(I(x)+ J(x)+ η̃(ψ(x))) .

Proof. Fix y0 ∈ conv(ψ(X)) \ψ(X). We apply Theorem 5.3 with C = conv(X) and Y = F∗.
Consider F∗ equipped with the weak-star topology and take f (x,η) = I(x)+η(ψ(x)− y0) for
all (x,η) ∈ C×Y . Clearly, f satisfies conditions (i) and (ii). Moreover, if y0 = ∑

n
i=1 λiψ(xi),

where xi ∈ X , λi ≥ 0, ∑
n
i=1 λi = 1, by Proposition 3.1, we know that

sup
η∈Y

inf
1≤i≤n

f (xi,η)≤ max
1≤i≤n

I(xi)<+∞.

On the other hand, for each x ∈ X , since ψ(x) 6= y0, we have supη∈Y η(ψ(x)− y0) = +∞, so
condition (iii) is satisfied too. Now, Theorem 5.3 ensures the existence of η̃ ∈ S such that,
for every J ∈B(X ,C,ϕ)∩C (C,S, f ), one has infx∈conv(X)( f (x, η̃)+J(x))< infx∈X( f (x, η̃)+
J(x)), which means

inf
x∈conv(X)

(I(x)+ J(x)+ η̃(ψ(x)))< inf
x∈X

(I(x)+ J(x)+ η̃(ψ(x))).

To finish the proof, it is suffice to remark that if J : conv(X)→ R is such that I + J +η ◦ψ is
strictly convex for all η ∈ S, then J ∈ C (C,S, f ). �

The following result is a particularly simple consequence of Theorem 5.4.
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Theorem 5.5. Let X ⊂ E be a compact set, let F be a real normed space, and let ψ : conv(X)→
F be an affine operator, continuous with respect to the weak topology on F, such that ψ(X) is
not convex. Then, for every convex set S ⊆ F∗ weakly-star dense in F∗ and for every lower
semicontinuous function ϕ : X → R, there exists η̃ ∈ S with the following property: for every
strictly convex function J : conv(X)→ R such that J|X −ϕ is constant in X,

inf
x∈conv(X)

(η̃(ψ(x))+ J(x))< inf
x∈X

(η̃(ψ(x))+ J(x)) .

Proof. For each η ∈ F∗, η ◦ψ is continuous since η is weakly continuous. Thus η ◦ψ +
ϕ is lower semicontinuous and inf-compact, since X is compact. Hence, the assumptions of
Theorem 5.4 are satisfied, with I = 0. Now, our conclusion follows from that of Theorem 5.4
by taking into account that if η ∈ F∗ and J : conv(X)→ R is a strictly convex function, then
η ◦ψ + J is since ψ is affine. �

The next consequence of Theorem 5.4 can be considered as the central result. Actually,
Theorem 5.1 is its corollary.

Theorem 5.6. Let E be a reflexive real Banach space, let C ⊂ E be a proper closed convex
set, with non-empty interior, such that ∂C is sequentially weakly closed and non-convex, and
let I : C → R be Gâteaux differentiable in int(C). Then, for every convex set S ⊆ E∗ dense
in E∗ and for every function ϕ : ∂C→ R, there exists η̃ ∈ S with the following property: for
every function J : C→ R, Gâteaux differentiable in int(C), such that J|∂C−ϕ is constant in

∂C and I + J is lower semicontinuous and strictly convex, with lim‖x‖→+∞

I(x)+J(x)
‖x‖ = +∞ if

C is unbounded, and for every sequentially weakly lower semicontinuous function β : C→ R,
Gâteaux differentiable in int(C), there exists ε > 0 such that, for each λ ∈ [0,ε], the equation
I′(x)+ J′(x)+λβ ′(x) = η̃ has at least one solution in int(C).

Proof. Fix a convex set S ⊆ E∗ dense in E∗ and a function ϕ : ∂C→ R. We apply Theorem
5.4 by considering E equipped with the weak topology (but the interior of C is referred to the
strong topology) and taking X = ∂C, F =E and ψ(x) = x for all x∈C. Of course, it is implicitly
understood that there are functions J : C→ R such that J|∂C−ϕ is constant in ∂C, and I + J

is lower semicontinuous and strictly convex, with lim‖x‖→+∞

I(x)+J(x)
‖x‖ =+∞ if C is unbounded.

If J is such a function, it follows that, for each η ∈ E∗, I + J +η is weakly inf-compact in C,
so (I +η ◦ψ)∂C +ϕ is weakly inf-compact in ∂C since ∂C is sequentially weakly closed (use
also the Eberlein-Smulyan theorem). Therefore, the assumptions of Theorem 5.4 are satisfied.
Consequently, there exists η̃ ∈ S, with the following property: for every function J : C→ R
such that J|∂C−ϕ is constant in ∂C and I + J+η ◦ψ is strictly convex for all η ∈ S, one has

inf
x∈C

(I(x)+ J(x)+ η̃(ψ(x)))< inf
x∈∂C

(I(x)+ J(x)+ η̃(ψ(x))).

In addition, assume that J is lower semicontinuous in C, Gâteaux differentiable in int(C) and
the sub-level sets of I + J+ η̃ ◦ψ are bounded. Fix σ such that

inf
x∈C

(I(x)+ J(x)+ η̃(ψ(x)))< σ < inf
x∈∂C

(I(x)+ J(x)+ η̃(ψ(x))). (5.2)

Observe that I+J+ η̃ ◦ψ is sequentially weakly lower semicontinuous (recall that the assump-
tions imply that it is lower semicontinuous) and that {x ∈ C : I(x)+ J(x)+ η̃(ψ(x)) ≤ σ} is
sequentially weakly compact, since E is reflexive. Now, in view of Theorem 2.1 of [18], there
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exists ε > 0 such that, for every λ ∈ [0,ε], the restriction of the function I + J + η̃ ◦ψ +λβ to
the set {x ∈C : I(x)+J(x)+ η̃(ψ(x))< σ} has a global minimum, say x̃. But, due to (5.2), we
have {x ∈C : I(x)+ J(x)+ η̃(ψ(x))< σ} ⊆ int(C), which implies that

I′(x̃)+ J′(x̃)+λβ (x̃)+(η̃ ◦ψ)′(x̃) = 0,

as claimed. �

The proof of Theorem 5.1 Let S⊆ E∗ be a convex set dense in E∗, and let ϕ : ∂X →R. Apply
Theorem 5.6 with I = 0 and let γ̃ ∈ S be as in the conclusion of Theorem 5.6. Fix any lower
semicontinuous and strictly convex function J : X → R, Gâteaux differentiable in int(X), such
that J|∂X −ϕ is constant in ∂X , with lim‖x‖E→+∞

J(x)
‖x‖ = +∞ if X is unbounded. Now, fix any

G ∈ E∗. Then, there exists ε > 0 such that J′(x)− λG = γ̃ has a solution in int(X) for all
λ ∈ [0,ε], and this means exactly that the set γ̃ is an algebraically interior point of J′(int(X))
(with respect to E∗).

In a finite-dimensional setting, another consequence of Theorem 5.6 is as follows.

Theorem 5.7. Let E be a finite-dimensional real Banach space and let C ⊂ E be a compact
convex set with non-empty interior. Then, for every function ϕ : ∂C → R, there exists γ̃ ∈
E∗ having the following property: for every lower semicontinuous stricly convex function J :
C→ R, Gâteaux differentiable in int(C), such that J|∂C−ϕ is constant in ∂C, and for every
lower semicontinuous, bounded below and Gâteaux differentiable function H : int(C)→ R,
there exists ε > 0 such that, for each λ ∈ [0,ε], the equation J′(x)+λH ′(x) = γ̃ has at least
one solution in int(C).

Proof. Since C is compact, we have that ∂C is not convex. Fix ϕ : ∂C→R and apply Theorem
5.6, with I = 0. Let γ̃ ∈ E∗ be as in the conclusion of Theorem 5.6. Let J : C→ R be a lower
semicontinuous strictly convex function, Gâteaux differentiable in int(C), such that J|∂C−ϕ is
constant in ∂C, and let H : int(C)→ R be lower semicontinuous, bounded below, and Gâteaux
differentiable. Now, consider the function G : C→ R defined by

G(x) =

{
H(x) if x ∈ int(C)

a if x ∈ ∂C,

where a = infC H. Clearly, G is lower semicontinuous in C. Consequently, there exists ε > 0
such that, for each λ ∈ [0,ε], J′(x)+ λG′(x) = γ̃ has at least one solution in int(C), and the
conclusion holds since H = G in int(C). �

Finally, we highlight the following consequence of Theorem 5.7.

Theorem 5.8. Let E be a finite-dimensional real Hilbert space and let C ⊂ E be a closed ball,
centered at 0. Then, for every function ϕ : ∂C→ R, there exists γ̃ ∈ E∗, having the following
property: for every P ∈ C1(C) such that P′ is Lipschitzian with Lipschitz constant L ≥ 0, for
every µ > L, for every lower semicontinuous convex function Q : C→R, Gâteaux differentiable
in int(C), such that (P+Q)|∂C − ϕ is constant in ∂C, and for every lower semicontinuous,
bounded below and Gâteaux differentiable function H : int(C)→ R, there exists ε > 0 such
that, for each λ ∈ [0,ε], the equation

µx+P′(x)+Q′(x)+λH ′(x) = γ̃

has at least one solution in int(C).
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Proof. Fix ϕ : ∂C→ R. Let γ̃ be as in the conclusion of Theorem 5.7. Observe that, since
µ > L, µ

2 ‖ · ‖
2 +P(·) turns out to be strictly convex since E is a Hilbert space. Consequently,

J(·) := µ

2 ‖ ·‖
2 +P(·)+Q(·) is lower semicontinuous, strictly convex, Gâteaux differentiable in

int(C), and J|∂C−ϕ is constant in ∂C. Hence, the conclusion of Theorem 5.7 applies with such
a function J and we are done. �
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PIACERI 2020-2022, Linea di intervento 2, Progetto ”MAFANE”.

REFERENCES

[1] M. Ait Mansour, J. Lahrache, N. Ziane, Some applications of two minimax theorems, Matematiche (Catania)
78 (2023), 405-414.

[2] V. Ambrosio, F. Essebei, Multiple solutions for double phase problems in Rn via Ricceri’s principle, J. Math.
Anal. Appl. 528 (2023), 127513.

[3] H. Brezis, J. Mawhin, Periodic solutions of Lagrangian systems of relativistic oscillators, Commun. Appl.
Anal. 15 (2011), 235-250.

[4] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 42-47.
[5] D. Giandinoto, Further applications of two minimax theorems, Matematiche (Catania) 77 (2022), 449-463.
[6] O. Naselli, On the solution set of an equation of the type f (t,(u)(t)) = 0, Set-Valued Anal. 4 (1996), 399-405.
[7] J. V. Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann. 100 (1928), 295-320.
[8] P. Pucci, J. Serrin, A mountain pass theorem, J. Differential Equations, 60 (1985), 142-149.
[9] B. Ricceri, Some topological mini-max theorems via an alternative principle for multifunctions, Arch. Math.

(Basel) 60 (1993), 367-377.
[10] B. Ricceri, A variational property of integral functionals on Lp-spaces of vector-valued functions, C. R. Acad.

Sci. Paris, Série I, 318 (1994), 337-342.
[11] B. Ricceri, On the integrable selections of certain multifunctions, Set-Valued Anal. 4 (1996), 91-99.
[12] B. Ricceri, More on a variational property of integral functionals, J. Optim. Theory Appl. 94 (1997), 757-763.
[13] B. Ricceri, Further considerations on a variational property of integral functionals, J. Optim. Theory Appl.

106 (2000), 677-681.
[14] B. Ricceri, On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220-226.
[15] B. Ricceri, Recent advances in minimax theory and applications, In: Pareto Optimality, Game Theory and

Equilibria, A. Chinchuluun, P.M. Pardalos, A. Migdalas, L. Pitsoulis (eds.), pp. 23-52, Springer, 2008.
[16] B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009), 3084-3089.
[17] B. Ricceri, A further three critical points theorem, Nonlinear Anal. 71 (2009), 4151-4157.
[18] B. Ricceri, Nonlinear eigenvalue problems, In: Handbook of Nonconvex Analysis and Applications, D. Y.

Gao and D. Motreanu (eds.), pp. 543-595, International Press, 2010.
[19] B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), 7446-7454.
[20] B. Ricceri, A strict minimax inequality criterion and some of its consequences, Positivity, 16 (2012), 455-470.
[21] B. Ricceri, More on the metric projection onto a closed convex set in a Hilbert space, In: Contributions in

Mathematics and Engineering - In Honor of Constantin Carathéodory, P. M. Pardalos and Th. M. Rassias
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