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Abstract. In this paper, we establish a new proof to the Von Neumann minimax Theorem in Euclidean
spaces. Our key argument relies on standard arguments of convex optimization as well as elementary
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1. INTRODUCTION

In this paper, we present a short and simple new proof to the well-known Von Neumann
minimax Theorem, which reads as follows.

Theorem 1.1. (Von Neumann, [18, 1928]). Let A be a linear mapping between Euclidean
spaces E and F. Let C ⊂ E and K ⊂ F be nonempty compact and convex sets. Then,

max
x∈C

min
y∈K
〈Ax,y〉= min

y∈K
max
x∈C
〈Ax,y〉. (1.1)

Indeed, (1.1) was proved by Von Neumann [18, 1928] which is qualified since then as a
starting point of game theory. Precisely, (1.1) found its original motivation firstly in n-player
zero-sum game theory and successively in more complex games, decision theory in the presence
of uncertainty, scenario analysis in philosophy, statistics, artificial intelligence, and many other
applicable scientific disciplines. Therefore, several generalizations and alternative versions of
the Von Neumann’s original minimax theorem appeared in the literature such as the Sion’s
Theorem [17] and its recent developments.

If one puts f (x,y) = 〈Ax,y〉 or considers a more general function f : C×K −→R, one easily
observes that the following inequality always holds

sup
y∈K

inf
x∈C

f (x,y)≤ inf
x∈C

sup
y∈K

f (x,y).
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In this regard, we refer to Rockafellar [16, Lemma 36.1] for an example. Accordingly, the Von
Neumann’s (1.1) (and /or its extended Sion’s format) equality is, in reality, equivalent to the
other minimax inequality:

inf
x∈C

sup
y∈K

f (x,y)≤ sup
y∈K

inf
x∈C

f (x,y). (1.2)

If C = K with E = F , then it is a simple matter to check that (1.2) implies Ky Fan’s minimax
result [8, 1972]:

inf
x∈C

f (x,x)≤ sup
y∈C

inf
x∈C

f (x,y), (1.3)

which was proved along times to be a cornerstone inequality of nonlinear analysis. Indeed, the
Ky Fan inequality is intimately related to the existence theory of equilibria in various games
studied in economics. Observe that Ky Fan’s minimax inequality does not imply the minimax
inequality (1.2). For a counterexample, we refer to Galan [6]. To continue our discussion,
we remark that whenever f (x,x) ≥ 0 for all x ∈C, (1.3) clearly implies, under semicontinuity
conditions, the existence of a point x ∈C such that

f (x,y)≥ 0, ∀y ∈C. (1.4)

(1.4) is exactly the equilibrium problem in the sense of Blum and Oettli [4], which in turns
unifies many mathematical models, such as optimization, fixed points problems, variational
inequalities, hemi-variational inequalities and so forth. For theories, algorithms, applications,
and nonlinear programming techniques for equilibria, we refer the reader to [1, 2, 3, 7, 9, 12]
and the references therein. Note that minimax Theorems have been extended to the nonconvex
setting in [11, 13, 14, 15]. To come back to the Von Neumann minimax Theorem, we know
several that mathematicians devoted a great attention to establish new proofs to this celebrated
minimax result; see, e.g., [5] for more information, useful details, and various proof techniques.

In this paper, we present a new constructive scheme to prove Theorem 1.1 without using
the previous well-known and sophisticated arguments such as the Brouwer fixed point The-
orem, Kakutani Theorem or Hahn Banach Theorem, Riesz’s representation Theorem, KKM
techniques or else duality theory. Our method here relies directly on standard convex optimiza-
tion and elementary Euclidean geometric properties. We would like to mention that most of
Von Neumann’s minmax theorem proofs usually make recourse to strong results of functional
analysis with complicated proofs; see, e.g., [5, 10]. Our proof here is based on the simple
geometric notion that is the projection of a point on a closed and convex set and Weierstrass
theorem beside the achievement of the minimum of a continuous function over a convex and
compact set.

2. NOTATION AND PRELIMINARIES

Throughout this paper, E and F are used to denote Euclidean spaces, C ⊂ E and K ⊂ F are
assumed to be two nonempty, compact, and convex sets. The inner product and its associated
norm in E or F ae denoted by 〈., .〉 and ‖.‖ respectively. We consider a linear mapping A
between Euclidean spaces E and F and write for every (x,y) ∈ E×F,

f (x,y) = 〈Ax,y〉. (2.1)
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We denote the adjoint operator of A by A∗. The norm of a linear map between E and F in the
space of linear maps L(E,F) is denoted again by ‖.‖. For a point x in E or F and r > 0, B(x,r)
(resp. B(x,r)) stands for the closed (resp. open) ball centred at x with radius r.

Next, for a later use in our proof of Theorem 1.1, we fix some observations from elementary
optimization and Euclidean geometric properties as follows.

Lemma 2.1. Let C ⊂ E and K ⊂ F be nonempty, compact, and convex sets. Then the following
assertions hold:

a) For any vector u ∈ E, there exists x ∈C such that

〈u,x− x〉 ≥ 0,∀x ∈C; (2.2)

b) For any vector v ∈ F, there exists z ∈ K such that

〈v,y− z〉 ≥ 0,∀y ∈ K. (2.3)

Proof. For a), let u ∈ E. Let x∗ ∈C be a minimum point to the continuous function x 7−→ 〈u,x〉
over the convex and compact set C. Clearly, for all x∈C, we have 〈u,x〉 ≥ 〈u,x∗〉, which implies
(2.2). The assertion b) is similar. This ends the proof. �

Remark 2.1. Observe that the elementary variational inequality in (2.2) is equivalent to the
minimization problem of u 7−→ 〈u,x〉 over x ∈C. Besides, a point x ∈C is a solution to (2.2) if
and only if −u ∈ NC(x), where NC(x) is the normal cone to the compact convex subset C at x
given by NC(x) = {v ∈ E : 〈v,x− x〉 ≤ 0, ∀x ∈C}.

Remark 2.2. As a consequence of Lemma 2.1, for the linear operator A introduced above
between Euclidean spaces E and F, and for the already fixed nonempty compact and convex
sets C ⊂ E and K ⊂ F, the following assertions hold:

c) For any vector y ∈ F, there exists x ∈C such that

〈Ax−Ax,y〉 ≥ 0,∀x ∈C; (2.4)

d) For any vector x ∈ E, there exists z ∈ K such that

〈Ax,y− z〉 ≥ 0,∀y ∈ K. (2.5)

Indeed, for c), for a given y ∈ F, it suffices to take u = −A∗y in (2.2). For d), for a given
x ∈ E, we take v = Ax in (2.3).

Now, for all y ∈ K, put ϕ(y) = max
x∈C

f (x,y) and for all x ∈C, we set ψ(x) = min
y∈K

f (x,y). Then,

with notation (2.1), we clearly see that

ψ(x)≤ f (x,y)≤ ϕ(y), ∀x ∈C, ∀y ∈ K. (2.6)

The following Lemma provides the existence of remarkable points in C and K that provide
more information than (2.6).

Lemma 2.2. Let A be a linear mapping between E and F. Let C ⊂ E and K ⊂ F be nonempty,
compact, and convex sets. Then, there exist (x,y,z) ∈C×K×K such that

f (x,y) = ϕ(y) and f (x,z) = ψ(x). (2.7)
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Proof. The equalities in (2.7) dispose actually at multiple solutions. Indeed, the conclusion in
(2.7) can be obtained by standard arguments of variational inequalities or fixed point theorems
or else by basic equilibrium theory as in Blum and Oettli [4] or else in Göpfert, Riahi, Tammer,
and Zălinescu [7]. Here, we adopt a simplest way from classic convex optimization Rockafellar
[16]. Take an arbitrary y ∈ K. From assertion c) of Remark 2.2, we see that there exists x ∈C
verifying (2.4), which means f (x,y)≥ f (x,y) for all x ∈C. This implies that

f (x,y) = max
x∈C

f (x,y) = ϕ(y),

which proves the first part of (2.7). Now, from the assertion d) of the Remark 2.2), with x= x, we
see that there exists z ∈ K satisfying (2.5), which is equivalently expressed as f (x,z) ≤ f (x,y)
for all y ∈ K. Then, f (x,z) = min

y∈K
f (x,y) = ψ(x). This ends the proof. �

We need equally to fix two real numbers R,R′ > 0 such that

C ⊂ B(0,R) and K ⊂ B(0,R′).

Notation: In what follows, we adopt the following notation for any real-valued bifunction Ψ

over a product of compact sets, say C×K. We write
α(Ψ) := max

x∈C
min
y∈K

Ψ(x,y) and β (Ψ) := min
y∈K

max
x∈C

Ψ(x,y).

3. THE PROOF TO THEOREM 1.1

Now we are in a position to present our proof for Theorem 1.1 as follows.

Proof. Since the inequality α( f ) ≤ β ( f ) is always true (as well-known in minimax theory), it
suffices to prove that β ( f )≤ α( f ). Let y ∈ K. By Lemma 2.2, we see that there exist (x,y,z) ∈
C×K×K such that

f (x,y) = ϕ(y) = max
x∈C

f (x,y) and f (x,z) = ψ(x) = min
y∈K

f (x,y). (3.1)

Without loss of Generality, we may assume that Ax 6= 0, otherwise from (3.2) it immediately
follows that

β ( f )≤ f (x,y) = 〈Ax,y〉= 0 = 〈Ax,z〉= f (x,z)≤ α( f ).
This ensures that β ( f )≤ α( f ), which ends the proof of the Theorem.

Now, from (3.1), we see that

f (x,y) = ϕ(y)≥min
y∈K

ϕ(y) = min
y∈K

max
x∈C

f (x,y) = β ( f )

and
f (x,z) = ψ(x)≤max

x∈C
ψ(x) = max

x∈C
min
y∈K

f (x,y) = α( f ).

Thus

β ( f )≤ f (x,y) and f (x,z)≤ α( f ). (3.2)

We need to consider two sequences (rn)n and (εn)n of real numbers decreasing to 0 (i.e., rn↘ 0
and εn↘ 0) such that εn < rn and define for n > 1 a set Kn := K∩B(y,rn). Let n > 1. By the
continuity of f in y, we see that the function y 7−→ f (x,y) attains its minimum over y ∈ Kn at a
point z̃n ∈ Kn. Then, for all y ∈ Kn, we have

f (x, z̃n)≤ f (x,y). (3.3)
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Since z̃n ∈ Kn = K∩B(y,rn), z̃n is a limit of a sequence (un
p)p such that

un
p ∈ K∩B(y,rn), ∀p ∈ N, (3.4)

for p large enough, un
p ∈ B(z̃n,rn− εn), so K∩B(y,rn)∩B(z̃n,rn− εn) 6= /0. Moreover, one has

K∩B(y,rn)∩B(z̃n,rn− εn)⊂ Kn. (3.5)

In what follows, we use the notation Ṽ = B(y,rn)∩B(z̃n,rn− εn), which is a neighborhood
of up

n for any p large enough. We claim that the element z̃n of Kn is also a global minimum of
f (x, .) over K. Let us prove this claim. To this end, we fix an arbitrary element y ∈ K such that

y ∈ K∩Ṽ . (3.6)

We further consider y∗ defined by

y∗ := y−Ax. (3.7)

If y∗ ∈ Kn, then, for p large enough, un
p is a local minimum of f (x, .). Precisely, for p large

enough, we assert that

f (x,y)≥ f (x,un
p). (3.8)

Indeed, from (3.3), f (x,y∗)≥ f (x, z̃n), which means that

f (x,y) ≥ f (x,Ax)+ f (x, z̃n) = ‖Ax‖2 + f (x, z̃n). (3.9)

In view of the assumption, Ax 6= 0, we have η = ‖Ax‖2 > 0. As lim
p→+∞

un
p = z̃n, by the continuity

of f in y, for p large enough, it results that f (x, z̃n)+η ≥ f (x,un
p). This combined with (3.9)

leads to

f (x,y)≥ f (x,un
p). (3.10)

Now, for a given p large enough, (3.10) is true for the arbitrary element y ∈ K∩Ṽ which is a
neighborhood for up

n . Then, un
p is a local minimum of f (x, .) over K, which proves the assertion

in (3.8). Thanks to the convexity of f in y, we have hat un
p is a global minimum of f (x, .) over

K. Hence, f (x, z̃n) ≥ f (x,un
p). But at the same time we have un

p ∈ Kn (see (3.4)), so it follows
from (3.3) that f (x,un

p) ≥ f (x, z̃n), which conducts to f (x, z̃n) = f (x,un
p). This means that z̃n

is in turn a global minimum of f (x, .) over K, which completes the proof of the claim under
the assumption y∗ ∈ Kn. In the sequel, we have to suppose that y∗ /∈Kn. Set wn = PKn(y

∗),
where PKn denotes the metric projection onto Kn. Since Kn is convex, we are able to involve the
characterization of PKn(y

∗) to see that 〈v−wn,y∗−wn〉 ≤ 0 for all v ∈ Kn. Then, for all v in Kn,
we see that

〈v−wn,y∗−wn〉= 〈v−wn,y∗〉−〈v−wn,wn〉= 〈y∗,v−wn〉−〈v,wn〉+‖wn‖2 ≤ 0.

This implies 〈y∗,wn−v〉 ≥ ‖wn‖2−〈v,wn〉 for all v ∈ Kn, which, together with the definition of
y∗ in (3.7), gives us 〈y−Ax,wn− v〉 ≥ ‖wn‖2−〈v,wn〉 for all v ∈ Kn. This means that

〈y,wn− v〉−〈Ax,wn− v〉 ≥ ‖wn‖2−〈v,wn〉, ∀v ∈ Kn.

Then, for all v ∈ Kn,

−〈Ax,wn− v〉= f (x,v)− f (x,wn)≥ ‖wn‖2−〈v,wn〉−〈y,wn− v〉,
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which shows that

f (x,v)≥ f (x,wn)+‖wn‖2−〈v,wn〉−〈y,wn− v〉, ∀v ∈ Kn. (3.11)

In particular, for any y ∈ K∩Ṽ with v = y in (3.11) (note that y ∈ Kn due to (3.5) and (3.6)), we
derive

f (x,y)≥ f (x,wn)+‖wn‖2−2〈y,wn〉+‖y‖2 = f (x,wn)+‖wn− y‖2.

Hence, f (x,y)≥ f (x,wn)+‖wn−y‖2. Given that wn ∈ Kn, by taking into account (3.3), we see
that

f (x,y) ≥ f (x,wn)+‖wn− y‖2 ≥ f (x, z̃n)+‖wn− y‖2. (3.12)

At this stage, we discuss two cases:
Case 1: wn 6= y, i.e., ‖wn−y‖> 0. By the same argument used in the proof of (3.8) above, with
(3.12), for p large enough, we obtain that un

p is a local minimum of f (x, .). Then, it is a global
minimum of f (x, .) (thanks to convexity of f (x, .)), and so is z̃n. This is exactly the required
conclusion for this case.
Case 2: wn = y. Using (3.11) and taking into account the assumption of the case (y = wn), we
deduce that, for all v ∈ Kn,

f (x,v)≥ f (x,y), ∀v ∈ Kn. (3.13)

We see that, in view of (3.5), the inequality in (3.13) is true for all v ∈ K ∩ Ṽ . Then, as y is
taken in K ∩ Ṽ , which is of course a neighborhood of y relatively to K, it follows that y is a
local minimum of f (x, .), so as in Case 1. The convexity of f (x, .) permits y to be a global
minimum of f (x, .) over K. In addition, with v = z̃n in (3.13), we deduce that f (x, z̃n)≥ f (x,y),
but y = wn ∈ Kn and z̃n minimizes f (x, .) over Kn. Thus

f (x, z̃n) = f (x,y). (3.14)

Therefore, from (3.14), we have that z̃n is a global minimum of f (x, .) too. This ends the proof
of the claim. Since z is another global minimum of f (x, .) over K (see (3.1)), we conclude that

f (x, z̃n) = f (x,z). (3.15)

Note that the case that z̃n is constant, that is, z̃n = a for n large enough. By the convexity of f in
y, a is a global minimum of f (x, .) over K, which implies that f (x,a) = f (x,z).

Finally, we are in a position to draw our desired conclusion. By using (3.2) and (3.15), we
have

β ( f )≤ f (x,z)+ f (x,y)− f (x,z)

= f (x,z)+ f (x,y)− f (x, z̃n)

≤ α( f )+ f (x,y− z̃n)

≤ α( f )+‖Ax‖‖y− z̃n‖
≤ α( f )+‖A‖‖x‖‖y− z̃n‖
≤ α( f )+Rrn‖A‖,

which is of course satisfied for all n > 1. Consequently, as n goes to 0, we immediately obtain
β ( f )≤α( f ). As α( f )≤ β ( f ) is always true as mentioned above, we deduce that β ( f ) =α( f ).
This completes the proof. �
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