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ON THE SIMULTANEOUS CONVERGENCE OF VALUES AND TRAJECTORIES
OF CONTINUOUS INERTIAL DYNAMICS WITH TIKHONOV
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Abstract. In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic
system with fast convergence guarantees to solve general convex minimization problems with linear
constraints. The system is associated with the augmented Lagrangian formulation of a minimization
problem. The corresponding dynamic involves three general time-varying parameters, which are respec-
tively associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting
these parameters, each with specific properties, we develop a Lyapunov analysis which provides fast
convergence properties of the values and of the feasibility gap. These results naturally pave the way for
developing corresponding accelerated ADMM algorithms, obtained by temporal discretization.
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1. INTRODUCTION

In this paper, X denotes a real Hilbert space, endowed with scalar product 〈·, ·〉 and norm
‖x‖2 = 〈x,x〉, for any x ∈ X . We are interested by the treatment of the following convex
minimization problem under linear constraints:

min
x∈C

f (x) where C := {x ∈X : Ax = b} , (1.1)

where
f : X → R is a convex and continuously differentiable function,
A is a linear and continuous operator from X to Z another real Hilbert space and b ∈Z ,
S := argminC f 6= /0 and x∗ is the element of minimum norm of S.

(H0)
Our objective in this paper is to provide a rigorous treatment of the convergence analysis of

primal-dual dynamics by combining recent dynamic methods in the unconstrained minimization
which ensures strong convergence (see [1, 2, 3]), and also those of the second order in time
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(see [4, 5, 6]) which were constructed to solve with fast convergence a similar constrained
minimization problem.

Continuous-time approaches for the case of unconstrained convex minimization problem
minx∈X f (x) were initiated as the heavy ball with friction method by Polyak [7, 8]:

ẍ(t)+α ẋ(t)+∇ f (x(t)) = 0.

In the case where f is µ-strongly convex, by fixing α = 2
√

µ in [9], the heavy ball system
provides linear convergence of values f (x(t)) to min f (resp. trajectories x(t) to the unique
minimizer of f ).

In [10, 11], the authors investigated on the asymptotic behaviour, when t → +∞, of the
trajectories of the inertial system with Hessian-driven damping

ẍ(t)+ γ(t)ẋ(t)+β (t)∇2 f (x(t))ẋ(t)+b(t)∇ f (x(t)) = 0,

where γ(t) and β (t) are damping parameters, and b(t) is a time scale parameter. Based on a
Lyapunov analysis, and a continuous time version of Opial’s lemma, they proved additional
estimations for values and proved the weak convergence of the trajectories.

Here, in [11, Theorem 2.2], the convergence of trajectories was proved for the weak topology
of H . It is a natural question to ask whether one can obtain strong convergence. A counterex-
ample due to Baillon [12] demonstrates that the trajectories of the continuous steepest descent
may converge weakly but not strongly. We do not elaborate more on this for the sake of brevity.
More recently, Attouch et al. [13] considered for δ > 0 the following system

ẍ(t)+
δ

tr/2 ẋ(t)+∇ f (x(t))+
1
tr x(t) = 0.

They obtained, for 0 < r < 2, strong asymptotic convergence towards the minimum norm solu-
tion and the following convergence rates

f (x(t))−min
X

f = O

(
1
tr

)
and

∥∥ẋ(t)
∥∥2

= O

(
1

t
r+2

2

)
.

In this perspective, [3] introduced the dynamical system:

ẍ(t)+α ẋ(t)+β (t)∇ ft(x(t)) = 0, (1.2)

and [14] proposed the following two inertial systems involving Hessian-driven damping:

ẍ(t)+α ẋ(t)+δ
d
dt

(
∇ f (x(t))

)
+β (t)∇ ft(x(t)) = 0,

and

ẍ(t)+α ẋ(t)+δ
d
dt

(
∇ ft(x(t))

)
+β (t)∇ ft(x(t)) = 0,

where ft(·) := f (·)+ c
2β (t)

‖·‖2 is a
c

β (t)
-strongly convex function, with the following hypoth-

esis 
(i) α,c > 0,
(ii) β : [t0,+∞[−→]0,+∞[ is a nondecreasing continuously

differentiable function satisfying lim
t→+∞

β (t) = +∞,
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by assuming 
(i) c≥ α2 > 0,µ =

α

1+a
,a > 1,

(ii) β (t) is a twice continuously differentiable function with

lim
t→+∞

β̇ (t)
β (t)

= 0, limsup
t→+∞

−β̈ (t)
β̇ (t)

<
α

2
.

Theorem 3.1 in [3] ensured for t large enough that

f (x(t))−min
X

f = O

(
1

β (t)

)
and

∥∥ẋ(t)
∥∥2

= O

(
β̇ (t)
β (t)

+ e−µt

)
. (1.3)

As interesting special cases, the authors proposed

β (t) = tmeγt p
with (p,m) ∈ (R+)

2 \{(0,0)},0 < p < 1,γ > 0.

A common strategy for constructing such a dynamic method for constrained minimization
consists of adapting (1.2) for saddle functions. Note that the constrained minimization problem
(1.1) can be equivalently reformulated as the saddle point problem

min
x∈X

max
λ∈Z

L (x,λ ),

where the Lagrangian L : X ×Z → R is defined by

L (x,λ ) = f (x)+ 〈λ ,Ax−b〉.

Under our standing assumption (H0), L is a saddle function since it is convex with respect to
x ∈X , and affine (and hence concave) with respect to λ ∈Z . Then, a point x̄ is optimal for
(1.1), and λ̄ is a corresponding Lagrange multiplier if and only if (x̄, λ̄ ) is a saddle point of the
Lagrangian saddle function L , i.e. for every (x,λ ) ∈X ×Z ,

L (x̄,λ )≤L (x̄, λ̄ )≤L (x, λ̄ ).

The existence of a saddle point thus plays a critical role in solving (1.1). We denote by S̄ the set
of saddle points of L . The corresponding optimality conditions read

(x̄, λ̄ ) ∈ S̄⇐⇒

{
∇xL (x̄, λ̄ ) = 0,
∇λ L (x̄, λ̄ ) = 0,

⇐⇒

{
∇ f (x̄)+A∗λ̄ = 0,
Ax̄−b = 0,

(1.4)

where ∇x (respectively ∇λ ) is the gradient with respect to x (respectively to λ ) and A∗ is the
adjoint operator of A.

The dynamical system that was investigated in recent years is
ẍ(t)+α(t)ẋ(t)+β (t)∇xLµ

(
x(t), λ (t)+ γ(t)λ̇ (t)

)
= 0,

λ̈ (t)+α(t)λ̇ (t)−β (t)∇λ Lµ

(
x(t)+ γ(t)ẋ(t), λ (t)

)
= 0,

(x(t0),λ (t0)) = (x0,λ0) and (ẋ(t0), λ̇ (t0)) = (ẋ0, λ̇0),

(TRIALS)

where α(t) is an extrapolation parameter, β (t) is attached to the temporal scaling of the dynamic
and γ(t) is a viscous damping parameter. Here Lµ is the known augmented Lagrangian defined
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by

Lµ(x,y) := L (x,y)+
µ

2
‖Ax−b‖2.

The case that β (t) = 1 was studied in [15, 16], while the case that α(t) = α

ts (for 0 < s ≤ 1)
and β (t) is more general were treated in [4, 6, 16, 17].

Note that, in unconstrained minimization (see [18, 19, 20, 21]), the viscous Nesterov damping
term α(t) = α

t plays an important role in obtaining for values the fast convergence of order

O
(

1
t2

)
. The role of the viscous damping factor γ(t)ẋ(t) is to induce more flexibility in the

dynamic system and also to validate the convergence conditions as was recently noticed in [4,
15, 16, 17, 22]. As we will assert that the temporal scaling function β (.) has the role of further
improving the convergence rates of the value of the objective function along the trajectory, as
was noticed in the context of unconstrained minimization problems in [18, 19, 23, 24] and
linearly constrained minimization problems in [4, 5, 6].

Note that, in all the works cited above, the strong convergence of the paths x(t) is only ensured
under strong conditions. Our goal in what follows is to draw inspiration from our recent works
[2, 3, 13, 14] on unconstrained minimization in order to conclude it for general convex-concave
saddle functions. To reach a solution to the constrained optimization problem (1.1), we consider
a primal-dual dynamical system where we approach this problem via a two-level continuous
path:

The first level is a penalization of the associated Lagrangian L (x,λ ) by a strongly convex-
concave saddle function, which is an other augmented Lagrangian Lt : X ×Z → R defined,
for r,c > 0 and t > t0, by

Lt(x,λ ) = L (x,λ )+
c

2tr (‖x‖
2−‖λ‖2).

This ensures the existence and uniqueness of an associated saddle point (xt ,λt). We choose as
a penalization parameter the time function c

tr which tends towards zero when t goes to infinity.
The second level consists of adapting a suitable associated dynamic system which can ensure

in double slice the strong convergence of its solution towards an optimal solution of (1.4), and
also have the fastest possible convergence rates.

This dynamic system, which is called Mixed Inertial Primal-Dual Augmented Lagrangian
System, is written as follows: for t > t0

ẍ(t)+α ẋ(t)+ tr∇xLt(x(t),λ (t)) = 0,

λ̇ (t)− tr∇λ Lt

(
x(t)+ 1

τ
ẋ(t),λ (t)

)
= 0,

(x(t0),λ (t0)) = (x0,λ0) and ẋ(t0) = ẋ0,

(MIPDALS)

where α > 0 is a damping parameter, tr is attached to the temporal scaling of the dynamic
and 1/τ > 0 is an extrapolation parameter, and x0, ẋ0 ∈X and λ0 ∈ Z . The dynamical sys-
tem (MIPDALS), which was investigated in more recent papers [5, 25, 26], differs from the
(TRIALS) system proposed above. We first notice the non-coincidence between the proposed
augmented Lagrangians which differ in their penalization factors, and then in (MIPDALS) we
restrict ourselves to a times first order differential equation for the variations of λ (t) .

In previous papers dealing with dynamic systems to attain saddle points, these results rely on
Lyapunov functions E (t) based on selected solutions (x(t),y(t)) and saddle points z∗ := (x∗,λ ∗)
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of L . Our proof is based on the following Lyapunov function

E (t) := tr

(
Lt(x,λt)−Lt(xt ,λt)

)
+

1
2
‖v(t)‖2 +

τ

2
‖λ (t)−λt‖2

where (xt ,λt) is the unique saddle point of Lt , v(t) = τ(x(t)− xt)+ ẋ(t), r,τ > 0 and the tem-
poral scaling parameter function is tr.

We will show in Theorem 3.1 that under a judicious setting of parameters, E (t) satisfies the
first-order differential inequality

d
dt

[
eµtE (t)

]
≤ ‖z

∗‖2

2
d
dt

[
et

t1−r

]
,

which by integration states our main convergence Theorem 3.2. Let us select these convergence
rates

f (x(t))−min
C

f ≤O

(
1
tr

)
, ‖Ax(t)−b‖= O

(
1
tr

)
, ‖x(t)− xt‖2 = O

(
1

t1−r

)
,

where that of the values and constraints are better and that of the path x(t) ensures its strong
convergence towards the solution closest to the origin.

The remainder of the paper is organized as follows. Next, in Section 2, we introduce the
setting that we will work with and formulate the proposed Lyapunov energy function. This
is followed by the main estimation of this function. Afterwards, we investigate the main con-
vergence theorem on the values, trajectories, and velocities in Section 3. Two primary special
cases for the function β are treated in Section 4, for which numerical experiments are given for
a simple convex (not strictly convex) function. Finally, on the basis of the Moreau regulariza-
tion technique, we extend our results to non-smooth convex functions with extended real values
in Section 5.

2. CONTROL OF VARIATIONS FOR THE SADDLE POINTS OF THE NEW AUGMENTED

LAGRANGIAN FUNCTIONS

In this section, we present the new Lagrangian function Lt : X ×Z → R defined by

Lt(x,λ ) = L (x,λ )+
c

2tr (‖x‖
2−‖λ‖2)

= f (x)+ 〈λ ,Ax−b〉+ c
2tr (‖x‖

2−‖λ‖2).

For each t ≥ t0, let us set (xt ,λt) := argminmaxX ×Z Lt , which is the unique saddle-point of
the strongly convex-concave saddle function Lt . The first order optimality conditions give

0 = ∇xLt(xt ,λt) = ∇ f (xt)+A∗λt +
c
tr xt ,

0 = ∇λ Lt(xt ,λt) = Axt−b− c
tr λt .

(2.1)

We begin with some auxiliary results

Lemma 2.1. [26, Lemma 6] Let t0 ≥ 0, g : [t0,+∞)→Z a continuous differentiable function,
and a : [t0,+∞)→ [0,+∞) a continuous function. Suppose that there exists C≥ 0 such that, for
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every t > t0, ∥∥∥∥g(t)+
∫ t

t0
a(s)g(s)ds

∥∥∥∥≤C. (2.2)

Then sup
t≥t0
‖g(t)‖<+∞.

Proof. Set G(t) := exp
(∫ t

t0 a(s)ds
)∫ t

t0 a(s)g(s)ds for t ≥ t0. Then condition (2.2) ensures that∥∥∥∥ d
dt

G(t)
∥∥∥∥≤Ca(t)exp

(∫ t

t0
a(s)ds

)
=C

d
dt

(
exp
(∫ t

t0
a(s)ds

))
.

Using G(t0) = 0, we obtain

exp
(∫ t

t0
a(s)ds

)∥∥∥∥∫ t

t0
a(s)g(s)ds

∥∥∥∥ = ‖G(t)‖=
∥∥∥∥∫ t

t0

d
dt

G(s)ds
∥∥∥∥

≤
∫ t

t0

∥∥∥∥ d
dt

G(s)
∥∥∥∥ds

≤ C

(
exp
(∫ t

t0
a(s)ds

)
−1

)
≤C exp

(∫ t

t0
a(s)ds

)
.

Thus ∥∥∥∥∫ t

t0
a(s)g(s)ds

∥∥∥∥≤C.

Return to condition (2.2), we conclude, for each t ≥ t0,

‖g(t)‖ ≤
∥∥∥∥g(t)+

∫ t

t0
a(s)g(s)ds

∥∥∥∥+∥∥∥∥∫ t

t0
a(s)g(s)ds

∥∥∥∥≤ 2C.

�

Lemma 2.2. Under conditions (H0) and c >,0 < r < 1, it holds that, for all (x,λ ) ∈X ×Z
and t ≥ t0,

(i) Lt(x,λt)−Lt(xt ,λt)≥
c

2tr ‖x− xt‖2,

(ii) Lt(xt ,λt)−Lt(xt ,λ )≥
c

2tr ‖λ −λt‖2.

Proof. We give only the proof for (i) since (ii) is similar. We first remark that for each x ∈X
and t ≥ t0〈

∇xLt(x,λt)−∇xLt(xt ,λt),x− xt

〉
=

〈
∇ f (x)−∇ f (xt),x− y

〉
+

c
tr ‖x− xt‖2

≥ c
tr ‖x− xt‖2.

It follows that ∇xLt(·,λt) is strongly monotone. From [27, Corollary 3.5.11], we conclude
strong convexity of Lt(·,λt). Thus, for each x ∈X and each t ≥ t0,

Lt(x,λt)−Lt(xt ,λt)≥
c

2tr ‖x− xt‖2 +

〈
∇xLt(xt ,λt),x− xt

〉
=

c
2tr ‖x− xt‖2.

�
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Lemma 2.3. Assume conditions (H0) and c >,0 < r < 1 and denote by (x∗,λ ∗) the metric
projection of (0X ,0Z ) on S̄ the set of saddle points of L . Then,

(i) for all t > t0, ‖(xt ,λt)‖ ≤ ‖(x∗,λ ∗)‖ and limt→+∞ ‖(xt ,λt)− (x∗,λ ∗)‖= 0,
(ii) for all t > t0,

∥∥∥(ẋt , λ̇t)
∥∥∥≤ r

t
‖(xt ,λt)‖ ≤

r
t
‖(x∗,λ ∗)‖.

Proof. (i) Consider the operator M : X ×Z →X ×Z defined by

M (x,λ ) :=
(
∇xL (x,λ ) , −∇λ L (x,λ )

)
.

Then M is the monotone operator associated with the convex-concave function L , and since
it is also continuous on X ×Z , it is maximally monotone (see, e.g., [28, Corollary 20.28]).

We also have the set of zeros of the maximally monotone operator M is nothing other than
the whole set of saddle points of L . This means that the solution set S̄ is a closed convex subset
of X ×Z . From (2.1), we also have that (xt ,λt) is characterized by(

M +
c
tr I
)
(xt ,λt) = (0X ,0Z ) ⇐⇒ (xt ,λt) =

(
I+

tr

c
M

)−1

(0X ,0Z ).

Using [29, Theorem 2.2] (see also [28, Theorem 23.44]), we have (xt ,λt) strongly converges to
(x∗,λ ∗), and [29, Propo. 2.6 (iii)] ensures also that, for every t > t0, ‖(xt ,λt)‖ ≤ ‖(x∗,λ ∗)‖.

(ii) Set w(t) = (xt ,λt),. From (2.1), we have for t > t0 and h near zero

M (w(t)) =− c
tr w(t) and M (w(t +h)) =− c

(t +h)r (w(t +h)).

By monotonicity of M , we have〈
M (w(t +h))−M (w(t)),w(t +h)−w(t)

〉
=

〈
c
tr w(t)− c

(t +h)r (w(t +h)),w(t +h)−w(t)
〉
≥ 0.

Thus, for each t > t0 and h sufficiently small,

‖w(t +h)−w(t)‖2 ≤

((
1+

h
t

)r

−1

)〈
w(t),w(t +h)−w(t)

〉
,

which implies, by the mean value theorem, that there exists ch between 0 and h
t such that

‖w(t +h)−w(t)‖ ≤

∣∣∣∣∣
(

1+
h
t

)r

−1

∣∣∣∣∣∥∥w(t)
∥∥= r|h|

t(1+ ch)1−r

∥∥w(t)
∥∥ . (2.3)

We see that the viscosity curve w(t) is Lipschitz continuous on each compact interval in ]t0,+∞[.
We conclude that w(t) is absolutely continuous and then almost everywhere differentiable on
]t0,+∞[. Return to (2.3), dividing by h > 0 and letting h→ 0, we obtain for almost every t > t0
that ∥∥ẇ(t)

∥∥≤ r
t
‖w(t)‖ ≤ r

t
‖(x∗,λ ∗)‖,

which indicates that (ii) is satisfied. �

We now provide the following needed control lemma.
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Lemma 2.4. If α,c > 0 and 0 < r < 1, then, for each t > t0,

d
dt

Lt(xt ,λt) =
−cr
2tr+1

(
‖xt‖2−‖λt‖2

)
.

Proof. Let us fix t > t0. Since (xt ,λt) is a saddle-point of the saddle function Lt , we obtain for
each t > t0 and h small enough

Lt(xt ,λt+h)≤Lt(xt ,λt)≤Lt(xt+h,λt)

and
−Lt+h(xt ,λt+h)≤−Lt+h(xt+h,λt+h)≤−Lt+h(xt+h,λt).

By summing, we obtain for h small enough the following two inequalities

Lt(xt ,λt)−Lt+h(xt+h,λt+h)≤Lt(xt+h,λt)−Lt+h(xt+h,λt)

=
c

2tr (‖xt+h‖2−‖λt‖2)− c
2(t +h)r (‖xt+h‖2−‖λt‖2)

=
c

2tr

(
1−
(

1+
h
t

)−r
)(
‖xt+h‖2−‖λt‖2

)
=

(
crh

2tr+1 +◦(h)

)(
‖xt+h‖2−‖λt‖2

)
and

Lt(xt ,λt)−Lt+h(xt+h,λt+h)≥Lt(xt ,λt+h)−Lt+h(xt ,λt+h)

=
c

2tr

(
1−
(

1+
h
t

)−r
)(
‖xt‖2−‖λt+h‖2

)
=

(
crh

2tr+1 +◦(h)

)(
‖xt‖2−‖λt+h‖2

)
.

So dividing the previous inequalities by h > 0 and letting h→ 0, we obtain the result immedi-
ately. �

3. FAST CONVERGENCE RESULTS

In this section, we are going to derive fast convergence rates for the primal-dual Augmented
Lagrangian, the feasibility measure, and the objective function value along the trajectories gen-
erated by the dynamical system (MIPDALS), which could be written for c,α,r,τ > 0 as follows:

ẍ(t)+α ẋ(t)+ tr[∇ f (x(t))+A∗λ (t)]+ cx(t) = 0,

λ̇ (t)− tr
[

A
(

x(t)+ 1
τ
ẋ(t)
)
−b
]
+ cλ (t) = 0,

(x(t0),λ (t0)) = (x0,λ0) and ẋ(t0) = ẋ0.

We will also derive the main result on the strong convergence of trajectories x(t) towards the
minimizer of the minimum norm. As mentioned in the introduction, our proof is based on the
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Lyapunov function E which is formulated as follows:

E (t) := tr

(
Lt(x(t),λt)−Lt(xt ,λt)

)
+

1
2
‖v(t)‖2 +

τ

2
‖λ (t)−λt‖2 (E )

with v(t) = τ(x(t)− xt)+ ẋ(t).
The next theorem provides the analysis needed on the energy function E (t). So, we need the

following condition on the parameters α,τ .

Theorem 3.1. Suppose that f : H → R,A : X → Z and β (t) satisfy conditions (H0) and
(H1). Let (x(·),λ (·)) be a solution to system (MIPDALS), and assume the following condition

0 < r < 1,τ < α < τ +min(τ,c) and either α < 2
√

c or 2
√

c < α < τ +
c
τ
. (H1)

Then, there exists t̄ > t0 such that, for each t ≥ t̄ , the following rate holds:

E (t)≤ e(α−τ)t̄E (t̄)
e(α−τ)t

+
‖z∗‖2

2(α− τ)

1
t1−r . (3.1)

Proof. Let us derive the Lyapunov energy function E (t). Observe that

d
dt

E (t) = rtr−1

(
Lt(x(t),λt)−Lt(xt ,λt)

)
+ tr d

dt

(
Lt(x(t),λt)−Lt(xt ,λt)

)
+〈v(t), v̇(t)〉− τ〈λ̇t ,λ (t)−λt〉+ τ〈λ̇ (t),λ (t)−λt〉. (3.2)

Using the system (MIPDALS) and adapting calculation, we have

v̇(t) = τ(ẋ(t)− ẋt)+ ẍ(t)

= (τ−α)ẋ(t)− τ ẋt− tr
∇xLt(x(t),λ (t))

= (τ−α)ẋ(t)− τ ẋt− tr (
∇xLt(x(t),λt)+A∗(λ (t)−λt)

)
.

Then

〈v̇(t),v(t)〉 = (τ−α)‖ẋ(t)‖2 + τ(τ−α)〈x(t)− xt , ẋ(t)〉− τ
2〈x(t)− xt , ẋt〉

−τ 〈ẋ(t), ẋt〉− τtr〈∇xLt(x(t),λ (t)),x(t)− xt〉
−tr〈∇xLt(x(t),λ (t)), ẋ(t)〉.

(3.3)

Using again system (MIPDALS) , we have

〈λ̇ (t),λ (t)−λt〉 = tr

〈
∇λ Lt

(
x(t)+

1
τ

ẋ(t),λ (t)
)
,λ (t)−λt

〉
(3.4)

= tr

〈
∇λ Lt(xt ,λ (t))+A

(
x(t)− xt +

1
τ

ẋ(t)
)
,λ (t)−λt

〉
.
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Moreover, for positive parameters a, p, and q, we have

−τ〈ẋ(t), ẋt〉 ≤
τ

2a
‖ẋ(t)‖2 +

aτ

2
‖ẋt‖2, (3.5)

−τ〈λ (t)−λt , λ̇t〉 ≤
τ

2p
‖λ̇t‖2 +

pτ

2
‖λ (t)−λt‖2, (3.6)

−τ
2〈x(t)− xt , ẋt〉 ≤

τ

2q
‖ẋt‖2 +

qτ3

2
‖x(t)− xt‖2. (3.7)

By strong convexity of Lt(.,λt), we have

〈∇xLt(x(t),λt),x(t)− xt〉 ≥
c

2tr ‖x(t)− xt‖2 +

(
Lt(x(t),λt)−Lt(xt ,λt)

)
(3.8)

Using
∇xLt(x(t),λ (t)) = ∇xLt(x(t),λt)+A∗(λ (t)−λt)

and (3.8), we obtain

− τtr〈∇xLt(x(t),λ (t)),x(t)− xt〉
=−τtr〈∇xLt(x(t),λt),x(t)− xt〉− τtr〈A(x(t)− xt),λ (t)−λt〉

≤ −τc
2
‖x(t)− xt‖2− τtr

(
Lt(x(t),λt)−Lt(xt ,λt)

)
− τtr〈A(x(t)− xt),λ (t)−λt〉.

(3.9)

By the strong convexity of −Lt(xt , .), we also have

〈−∇λ Lt(xt ,λ (t)),λ (t)−λt〉 ≥
c
tr ‖λ (t)−λt‖2.

Combining the above inequality with

∇λ Lt

(
x(t)+

1
τ

ẋ(t),λ (t)
)
= ∇λ Lt(xt ,λ (t))+A

(
x(t)− xt +

1
τ

ẋ(t)
)
,

we obtain

− τtr
〈
−∇λ Lt

(
x(t)

1
τ

ẋ(t),λ (t)
)
,λ (t)−λt

〉
=−τtr〈−∇λ Lt(xt ,λ (t)),λ (t)−λt〉+ τtr〈A(x(t)− xt),λ (t)−λt〉+ tr〈Aẋ(t),λ (t)−λt〉

≤ −cτ‖λ (t)−λt‖2 + τtr〈A(x(t)− xt),λ (t)−λt〉+ tr〈Aẋ(t),λ (t)−λt〉.
(3.10)

On the other hand, we have

d
dt

Lt(x(t),λt) = 〈∇ f (x(t)), ẋ(t)〉+ 〈Ax(t)−b, λ̇t〉+ 〈A∗λt , ẋ(t)〉+
c
tr 〈x(t), ẋ(t)〉

− c
tr 〈λt , λ̇t〉−

cr
2tr+1 (‖x(t)‖

2−‖λt‖2)

= 〈∇xLt(x(t),λ (t)), ẋ(t)〉+ 〈A∗(λt−λ (t)), ẋ(t)〉+ 〈Ax(t)−b, λ̇t〉

− c
tr 〈λt , λ̇t〉−

cr
2tr+1 (‖x(t)‖

2−‖λt‖2).

(3.11)



CONVEX MINIMIZATION WITH AFFINE CONSTRAINTS 383

Using Lemma 2.4, we see that

tr d
dt

(
Lt(x(t),λt)−Lt(xt ,λt)

)
≤ tr〈∇xLt(x(t),λ (t)), ẋ(t)〉+ tr〈A∗(λt−λ (t)), ẋ(t)〉+ tr

(
〈Ax(t)−b, λ̇t〉−

c
tr 〈λt , λ̇t〉

)

+
cr

2tr+1

(
‖xt‖2−‖x(t)‖2

)
.

(3.12)
Return to Axt−b = c

tr λt , we obtain, for a positive parameter b,

tr

(
〈Ax(t)−b, λ̇t〉−

c
tr 〈λt , λ̇t〉

)
= 〈t(r−1)/2A(x(t)− xt), t(r+1)/2

λ̇t〉

≤ ‖A‖
2tr−1

2
‖x(t)− xt‖2 +

tr+1

2
‖λ̇t‖2.

By combining (3.2), (3.4), (3.5), (3.6), (3.7), (3.9), (3.10), and (3.12), we obtain

d
dt

E (t) ≤ tr

(
rt−1− τ

)(
Lt(x(t),λt)−Lt(xt ,λt)

)

+
1
2

(
qτ

3− cτ +‖A‖2tr−1
)
‖x(t)− xt‖2 +

τ

2
(p−2c)‖λ (t)−λt‖2

+

(
τ−α +

τ

2a

)
‖ẋ(t)‖2 +

cr
2t
(‖xt‖2−‖x(t)‖2)+

τ

2

(
a+

1
q

)
‖ẋt(t)‖2

+
1
2

(
tr+1 +

τ

p

)
‖λ̇t‖2 + τ(τ−α)〈ẋ(t),x(t)− xt〉. (3.13)

Now, we set µ > 0 and estimate

µE (t) = µtr

(
Lt(x(t),λt)−Lt(xt ,λt)

)
+

µ

2
‖v(t)‖2 +

µτ

2
‖λ (t)−λt‖2

= µtr

(
Lt(x(t),λt)−Lt(xt ,λt)

)
+

µτ2

2
‖x(t)− xt‖2

+µτ〈x(t)− xt , ẋ(t)〉+
µ

2
‖ẋ(t)‖2 +

µτ

2
‖λ (t)−λt‖2. (3.14)
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Adding (3.13) and (3.14) , we arrive at

µE (t)+
d
dt

E (t)≤ tr

(
(µ− τ)+ rt−1︸ ︷︷ ︸

=−B(t)

)(
Lt(x(t),λt)−Lt(xt ,λt)

)

+
1
2

(
qτ

3− cτ +‖A‖2tr−1 +µτ
2︸ ︷︷ ︸

=−C(t)

)
‖x(t)− xt‖2 +

τ

2

(
p−2c+µ︸ ︷︷ ︸

=−D

)
‖λ (t)−λt‖2

+

(
τ−α +

τ

2a
+

µ

2︸ ︷︷ ︸
=−F

)
‖ẋ(t)‖2 +

cr
2t
(‖xt‖2−‖x(t)‖2)

+
τ

2

(
a+

1
q

)
‖ẋt(t)‖2 +

1
2

(
tr+1 +

τ

p

)
‖λ̇t‖2 + τ

(
µ + τ−α︸ ︷︷ ︸

=−K

)
〈x(t)− xt , ẋ(t)〉.

? By taking µ = α− τ > 0, we obtain K = 0.
? Since B(t) = (τ−µ)−rt−1 = 2τ−α−rt−1 and lim

t→+∞
rt−1 = 0, we suppose in (H1) α < 2τ

to ensure the existence of t1 > 0 such that, for all t ≥ t1, B(t)≥ 0.
? We have C(t) = cτ − qτ3− µτ2−‖A‖2tr−1. Since, for 0 < r < 1, lim

t→+∞
‖A‖2tr−1 = 0,

we have to satisfy τ(c− qτ2− µτ) = τ((1− q)τ2−ατ + c) > 0. This is due to the choice
0 < q < 1+ c−ατ

τ2 which is guaranteed by assumption (H1). We deduce the existence of t2 ≥ t1
such that, for all t ≥ t2, C(t)> 0.

? We have that D = 2c− p− µ = 2c+ τ −α − p is nonnegative when we chose 0 < p ≤
2c+ τ−α , so the condition c > α−τ

2 is imposed in (H1).
? Since F = 1

2a(aα− (1+a)τ), we also have the choice a≥ τ

α−τ
to guarantee that F ≥ 0.

Return to zt = (xt ,λt) and z∗ = (x∗,λ ∗), we obtain

‖xt‖ ≤ ‖zt‖ ≤ ‖z∗‖ and max
(
‖ẋt‖ , ‖λ̇t‖

)
≤ r

t
‖zt‖ ≤

r
t
‖z∗‖.

Thus, for all t ≥ t2,

τ

2

(
a+

1
q

)
‖ẋt(t)‖2 +

1
2

(
tr+1 +

τ

p

)
‖λ̇t‖2 +

cr
2t
‖xt‖2 (3.15)

≤ ‖z∗‖2

2

(
rc
t
+

[
τ

(
a+

1
p
+

1
q

)
+ tr+1

](
r
t

)2)
.

Summarizing the choices for t above, we conclude from inequalities (3.13) and (3.15) that, for
all t ≥ t2,

µE (t)+
d
dt

E (t)≤ ‖z
∗‖2

2

(
rc
t
+

[
τ

(
a+

1
p
+

1
q

)
+ tr+1

](
r
t

)2)
.
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Multiplying by eµt , we have, for k0 := τ

(
a+ 1

p +
1
q

)
and all t ≥ t3,

d
dt

[
eµtE (t)

]
= eµt

[
µE (t)+

d
dt

E (t)
]

≤ ‖z∗‖2

2

(
rc
t
+

[
τ

(
a+

1
p
+

1
q

)
+ tr+1

](
r
t

)2)
eµt

=
‖z∗‖2

2

(
rc
t
+

k0r2

t2 +
r2

t1−r

)
eµt . (3.16)

Since r < 1, we have

lim
t→+∞

(
rc
tr +

k0r2

t1+r +
1− r

µt

)
= 0 < (1− r)(1+ r) = 1− r2.

We conclude, for t large enough (t ≥ t3 ≥ t2), rc
tr +

k0r2

t1+r +
1−r
µt ≤ 1− r2, which gives

rc
tr +

k0r2

t1+r + r2 ≤ 1
µ

(
µ− 1− r

t

)
.

Then multiplying by et

t1−r , we see that, for t ≥ t3,(
rc
t
+

k0r2

t2 +
r2

t1−r

)
eµt ≤ 1

µ

(
µ

t1−r −
1− r
t2−r

)
eµt .

Return to inequality (3.16), we have, for t ≥ t3,

d
dt

[
eµtE (t)

]
≤ ‖z

∗‖2

2µ

(
µ

t1−r −
1− r
t2−r

)
eµt

=
‖z∗‖2

2µ

d
dt

[
eµt

t1−r

]
.

Integrating the above inequality between t3 and t and multiplying by e−µt , we obtain

E (t)≤ eµ(t3−t)E (t3)+
‖z∗‖2

2µ

(
1

t1−r −
eµ(t3−t)

t1−r
3

)

≤ eµt3E (t3)
eµt +

‖z∗‖2

2µ

1
t1−r ,

that leads to (3.1), the desired estimate, for t̄ = t3. �

We can now state our main convergence result.

Theorem 3.2. Under the conditions of Theorem 3.1, it has the strong convergence of trajecto-
ries x(t),λ (t) to the minimum norm solutions x∗,λ ∗ of primal problem (1.1) and the associated
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dual one. In addition, the following convergence rates hold:

a) Lt(x(t),λt)−Lt(xt ,λt) = O

(
1
t

)
as t→+∞. (3.17)

b) L (x(t),λ ∗)−L (x∗,λ ∗) = O

(
1
tr

)
as t→+∞. (3.18)

c) f (x(t))−min
C

f = O

(
1
tr

)
as t→+∞; (3.19)

d) ‖Ax(t)−b‖= O

(
1
tr

)
as t→+∞; (3.20)

e) ‖x(t)− xt‖2 = O

(
1

t1−r

)
as t→+∞; (3.21)

f) ‖λ (t)−λt‖2 = O

(
1

t1−r

)
as t→+∞; (3.22)

g) ‖ẋ(t)‖= O

(
1

t1−r

)
as t→+∞. (3.23)

Proof. Firstly, we note that (3.1) gives

E (t) = O

(
1

t1−r

)
as t→+∞. (3.24)

Returning to the expression of E (t), we conclude (3.17). Using the strong convexity of Lt(·,λt)
(see Lemma 2.2) and the definition of E (t), we have, for t ≥ t̄,

‖x(t)− xt‖2 ≤ 2tr

c
Lt(x(t),λt)−Lt(xt ,λt)≤

2
c
E (t),

which ensures (3.21). Combining (3.21) with Lemma 2.3, i.e., the fact that xt → x∗ as t→+∞,
we deduce the strong convergence of x(t) to x∗ as t → +∞. Also, from the definition of E (t),
we have

‖λ (t)−λt‖2 = O

(
1

t1−r

)
.

Since Lemma 2.3 justifies λt strongly converges to λ ∗, we conclude λ (t) also strongly converges
to λ ∗. Returning to (MIPDALS), we have

λ̇ (t)+ cλ (t) = tr(Ax(t)−b)+
tr

τ
Aẋ(t),

and multiplying by ect , we obtain

d
dt

(
ect

λ (t)
)
= ect

(
λ̇ (t)+ cλ (t)

)
= ect

(
tr(Ax(t)−b)+

tr

τ
Aẋ(t)

)
.



CONVEX MINIMIZATION WITH AFFINE CONSTRAINTS 387

Integrating from t̄ to t and using integration by parts on the last term, we deduce

λ (t)− λ (t̄)ect̄

ect =
1

ect

∫ t

t̄
srecs(Ax(s)−b)ds+

1
τect

∫ t

t̄
srecsd(Ax(s)−b)ds

=
tr(Ax(t)−b)

τ
− t̄rect̄(Ax(t̄)−b)

τect

+
∫ t

t̄

ecs

τect

(
τ− r

s
− c
)

sr(Ax(s)−b)ds,

Now, relying on the boundedness of λ (t), for all t ≥ t̄, we obtain∥∥∥∥tr(Ax(t)−b)+
∫ t

t̄
ec(s−t)

(
τ− r

s
− c
)

sr(Ax(s)−b)ds
∥∥∥∥≤ K1,

where K1 is positive constant. Using Lemma 2.1 for

g(s) := sr(Ax(s)−b)

and
a(s) := ec(s−t)(τ− r

s
− c),

we obtain
sup
t≥t̄

∥∥tr(Ax(t)−b)
∥∥<+∞.

Thus we have (3.20). Since (xt ,λt) is a saddle point of Lt , we have

Lt(xt ,λt)≤Lt(x∗,λt).

Thus

Lt(x(t),λt)−Lt(xt ,λt) ≥ Lt(x(t),λt)−Lt(x∗,λt)

= L (x(t),λt)−L (x∗,λt)+
c

2tr (‖x(t)‖
2−‖x∗‖2)

= L (x(t),λ ∗)−L (x∗,λ ∗)+ 〈λt−λ
∗,Ax(t)−b〉

+
c

2tr (‖x(t)‖
2−‖x∗‖2)

≥ L (x(t),λ ∗)−L (x∗,λ ∗)−‖λt−λ
∗‖‖Ax(t)−b‖

+
c

2tr (‖x(t)‖
2−‖x∗‖2),

which implies

0 ≤ L (x(t),λ ∗)−L (x∗,λ ∗)

≤ Lt(x(t),λt)−Lt(xt ,λt)+‖λt−λ
∗‖‖Ax(t)−b‖+ c

2tr

(
‖x∗‖2−‖x(t)‖2

)
.

Since

lim
t→+∞

‖λt−λ
∗‖= lim

t→+∞

(
‖x∗‖2−‖x(t)‖2

)
= 0,

(3.17) and (3.20) ensure (3.18). Return to the definition of E (t), we have

E (t)≥ 1
2
‖v(t)‖2 =

1
2
‖τ(x(t)− xt)+ ẋ(t)‖2.
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From the definition of v(t), we obtain

‖ẋ(t)‖2 = ‖v(t)− τ(x(t)− xt)‖2 ≤ 2‖v(t)‖2 +2τ
2‖x(t)− xt‖2

≤ 4E (t)+2τ
2‖x(t)− xt‖2.

According to (3.21) and (3.24), we deduce that (3.23) is satisfied.
To conclude the rate of values, let us go back to

f (x(t))− f (x∗) = 〈λ ∗,Ax−b〉−
(
L (x(t),λ ∗)−L (x∗,λ ∗)

)
and use (3.18),(3.20). Then

f (x(t))−min
C

f = O

(
1
tr

)
.

�

4. NUMERICAL EXAMPLES

In this section, we consider three numerical examples to illustrate the evolution of our dy-
namical system (MIPDALS).

Example 4.1. Consider the constrained minimization problem where the objective function is
convex but not strictly convex

min f (x) =
1
2
(x2

1 +(x2− x3)
2) under constraint: h(x) = 2x1− x2 + x3−2 = 0. (4.1)

The set of solutions of (4.1) is S = argminC f = {x ∈ R3 : x1− x2 = 1,x2− x3 = −2} and the
element of minimum norm of S is x∗ = (0,−1,1).

In this example, by setting α = 5.5 and c = τ = 5 that satisfy condition (H1), we analyze
in Figure 2 the evolution of the convergence rates (3.20), (3.21), and (3.23) demonstrated in
Theorem 3.2. We note in Figure 2 top left that the convergence estimate for the values in (3.20)
is well suited to this example. Secondly, by positively varying only the parameter c when its
values are tolerated by the condition (H1), we find a slight and inverse evolution for the values
f (x(t))−minC f and the convergence of x(t) towards x∗. This can be justified by the inequality

(3.1), where (E )(t) is increased by
e(α−τ)t̄E (t̄)

eµt +
‖z∗‖2

2µ

1
t1−r and the condition (H1) imposes

max(1,τ)µ < c.

Example 4.2. Now, we compare the convergence results of our dynamical system (MIPDALS)
with those of the very recent paper [30] dealing with the following dynamical system

ẍ(t)+ α

t ẋ(t)+∇ f (x(t))+A∗λ (t)+ρA∗(Ax(t)−b)+ ε(t)x(t) = 0,

λ̇ (t)− t
[

A
(

x(t)+ t
α−1 ẋ(t)

)
−b
]

= 0.
(4.2)

We take the same convex constrained minimization problem shown in [30]:

min f (x1,x2,x3) = (5x1 + x2 + x3)
2 under constraints 5x1− x2 + x3 = 0.

Here f is a convex differentiable function. The solution set is S∗ = {u(1,0,−1/5) : u ∈ R} and
the optimal value is equal to zero. Obviously, the minimizer of minimal norm is the origin of
R3. For this system, we deal with the same data as in this reference: x(1) = (1,1,1)T ,λ (1) =
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FIGURE 1. Errors of the objective function, the trajectories, the constraint and the velocity of
our dynamical system (MIPDALS) with different values of Tikhonov regularization parameters
0 < r < 1.

FIGURE 2. Errors of the objective function, the trajectories, the constraint and the velocity of
our dynamical system (MIPDALS) with different values of Tikhonov regularization parameters
0 < r < 1.

1, ẋ(1) = (1,1,1)T and m = 5,n = 1,e = 1,α = 13,ε(t) = 3t−s,ρ = 1. Figure 3 justifies the
improvement in the convergence rate of values and solutions for our proposed system when
comparing it with that of Zhu et al. [30]. We also note that the values in this reference vary
inversely to that of the parameter s in the estimate proposed for the augmented Lagrangian in
[30, Theorem 7.4]:

Lρ(x(t),λ ∗)−Lρ(x∗,λ ∗) = O

(
1
ts

)
.

5. CONCLUSION AND PERSPECTIVE

To attain a solution of constrained minimization problems minAx=b f (x), where f is a general
convex function and A is a linear continuous operator, we proposed the following dynamical
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FIGURE 3. Here we compare the convergence rates for different values of 0 < r < 1 in system
(MIPDALS), and those of 0 < s < 2 in system (4.2).

system

ẍ(t)+α ẋ(t)+ tr
∇xLt(x(t),λ (t)) = 0, λ̇ (t)− tr

∇λ Lt

(
x(t)+

1
τ

ẋ(t),λ (t)
)
= 0,

where Lt(x,λ )=L (x,λ )+ c
2tr (‖x‖2−‖λ‖2) is a quadratic penalty Lagrangian with the penalty

parameter function ε(t) = c
tr .

This allowed us to initiate in this first bibliographic result (see Theorem 3.2) the strong con-
vergence of the solution (x(t),λ (t)) of the proposed system towards the metric projection of the
origin onto the set of solutions of minAx=b f (x), as well as a better rate of convergence of the
values f (x(t))−minAx=b f (x).

As future works, we are eager to improve the rate of convergence of values firstly by extend-
ing the values of the parameter r over the interval (0,1), and therefore for a general time scale
parameter β (t). Indeed, as one Reviewer recommended in his report, the case β (t) = tmeγtq

with (q,m) ∈ R2
+ \{(0,0)},0 < q < 1,γ > 0, is more attractive since this convergence is faster

than that proposed in (3.19) and (3.23). As it is already mentioned in the introduction of this
paper, the references [13, 14] were able to reach for this choice of β , in addition to the strong
convergence, the rates (1.3):

f (x(t))−min
X

f = O

(
1

tmeγtq

)
and

∥∥ẋ(t)
∥∥2

= O

(
1

t1−q

)
.

Previously, we attempted to adapt them to our case under constraints but without success. So
this may be one of our future research topics. This work also provides a basis for the develop-
ment of corresponding algorithmic results.
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