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Abstract. This paper is concerned with various classes of parameter dependent hemivariational in-
equalities. First we study mixed random hemivariational inequalities and give solvability results in the
Bochner-Lebesgue space L∞(Ω,µ,H), built on a finite measure space (Ω,µ) and a real separable Hilbert
space H. Next, we specialize Ω to a finite interval with Lebesgue measure and prove solvability and
regularity results for extended real-valued time-dependent hemivariational inequalities. Then we focus
on a probability space (Ω,P) and derive a stability result for mixed random hemivariational inequalities
from a recent fundamental stability theorem. As an application, we investigate a nonsmooth boundary
value problem with unilateral, friction-like, and nonmonotone boundary conditions under uncertainty
and present a concrete stability result.
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1. INTRODUCTION

The purpose of this paper is two-fold. Firstly, we build on the recent abstract existence theory
in [1] and extend the measurability and solvability results in [2], see also [3, sect. 6.2], from
random monotone variational inequalities to novel mixed random hemivariational inequalities
of the following type (pathwisely formulated): For each ω ∈Ω, find x∗ω ∈ K such that

〈Φ(ω,x∗ω),x− x∗ω〉+ J0(γx∗ω ;γx− γx∗ω)+ϕ(x)−ϕ(x∗ω)≥ λ (ω,x− x∗ω) ∀x ∈ K,

where (Ω,A ,µ) is a complete σ -finite measure space and (H,〈·, ·〉,‖ · ‖) is a real separable
Hilbert space identified with the dual space H∗.

Next, we have a Carathéodory operator Φ : Ω×H → H, i.e., for each fixed x ∈ H, Φ(·,x) is
measurable with respect to A and to the Borel algebra B(H), and for every ω ∈Ω , Φ(ω, ·) is
continuous. Moreover, for each ω ∈ Ω, Φ(ω, ·) is a monotone operator on H, i.e., 〈Φ(ω,x)−
Φ(ω,x′),x−x′〉≥ 0 for all x,x′ ∈H. Further, the right hand side λ : Ω×H→R is a Carathéodory
function such that, for every ω ∈ Ω , λ (ω, ·) is linear and continuous, also - by abuse of nota-
tion - λ : ω ∈ Ω 7→ λ (ω) ∈ H is in L∞(Ω;H). For simplicity, we content ourselves with a
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fixed closed, convex, and nonempty subset K ⊂ H in contrast to [2], where the constraint set
is random, too. In addition, we have the deterministic data: ϕ : H → R is a convex continuous
function, γ := γH→Z denotes a linear continuous operator into a real Banach space Z, and J is
a real-valued locally Lipschitz functional defined on Z, giving rise to the Clarke generalized
directional derivative J0 as made precise below.

Specializing Ω to a time interval, we obtain as a byproduct of the abstract existence theory in
[1] an existence result, complemented by a regularity result for time-dependent extended real-
valued hemivariational inequalities that extend an existence-regularity result for time-dependent
extended real-valued variational inequalities in [4].

Secondly, we derive a novel well-posedness result for the considered mixed random hemi-
variational inequalities from a recent fundamental stability theorem in [5], where we handle
perturbations not only with respect to the right hand side given by linear random forms, but also
with respect to convex functions by using the concept of Mosco convergence.

As an application we treat a nonsmooth boundary value problem with unilateral, friction-like,
and nonmonotone boundary conditions under uncertainty and present a concrete stability result,
where we give explicit conditions on the given functions and random variables that are involved
in the perturbed convex function and in the perturbed linear random form.

The theory of hemivariational inequalities (HVIs) was introduced and has been investigated
since 1980s by Panagiotopoulos [6], as a generalization of variational inequalities (VIs) with
the aim to model many problems coming from mechanics when the energy functionals are
nonconvex, but locally Lipschitz, so the Clarke generalized differentiation calculus [7] can be
used; see, e.g., [8, 9, 10]. For more recent monographs on HVIs with application to contact
problems, we refer to [11, 12].

Let us discuss the present paper in comparison with the recent papers [5, 13, 14, 15]. The fun-
damental stability theorem for extended real-valued HVIs established in [5, 13] can be applied
in different directions to various partial differential equation (PDE) problems and variational
problems. [13] investigates a nonlinear scalar interface problem on an unbounded domain with
nonmonotone set-valued transmission conditions involving a nonlinear monotone PDE in the
interior domain and the Laplacian in the exterior domain. Using boundary integral methods
from singular operator theory, this interface problem can be reduced to a HVI on the coupling
boundary. Based on the above-mentioned stability theorem various stability results for the in-
terface problem, as well as stability of a related bilateral obstacle interface problem with respect
to the obstacles are obtained. [5] goes a step further and employs the above-mentioned stability
theorem to arrive at the existence of optimal controls for four kinds of optimal control prob-
lems: Distributed control on the bounded domain, boundary control, simultaneous boundary-
distributed control governed by the interface problem, as well as control of the obstacle driven
by a related bilateral obstacle interface problem. While the papers [5, 13] are concerned with
deterministic problems, [14] investigates mixed random VIs in the setting of a separable Hilbert
space and a complete σ -finite measure space and, based on a stability result for linear ex-
tended real-valued VIs, derives a well-posed result for such random VIs. The survey paper [15]
presents both stability results for linear extended real-valued VIs and for extended real-valued
HVIs, respectively, and provides applications of these stability results to various variational
problems, namely for a class of random mixed variational inequalities, and for a scalar bilat-
eral obstacle problem with unilateral and nonmonotone boundary conditions, and moreover
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discusses the stability in a frictionless unilateral contact problems with locking material in lin-
ear elasticity with respect to the locking constraint. Thus a main novelty of the present paper
lies in a well-posedness result for a new class of random HVIs, besides as a byproduct, a new
existence-regularity result for time-dependent extended real-valued HVIs.

The outline of the paper is as follows. The subsequent section, Section 2, first collects the
basic notions of Clarke’s generalized differential calculus, and then recalls the fundamental
concept of Mosco convergence for extended real-valued convex lower semicontinuous proper
functions in the framework of a real Banach space. In addition, a preliminary result is provided
for handling the Mosco convergence of the sum of two convex lower semicontinuous proper
functions. Here we also give reference to the general result on the sum of maximally monotone
operators in [16]. Then we present the above-mentioned stability result (Theorem 3) from [5]
for extended real-valued hemivariational inequalities; see Theorem 2.2. In Section 3, we study
the above mixed random hemivariational inequality (random HVI). First we are concerned with
solvability of the random HVI in its pathwise formulation in a general complete σ -finite mea-
sure space. In particular, we show that, under specific assumptions on the data, the unique
solution x∗ : ω ∈ Ω 7→ x∗(ω) ∈ K lies in an appropriate Bochner-Lebesgue space [17, section
4.2]; see Theorem 3.2. Next, in Section 4, as a byproduct of the abstract existence theory in [1],
we provide a solvability result, complemented by a regularity result for extended real-valued
time-dependent HVIs; see Theorem 4.1. Then we focus to a probability space (Ω,A,P), and
derive from Theorem 2.2 a stability result for random HVIs with respect to perturbations in the
random right hand side and in the convex continuous function with respect to Mosco conver-
gence; see Corollary 5.1. The next section, Section 6, applies the above general stability theory
to a nonsmooth boundary value problem with unilateral, friction-like, and nonmonotone bound-
ary conditions under uncertainty and presents a concrete stability result with explicit conditions
on the involved functions and random variables; see Theorem 6.1. The final section, Section 7,
gives some concluding remarks and sketches some directions of further research.

2. SOME PRELIMINARIES

2.1. Some preliminaries from Clarke’s generalized differential calculus. From Clarke’s
generalized differential calculus [7], we need the concept of the generalized directional de-
rivative of a locally Lipschitz function φ : X → R on a real Banach space X at x ∈ X in the
direction z ∈ X defined by

φ
0(x;z) := limsup

y→x;t↓0

φ(y+ tz)−φ(y)
t

.

Note that the function z ∈ X 7→ φ 0(x;z) is finite, sublinear, and hence convex and continuous;
further, the function (x,z) 7→ φ 0(x;z) is upper semicontinuous. The generalized gradient of the
function φ at x, denoted by (simply) ∂φ(x), is the unique nonempty weak∗ compact convex
subset of the dual space X ′, whose support function is φ 0(x; .). Thus

ξ ∈ ∂φ(x)⇔ φ
0(x;z)≥ 〈ξ ,z〉, ∀z ∈ X ,

φ
0(x;z) = max{〈ξ ,z〉 : ξ ∈ ∂φ(x)}, ∀z ∈ X .
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In the case X =Rn, according to Rademacher’s theorem, φ is differentiable almost everywhere,
and the generalized gradient of φ at a point x ∈ Rn can be characterized by

∂φ(x) = co{ξ ∈ Rn : ξ = lim
k→∞

∇φ(xk), xk→ x, φ is differentiable at xk},

where ”co” denotes the convex hull.

2.2. The concept of Mosco convergence. In this article, we use the concept of epi-convergence
of extended real-valued convex lower semicontinuous proper functions in the sense of Mosco
[18, 19] (”Mosco convergence”) in the framework of a real Banach space V . Note that such a
convex lower semicontinuous function F : V → R∪{+∞} is said to be proper iff F 6≡ ∞ on V .
This means that the effective domain of F in the sense of convex analysis ([20]),

dom F := {v ∈V : F(v)<+∞}
is nonempty and convex.

Definition 2.1. Let Fn (n ∈ N),F : V → R∪ {+∞} be convex lower semicontinuous proper
functions. Then Fn is said to be Mosco convergent to F , written Fn

M−→ F , if and only if the
subsequent two hypotheses hold:
(M1) If vn ∈V (n∈N) weakly converges to v (vn ⇀ v) for n→∞, then F(v)≤ liminfn→∞ Fn(vn).
(M2) For any v ∈ V with F(v) < ∞, there exist vn ∈ V (n ∈ N) strongly converging to v for

n→ ∞ such that F(v) = limn→∞ Fn(vn).

For later use we need the following result on Mosco convergence of the sum of two convex
lower semicontinuous proper functions.

Lemma 2.1. Let Fi,n (n ∈ N),Fi : V → R∪{+∞} (i = 1,2) be convex lower semicontinuous

proper functions. Suppose that for n→∞, F1,n
M−→ F1; (F2,n;F2) satisfies (M1) and there holds

(C) If F2(w) < ∞ and wn ∈ V (n ∈ N) strongly converges to w for n→ ∞, then F2(w) =
limn→∞ F2,n(wn).

Then Fn := F1,n +F2,n
M−→ F := F1 +F2.

Proof. To show (M1) for (Fn;F), let vn ⇀ v (weak convergence) in V . By (M1) for (F1,n;F1)
and (F2,n;F2), one has

F(v) = F1(v)+F2(v)≤ liminf
n→∞

F1,n(vn)+ liminf
n→∞

F2,n(vn)

≤ liminf
n→∞

[F1,n(vn)+F2,n(vn)]

= liminf
n→∞

Fn(vn) .

To show (M2) for (Fn;F), let v ∈ V with F(v) < ∞. Then Fi(v) < ∞; i = 1,2. Since (F1,n;F1)
satisfies (M2), one has that there exist vn ∈V such that vn→ v (strong convergence) and F1(v) =
limn→∞ F1,n(vn). By (C), F2(v) = limn→∞ F2,n(vn) and the conclusion follows. �

In virtue of [16, Theorems 6,7], if Fi,n
M−→ Fi holds for i = 1 and i = 2 both, then one can

conclude the Mosco convergence of the sum under an extra condition related to the Brézis-
Crandall-Pazy condition.

Needless to say, for linear functionals λ ,λn (n ∈ N) in dual V ∗, Mosco convergence of Fn :=
λn

M−→ F := λ follows from strong convergence λn→ λ for n→ ∞.
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2.3. Well-posedness of extended real-valued hemivariational inequalities. In this subsec-
tion, we deal with well-posedness for extended real-valued HVIs of the following type: Find
v̂ ∈ dom F such that

A(v̂)(v− v̂)+ J0(γ v̂;γv− γ v̂)+F(v)−F(v̂)≥ 0 ∀v ∈V . (2.1)

Here V is a real reflexive Banach space. Next the nonlinear monotone continuous operator
A : V → V ∗ is strongly monotone with some monotonicity constant cA > 0, that is, 〈A(v)−
A(v′),v−v′〉V ∗×V ≥ cA ‖v−v′‖2

V for all v,v′ ∈V . Further, γ := γV→X denotes a linear continuous
operator into a real Banach space X , J0 stands for the generalized directional derivative of a
real-valued locally Lipschitz functional J defined on X , and in addition, F : V →R∪{+∞} is a
convex lower semicontinuous proper function.

Further, similar to [12], we suppose the one-sided Lipschitz condition for the generalized
directional derivative J0: There exists cJ > 0 such that

J0(y1;y2− y1)+ J0(y2;y1− y2)≤ cJ‖y1− y2‖2
X ∀y1,y2 ∈ X , (2.2)

and in addition the smallness condition

cJ‖γ‖2
V→X < cA . (2.3)

Next, we define the bifunction

Φ(v,w) := A(v)(w− v)+ J0(γv;γw− γv).

Thus, under assumptions (2.2) and (2.3), by [5, Proposition 1], Φ is strongly monotone and HVI
(2.1) falls into the framework of an extended real-valued equilibrium problem of monotone type
in the sense of [1]. Since the convex proper lower semicontinuous function F is conically
minorized, that is, it enjoys the estimate F(v)≥−cF(1+‖v‖), v ∈V with some cF > 0, strong
monotonicity implies the asymptotic coercivity condition in [1], too. Thus the existence result
[1, Theorem 5.2] applies to the HVI (2.1) to conclude the following result.

Theorem 2.1. Suppose (2.2) and (2.3). Then the HVI (2.1) is uniquely solvable.

By this solvability result, we can introduce the solution map S by S (F) := v̂, the solution
of (2.1). Next, we deal with the stability of the solution map S with respect to the extendend
real-valued function F . In view of our later applications, it is not hard to require that Fn are
uniformly conically minorized, that is, there holds the estimate

Fn(v)≥−d0(1+‖v‖), ∀n ∈ N,v ∈V (2.4)

with some d0 ≥ 0. Moreover, similar to [12], in addition to the one-sided Lipschitz continuity
(2.2), we assume that the locally Lipschitz function J satisfies the following growth condition

‖ζ‖X∗ ≤ dJ(1+‖z‖X), ∀z ∈ X , ζ ∈ ∂J(z) (2.5)

for some dJ > 0, what - as seen later - for an integral functional J immediately follows from the
growth condition for the associated integrand function

Now we are in the position to state the following general stability theorem; see [5, Theorem
3].
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Theorem 2.2. Suppose that the operator A is continuous and strongly monotone with mono-
tonicity constant cA > 0, the linear operator γ is compact, and the generalized directional
derivative J0 satisfies the one-sided Lipschitz condition (2.2) and the growth condition (2.5).
Moreover, suppose the smallness condition (2.3) holds. Let F,Fn : V → R∪ {+∞} (n ∈ N)
be convex lower semicontinuous proper functions that satisfy lower estimate (2.4). Suppose
Fn

M−→ F. Then strong convergence S (Fn)→S (F) holds.

3. RANDOM HEMIVARIATIONAL INEQUALITIES - MEASURABILITY AND SOLVABILITY

In this section, we study measurability and solvability of the class of random hemivaria-
tional inequalities described in the pathwise formulation. For convenience, we recall the general
framework. Let (Ω,A ,µ) be a complete σ -finite measure space and (H,〈·, ·〉,‖ · ‖) a separa-
ble Hilbert space. Let K be a closed, convex, and nonempty subset of H. Further we have a
Carathéodory operator Φ : Ω×H → H, i.e., for each fixed x ∈ H, Φ(·,x) is measurable with
respect to A and to the Borel algebra B(H), and for every ω ∈Ω , Φ(ω, ·) is continuous. More-
over, for each ω ∈Ω, Φ(ω, ·) is a monotone operator on H, i.e., 〈Φ(ω,x)−Φ(ω,x′),x−x′〉 ≥ 0
for all x,x′ ∈ H. Here let us simply write Φ(ω) := Φ(ω, ·). Further, the right hand side
λ : Ω×H → R is Carathéodory such that - by abuse of notation - λ : ω ∈ Ω 7→ λ (ω) ∈ H
is in L∞(Ω;H). Moreover, we have the deterministic data: ϕ : H → R is a convex continuous
function, γ := γH→Z is a linear continuous operator into a real Banach space Z, and J is a real-
valued locally Lipschitz functional defined on Z giving rise to the Clarke generalized directional
derivative J0 as made precise above.

Then we consider the following problem: For each ω ∈Ω, find x∗ω ∈ K such that

〈Φ(ω,x∗ω),x− x∗ω〉+ J0(γx∗ω ;γx− γx∗ω)+ϕ(x)−ϕ(x∗ω)≥ 〈λ (ω),x− x∗ω〉 , ∀x ∈ K . (3.1)

Throughout we assume that the operator Φ is uniformly strongly monotone in the sense that
there exists a constant cΦ > 0 such that

cΦ ‖x− y‖2 ≤ 〈Φ(ω,x)−Φ(ω,y),x− y〉, for all ω ∈Ω,∀x,y ∈ H . (3.2)

We again assume that the locally Lipschitz function J satisfies the linear growth condition

‖ζ‖X∗ ≤ dJ(1+‖z‖X), ∀z ∈ X , ζ ∈ ∂J(z) (3.3)

for some dJ > 0, which implies the estimate

J0(z;w)≤ d j(1+‖z‖X)‖w‖X ∀z,w ∈ X . (3.4)

Further, suppose the one-sided Lipschitz condition for the generalized directional derivative J0:
There exists cJ > 0 such that

J0(y1;y2− y1)+ J0(y2;y1− y2)≤ cJ‖y1− y2‖2
X ∀y1,y2 ∈ X , (3.5)

and the smallness condition
cJ‖γ‖2

H→X < cΦ . (3.6)
Next, we define the bifunction

Ψω(x,y) := 〈Φ(ω,x),y− x〉+ J0(γx;γy− γx)−〈λ (ω),y− x〉. (3.7)

Thus, under assumptions (3.2), (3.5), and (3.6), by [5, Proposition 1], Ψω is strongly mono-
tone and the above HVI (3.1) in the pathwise formulation falls into the framework of an equilib-
rium problem of monotone type in the sense of [1]. Therefore we can use Minty’s lemma (see,
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e.g., [1, Prop. 3.2]). Moreover, since the convex continuous function ϕ is conically minorized,
that is, it enjoys the estimate

ϕ(x)≥−cϕ(1+‖x‖) , x ∈ H (3.8)

with some cϕ > 0, and the asymptotic coercivity condition in [1] holds. Therefore, the solution
x∗ω ∈ K of (3.1) exists uniquely; see [1, Theorem 6.2]. Thus we arrive at the following measura-
bility result for the solution mapping Σ : Ω→H given by Σ(ω) := x∗ω ∈K, the solution of (3.1),
with respect to the σ -algebra B(H) of the Borel subsets of H.

Theorem 3.1. Suppose (3.2), (3.5), and (3.6). Then the solution map Σ is measurable.

Proof. Since H is separable, then metric subspace K is also separable. Let {zν}ν∈N be dense in
K. By Minty’s lemma and by continuity, x∗ω = Σ(ω) if and only if

x∗ω ∈ K, Ψω(zν ,x∗ω)+ϕ(x∗ω)≤ ϕ(zν) for all ν ∈ N .

Therefore Σ =
⋂

ν∈N
Σν , where, for any ν ∈ N, Σν : Ω H is given by

Σν(ω) := {ŷ ∈ K : Ψω(zν , ŷ)+ϕ(ŷ)≤ ϕ(zν)} .

Then Σν(ω) is closed by continuity, and by A⊗B(H)−B(R) measurability of Carathéodory
functions (see, e.g., [21, Lemma 8.2.6] ), the graph of the set valued map Σν belongs to A⊗
B(H). Since

graph Σ =
⋂

ν∈N
graph Σν ∈ A⊗B(H),

by the Castaing characterization theorem (see [21, Theorem 8.1.4]), the claimed measurability
of Σ follows. �

Using (3.4) and (3.8), we can derive from (3.2), (3.5), and (3.6) the following a priori esti-
mate:

(cΦ− cJ‖γ‖2)‖x∗ω − z0‖2

≤ ϕ(z0)+ cϕ(1+‖x∗ω‖)+ [cJ‖γ‖H→X(1+‖γ‖H→X‖z0‖)+‖λ‖L∞(Ω;H)]‖x∗ω − z0‖

with some arbitrary fixed z0 ∈ K. Hence, using the definition û(ω) := x∗ω ,

‖û(ω)‖ ≤ c̃
(

cϕ ,cΦ,cJ,ϕ(z0),‖z0‖,‖γ‖,‖λ‖
)
. (3.9)

Then we can exploit (3.9) and can conclude that û belongs to the Bochner-Lebesgue space
L∞(Ω,µ,H), the Banach space of (classes of) measurable, µ-essentially bounded maps u : Ω→
H.

Theorem 3.2. Let (Ω,A,µ) be a complete σ -finite measure space and H a separable Hilbert
space. Then, under assumptions (3.2), (3.3), (3.5), and (3.6), the random variational inequality
(3.1) admits a unique solution û : ω ∈Ω 7→ û(ω) ∈ K. If, in addition, that µ is a finite measure,
then we have û ∈ L∞(Ω,µ,H).
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4. SOLVABILITY AND REGULARITY OF TIME-DEPENDENT HEMIVARIATIONAL

INEQUALITIES

In this section, we consider the particular case of a time-dependent HVI. We specialize Ω :=
[0,T ] for given T > 0 and µ becomes the Lebesgue measure. As above, (H,〈·, ·〉,‖ · ‖) denotes
a separable Hilbert space with K ⊂H closed, convex, and nonempty. Moreover, Φ ∈C([0,T ]×
H;H), that is, (t,x) ∈ [0,T ]×H 7→ Φ(t,x) ∈ H is continuous in both variables t and x, and
similarly as above, suppose that Φ(t, ·) is a monotone operator on H. Here let us simply write
Φ(t) := Φ(t, ·). Furthermore, f ∈C([0,T ];H) is given that gives rise to f̃ : [0,T ]×H → R via
f̃ (t,x) := 〈 f (t),x〉. Moreover, we have the non-time-dependent data: ϕ : H→R∪{+∞} that is
now a convex lower semicontinuous proper function with its nonempty convex effective domain
dom ϕ , while again, γ := γH→Z is a a linear continuous operator into a real Banach space Z, and
J is a real-valued locally Lipschitz functional defined on Z giving rise to the Clarke generalized
directional derivative J0 as made precise above.

Then we consider the following problem: For each t ∈ [0,T ], find x∗t ∈ K∩dom ϕ such that

〈Φ(t,x∗t ),x− x∗t 〉+ J0(γx∗t ;γ(x− x∗t ))+ϕ(x)−ϕ(x∗t )≥ 〈 f (t),x− x∗t 〉, ∀x ∈ K . (4.1)

Similarly, we assume that Φ is uniformly strongly monotone in the sense that there exists a
constant cΦ > 0 such that

cΦ ‖x− y‖2 ≤ 〈Φ(t,x)−Φ(t,y),x− y〉, ∀t ∈ [0,T ],∀x,y ∈ H . (4.2)

We again assume that the locally Lipschitz function J satisfies the linear growth condition,
‖ζ‖X∗ ≤ dJ(1+ ‖z‖X) for all z ∈ X and ζ ∈ ∂J(z) and for some dJ > 0, which implies the
estimate, J0(z;w)≤ d j(1+‖z‖X)‖w‖X for all z,w ∈ X , Further, similar to [12], we suppose the
one-sided Lipschitz condition for the generalized directional derivative J0: There exists cJ > 0
such that

J0(y1;y2− y1)+ J0(y2;y1− y2)≤ cJ‖y1− y2‖2
X , ∀y1,y2 ∈ X (4.3)

and in addition the smallness condition

cJ‖γ‖2
H→X < cΦ . (4.4)

Next, we define the bifunction

Ψt(x,y) := 〈Φ(t,x),y− x〉+ J0(γx;γy− γx)−〈 f (t),y− x〉 .

Then, under assumptions (4.2), (4.3), and (4.4), by [5, Proposition 1], we have that Ψt is strongly
monotone and the above HVI (4.1) in the pathwise formulation falls into the framework of an
extended real-valued equilibrium problem of monotone type in the sense of [1]. Moreover, since
the convex proper lower semicontinuous function ϕ is conically minorized, that is, it enjoys the
estimate ϕ(x)≥−cϕ(1+‖x‖), x∈H with some cϕ > 0, and the asymptotic coercivity condition
in [1] holds. Therefore, the solution x∗t ∈ K ∩dom ϕ of (4.1) exists uniquely; see [1, Theorem
6.2]. Thus we can extend [4, Theorem 3.12] to time-dependent HVIs in the following.

Theorem 4.1. Suppose (4.2), (4.3), and (4.4). Then the unique solution x∗t ∈ K ∩ dom ϕ of
(4.1) for any fixed t ∈ [0,T ] gives rise to the time-dependent solution u∗ ∈C([0,T ];H), defined
by u∗(t) := x∗t for t ∈ [0,T ]. Moreover, if f ∈W 1,p(0,T ;H) for some p ∈ [1,∞], then also
u∗ ∈W 1,p(0,T ;H).
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Proof. To show the claimed continuity of u∗ with respect to the time variable, we consider
t1, t2 ∈ [0,T ], and test (4.1) for t = t1,x = u(t2), respectively for t = t2,x = u(t1). Thus

〈Φ(t1,u∗(t1),u∗(t2)−u∗(t1)〉+ 〈Φ(t2,u∗(t2),u∗(t1)−u∗(t2)〉
+J0(γu∗(t1);γ(u∗(t2)−u∗(t1))+ J0(γu∗(t2);γ(u∗(t1)−u∗(t2))

≥ 〈 f (t1),u∗(t2)−u∗(t1)〉+ 〈 f (t2),u∗(t1)−u∗(t2)〉 .

Hence (
cΦ− cJ‖γ‖2

)
‖u∗(t2)−u∗(t1)‖ ≤ ‖ f (t2)− f (t1)‖, (4.5)

which shows the continuity of u∗. Now, assume f ∈W 1,p(0,T ;H). Then f is absolutely con-
tinuous. (4.5) entails that u∗ is absolutely continuous and(

cΦ− cJ‖γ‖2
)
‖ d

dt
u∗(t)‖ ≤ ‖ ḟ (t)‖ a.a. t ∈ (0,T ) .

Thus ḟ ∈ Lp(0,T ;H) implies
d
dt

u∗ ∈ Lp(0,T ;X), concluding the proof. �

In the following section, we return to random HVI (3.1) and proceed to give a stability result.

5. RANDOM HEMIVARIATIONAL INEQUALITIES - STABILITY IN A BOCHNER-LEBESGUE

SPACE

Again (H,〈·, ·〉,‖ · ‖) is a separable Hilbert space. Here we specialize to a probability space
(Ω,A ,P) and consider the above random HVI (3.1) in the Bochner-Lebesgue space V :=
L∞(Ω,P,H) of all H - valued P - measurable random variables V such that

‖V‖V = ess sup
ω∈Ω

‖V (ω)‖< ∞.

Thus, due to Theorem 3.2, the above unique solution x∗ω ∈ K, ω ∈Ω of (3.1) gives V ∗ ∈ V via
V ∗(ω) := x∗ω .

Let us now study the stability with respect to the convex function ϕ and the right hand side
λ . Consider sequences {ϕ(ν)}ν∈N and {λ (ν)}ν∈N, where ϕ(ν) are convex continuous on H and
λ (ν) ∈ V . The Carathéodory monotone operator Φ and the locally Lipschitz function J are
given as before.

Thus we are led to the perturbed HVI in pathwise formulation: For each ω ∈Ω, find x(ν)ω ∈K
such that

〈Φ(ω,x(ν)ω ),x− x(ν)ω 〉+ J0(γx(ν)ω ;γx− γx(ν)ω )+ϕ
(ν)(x)−ϕ

(ν)(x(ν)ω )

≥ λ
(ν)(ω)(x− x(ν)ω ), ∀x ∈ K.

(5.1)

Likewise, due to Theorem 3.2, the unique solution xω ∈ K, ω ∈ Ω of (5.1) gives V (ν) ∈ V

via V (ν)(ω) := x(ν)ω . Then we obtain from Lemma 2.1 and Theorem 2.2 the following stability
result for the pathwise formulation. To obtain the stability in the Bochner-Lebesgue space V ,
we introduce the convergence condition

(CC) |(ϕ(ν)(x)−ϕ(x))− (ϕ(ν)(y)−ϕ(y))| ≤ εν‖x− y‖ ∀x,y ∈ K ,

where εν → 0 for ν → ∞.
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Corollary 5.1. Let K,Φ,J,ϕ,ϕ(ν), f , f (ν) be given as above. Suppose that ϕ(ν) M−→ ϕ and
λ (ν)→ λ in V for ν→∞. Then, for each ω ∈Ω, x(ν)ω → x∗ in H for ν→∞. If, moreover, (CC)
holds, then limν→∞ ‖V (ν)−V ∗‖V = 0 in V = L∞(Ω,P,H).

Proof. Fix ω ∈ Ω. By Lemma 2.1, one has ϕ(ν)+ λ (ν)(ω)
M−→ ϕ + λ (ω) in H. Thanks to

Theorem 2.2, one sees that limν→∞ ‖x(ν)ω − x∗ω‖ = 0. Now, suppose (CC). Test (3.1) with x =

x(ν)ω and test (5.1) with x = x∗ω , add, and obtain

〈Φ(ω,x(ν)ω )−Φ(ω,x∗ω),x
(ν)
ω − x∗ω〉+ϕ

(ν)(x(ν)ω )−ϕ
(ν)(x∗ω)− (ϕ(x(ν)ω )−ϕ(x∗ω))

≤ J0(γx(ν)ω ;γx∗ω − γx(ν)ω )+ J0(γx∗ω ;γx(ν)ω − γx∗ω)+ 〈λ (ν)(ω)−λ (ω),x(ν)ω − x∗ω〉.
By (3.2), (3.5), and (3.6), one obtains

(cΦ− cJ‖γ‖2)‖x∗ω − x(ν)ω ‖2 ≤ (εν +‖λ (ν)−λ‖V )‖x∗ω − x(ν)ω ‖,
which proves the claim. �

6. A RANDOM NONSMOOTH BOUNDARY VALUE PROBLEM UNDER UNCERTAINTY

As an application, in this section, we consider a random nonsmooth boundary value prob-
lem, which augments the random boundary value problem in [14] with nonmonotone boundary
conditions .

Let R,S, and T be real-valued random variables on a probability space (Ω,A ,P). Further let
D⊂Rd (d≥ 2) be a bounded Lipschitz domain with outer unit normal ν . Then, for the pathwise
strong formulation, the nonsmooth boundary value problem under study reads as follows: For
each ω ∈Ω, find uω = u(ω,x) such that - taking the divergence and the gradient ∇ with respect
to the spatial x variable -

−div
(

S(ω) p(|∇uω |)∇uω

)
= R(ω)g a.e. in D , (6.1)

where g∈L2(D) and p : [0,∞)→ [0,∞) is a continuous function with t · p(t) being monotonously
increasing with t. The PDE (6.1) has to be complemented by boundary conditions. To this end,
decompose the boundary Γ := ∂D in mutually disjoint open parts, namely the Dirichlet part ΓD,
the Neumann part ΓN , the Signorini part ΓS, the Tresca part ΓT , and the Clarke part ΓC, such
that ∂D = ΓD∪ΓN ∪ΓS ∪ΓT ∪ΓC with meas (ΓD) > 0. Further, let h ∈ L2(ΓN)∪L2(ΓS) and
k ∈ L2(ΓT ) with k > 0 a.e. Then, we demand that U : ω 7→ uω satisfies P-almost surely (a.s.)

Qν := S p(|∇U |)∇U ·ν on ∂D

U = 0 on ΓD ,

Qν = T h on ΓN ,

U ≤ 0, Qν −T h≤ 0,U(Qν −T h) = 0 on ΓS ,

|Qν | ≤ k,U Qν + k |U |= 0 on ΓT ,

p(|∇U |) ∂U
∂ν

∣∣∣
ΓC
∈ ∂ j(·,U

∣∣
ΓC
) on ΓC .


(6.2)

In accordance with the standard case of uniformly strongly elliptic operators, we assume
that P-almost surely, S is contained in a compact interval that is included in (0,+∞). Hence
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S belongs to L∞(Ω). Similarly, we assume that the random variables R and T are in L∞(Ω).
The function j : ΓC×R→ R is such that j(·,ξ ) : ΓC → R is measurable on ΓC for all ξ ∈ R
and j(s, ·) : R→ R is locally Lipschitz for almost all (a.a.) s ∈ ΓC with ∂ j(s,ξ ) := ∂ j(s, ·)(ξ ),
the generalized gradient of j(s, ·) at ξ . Further, require the following growth condition on the
so-called superpotential j: There exist positive constants c j,1 and c j,2 such that, for a.a. s ∈ ΓC,
all ξ ∈ R and for all η ∈ ∂ j(s,ξ ), the following inequalities hold

(i) η ξ ≥−c j,2|ξ | ,(ii) |η | ≤ c j,1(1+ |ξ |) . (6.3)

Note that it follows from (6.3) (i) and (6.3) (ii), respectively, that for a.a. s ∈ ΓC

j0(s,ξ ;−ξ )≤ c j,2|ξ |,
∣∣∣ j0(s,ξ ;ς)

∣∣∣≤ c j,1(1+ |ξ |)|ς |, ∀ξ ,ς ∈ R .

Altogether the boundary value problem consists in finding a random variable U distributed in
D that satisfies (6.1) and (6.2) in a weak formulation.

Let us remark in passing that the scalar unilateral Signorini boundary conditions on ΓS, scalar
Tresca-like boundary conditions on ΓT , and the scalar nonmonotone boundary conditions on ΓC,
which are based on Clarke’s generalized differential calculus, model unilateral contact condi-
tions with Tresca friction and with nonmonotone friction in continuum mechanics, respectively,
as already discussed in [15]. Further, such scalar nonlinear boundary conditions result from
frictional contact problems under antiplane shear; see [4, Chapter 8] for the treatment of more
special mixed variational inequalities and also [4, 22] for more complicated evolutionary an-
tiplane frictional contact problems.

To proceed further in the functional analytical setting, we introduce the separable Hilbert
space

H := H1
0 (D) := {v ∈ H1(D) : v|ΓD = 0},

which in virtue of the Poincaré inequality can be equipped with the norm ‖v‖ = ‖∇v‖L2(D),

associated to the scalar product 〈v,w〉= 〈∇v,∇w〉L2(D)×L2(D).

Next, from the Signorini boundary condition, we set C := {v ∈ H : v|ΓS ≤ 0}, a closed
convex subset. In fact, it is a cone in H. Moreover, let Z := L2(Γ), introduce the linear
continuous embedding operator, γ := γH→Z , and introduce the nonsmooth convex function
K(z) =

∫
ΓT

k(s) |z(s)| ds, z ∈ Z. Further, we introduce the real-valued locally Lipschitz func-
tional J(y) :=

∫
ΓC

j(s,y(s)) ds, y ∈ Z. Then by Lebesgue’s theorem of majorized convergence,
we have

J0(y;z) =
∫

ΓC

j0(s,y(s);z(s)) ds , (y,z) ∈ Z×Z ,

where j0(s, · ; ·) denotes the generalized directional derivative of j(s, ·).
Next, we define the real-valued functional G(u) :=

∫
Ω

g(|∇u|)dx, u ∈H1(D) where the func-
tion g is given by p by

g : [0,∞)→ [0,∞), t 7→ g(t) =
∫ t

0
s · p(s)ds,

where we also assume that p is C1 and 0 ≤ p(t) ≤ p0 < ∞. Then, 0 ≤ g(t) ≤ 1
2 p0 · t2 and the

functional G is strictly convex. The Gateaux derivative of G,

DG(u,v) =
∫

Ω

p(|∇u|)(∇u)T ·∇vdx u,v ∈ H1(D)
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is Lipschitz continuous and strongly monotone in H, that is, there exists a constant cG > 0 such
that

cG ‖u− v‖2 ≤ DG(u,u− v)−DG(v,u− v), ∀u,v ∈ H . (6.4)
Now, we switch to the probabilistic setting. Introduce the Bochner-Sobolev space V :=

L∞(Ω;H) = L∞(Ω;H1
0 (D)). Define the Carathéodory operator Φ : Ω×H→ H by

〈Φ(ω,u),v〉 := S(ω)DG(u,v) = S(ω)
∫

Ω

p(|∇u|)(∇u)T ·∇vdx, ω ∈Ω;u,v ∈ H1(D)

and the Carathéodory function λ : Ω×H→ R by

λ (ω,u) := R(ω)
∫

Ω

gudx+T (ω)
∫

ΓN∪ΓS

hγuds, ω ∈Ω;u ∈ H1(D) .

Then it can be proved (see, e.g., [23, Theorem 1] for a similar result) that the boundary value
problem (6.1) - (6.2) in the pathwise formulation is equivalent in the sense of distributions to
the following HVI problem: For each ω ∈ Ω, find ûω ∈C such that, for all u ∈C, there holds,
for δuω := u− ûω ,

〈Φ(ω, ûω),δuω〉+ J0(γ ûω ;γδuω)+K(γu)−K(γ ûω)≥ λ (ω,δuω) . (6.5)

Again, we suppose that the generalized directional derivative J0 satisfies the one-sided Lips-
chitz condition (3.5) and the smallness condition (3.6), where cJ‖γ‖2

H→Z < cG with cG from
(6.4). Due to Theorem 3.2, the unique solution ûω ∈ C, ω ∈ Ω of (6.5) gives Û ∈ V via
Û(ω) := ûω .

Next, we intend to give a novel stability result for the nonsmooth boundary value problem
described above. We consider the dependence of the solution ûω ∈C, ω ∈Ω of (6.5) and of the
random distributed solution Û with respect to the right hand side λ and to the convex function
K. By the existence and uniqueness discussed above, we have the solution map (λ ;K) 7→
Sω(λ ;K) := ûω ∈C (∀ω ∈Ω), the solution of (6.5).

To describe explicitly the dependence on the right hand side, we consider Rn ∈ L∞(Ω),Tn ∈
L∞(Ω) and gn ∈ L2(D),hn ∈ L2(ΓN)∪L2(ΓS) for n ∈ N. Then Rn → R in L∞(Ω), Tn → T in
L∞(Ω), gn→ g in L2(D), hn→ h in L2(ΓN)∪L2(ΓS) for n→ ∞ implies λn→ λ in V , where

λn(ω,u) := Rn(ω)
∫

Ω

gn udx+Tn(ω)
∫

ΓN∪ΓS

hn γuds, ω ∈Ω;u ∈ H1(D) .

To describe explicitly the dependence on e convex function K, we introduce the linear contin-
uous trace map γT : H := H1

0 (D)→ L2(ΓT ) and let Kn(w) :=
∫

ΓT
kn|γT w| with kn ∈ L∞(ΓT ) and

kn > 0 a.e. such that kn→ k in L∞(ΓT ) for n→ ∞. Then Kn
M−→ K on H. Indeed, let wn ⇀ w in

H. By the Trace Theorem, see, e.g., [19, Theorem 5.6.1], γT wn ⇀ γT w in L2(ΓT ). This means

〈`,γT wn− γT w〉L2(ΓT )×L2(ΓT )
→ 0, ∀` ∈ L2(ΓT ) .

We claim that kn γT wn ⇀ k γT w in L2(ΓT ). By the Uniform Boundedness Principle, γT wn is
bounded in L2(ΓT ), say by C > 0. Further, for all ` ∈ L2(ΓT ),

|〈`,kn γT wn〉−〈`,k γT w〉| ≤ |〈k `,(γT wn− γT w)〉|+ |〈`,(kn− k)γT wn〉| .
Both summands above converge to zero for n→ ∞; the first is due to the weak convergence
γT wn ⇀ γT w, the second is due o the convergence kn→ k in L∞(ΓT ) and the estimate

|〈`,(kn− k)γT wn〉| ≤C‖kn− k‖L∞(ΓT )‖`‖L2(ΓT )
.
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Thus the claim is proven.
Since L2(ΓT ) embeds continuously in L1(ΓT ), kn γT wn ⇀ k γT w in L1(ΓT ), too. Further,

the L1 norm is convex and continuous, hence weakly lower semicontinuous. Thus K(w) ≤
liminfn→∞ Kn(wn) and (M1) is shown. (M2) is obvious from choosing wn := w, the stationary
sequence. Thus Kn

M−→ K on H.
Finally we arrive at the following stability result.

Theorem 6.1. Suppose that the generalized directional derivative J0 satisfies one-sided Lip-
schitz condition (3.5) and growth condition (3.3). Moreover, suppose the smallness condition
(3.6) with the monotonicity constant cG from (6.4). Let Rn→ R in L∞(Ω), Tn→ T in L∞(Ω),
gn → g in L2(D), hn → h in L2(ΓN)∪L2(ΓS), and kn → k in L∞(ΓT ) for n→ ∞. Then there
holds Sω(λn;Kn)→ Sω(λ ;K), ∀ω ∈ Ω; and for the associated random distributed solutions
Un,Û , there holds Un→ Û in V .

Proof. Since ∣∣(∫
ΓT

kn|y|−
∫

ΓT

k|y|)− (
∫

ΓT

kn|z|−
∫

ΓT

k|z|)
∣∣

≤
∫

ΓT

|kn− k||y− z| ≤ ‖kn− k‖L2(ΓT )
‖y− z‖L2(ΓT )

, ∀y,z ∈ L2(ΓT ) ,

we see that (CC) is satisfied and the conclusion follows from Corollary 5.1 immediately. �

7. SOME CONCLUDING REMARKS AND AN OUTLOOK

Interestingly, our approach to the measurability of solutions of random HVIs via the Castaing
theory demands the continuity of the convex function and thus restricts our study to a class of
mixed HVIs, whereas in the time-dependent case, we can directly show the continuity of the
solution of more general extended real-valued HVIs. Since an extended real-valued proper
lower semicontinuous convex function is conically minorized, the regularity of the solution to a
mixed random HVI, respectively to an extended real-valued time-dependent HVI is determined
by the regularity of the right hand side; see Theorem 3.2, respectively Theorem 4.1.

Here we focused on the randomness in the uniformly strongly monotone operator and on the
randomness in the right hand side, so we only partly extended the results of [14]. It would be
interesting to consider randomness in the convex function and in the locally Lipschitz function,
too. Here we did not consider perturbations in the bifunction of the variational formulation
or stability with respect to the coefficients of the elliptic operator; see [24, 25, 26] for results
for deterministic (hemi)variational inequalities. Another open research direction is the stability
with respect to convex functions in three-field augmented Lagrangian formulations of nonlinear
nonsmooth boundary value problems in continuum mechanics; see, e.g., [27].

Finally, let us point out that stability results lay down the foundation for existence results
in optimal control and inverse problems; see, e.g., [5] for various kinds of optimal control
problems governed by a more involved interface problem on an unbounded domain, as well
as optimal control of the obstacle driven by a related bilateral obstacle interface problem in
the deterministic regime, respectively; see [28, 29] for the study of nonlinear inverse problems
of estimating stochastic parameters in PDEs with random data, where for inverse problems
because of their ill-posed nature, regularization methods come into play in addition that need
further analysis.
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