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Abstract. In this paper, we propose two new inexact projection algorithms, which can be easily imple-
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viscosity technique, and inexact projections. We obtain two strongly convergent theorems of solutions
in a real Hilbert space. Numerical experiments illustrate and compare the performances of the proposed
algorithms with three other known results.
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1. INTRODUCTION

In a real Hilbert space H, let D be a nonempty, convex, and closed subset of H and denote
(-,-) by the inner product, || - || by the induced norm, &?p by the metric projection from H onto
D, — by the weak convergence, and — by the strong convergence. The well-known variational
inequality problem, shortly VIPs, is a model of the form:

Find x* € D such that (Z# (x*),x —x*) >0, Vxé€ D,

where .7 : D — H is usually called cost mapping. Let us denote . (D,.%) by the solution set
of the problem VIPs. The problem was first introduced by Kinderlehrer and Stampacchia in
[21]. Note that problem VIPs has been developed rapidly in the last few years and has been
successfully used as a tool in medicine, biology, economics, heat conduction modeling, tomog-
raphy, and many others branches of science and technology [1]. Various solution algorithms
were introduced and studied due to active links with applied fields, such as poroelasticity for
petroleum engineering [26], financial analysis in economics [23], the reconstruction of images
in imaging processing [19], telecommunication networks and noncooperative games [29], and
many others [23, 24, 25]. It is remarkably known that if % = Vf, where f : D — R is a convex
and differentiable function with its gradient V f, then problem VIPs is equivalent to the prob-
lem: min{f(x) : x € D}. To address VIPs, one of the earliest solution algorithms employed is
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the projection algorithm, although this approach is challenging to implement numerically. One
notable feature for solving problem VIPs involves the metric projection. Let .# : D — H be a
cost mapping. Then, the following statements are equivalent:

() x* € (D, 7);

(i1) x* is a fixed point of the solution mapping <7 : D — D defined in the form:

o) (x) = Pplx—AF(x)], VxeD,

where A € (0,00) and & is the metric projection from H onto D.

This is an important basis to the gradient projection method, first proposed by Goldstein in [16]:
X e DX = a7 (6.

Under the f-strongly monotone and L-Lipschitz continuous assumptions on mapping ., and
A € (0, %), the solution mapping .27 is contractive. By the Banach Contraction Principle,
the sequence {xk} defined above converges strongly to the unique solution of problem VIPs.
There are modified instances of the projection algorithm for solving problem VIPs such as
in the papers [2, 3, 4, 9, 10, 14, 17, 18, 19, 27, 28, 30, 31] and some results in books [13,
23]. Most of these algorithms, at each iteration, require to compute the metric projection of
iteration points onto constraint set D. However, this may not be easy to calculate unless D has a
simple structure. In fact, computing the projection onto D requires solving a convex quadratic
optimization problem constrained to D at each iteration, which can significantly raise the cost
per iteration if the number of unknowns is large.

Recently, there are some inexact algorithms, which become increasingly accurate as the opti-
mization solution of the auxiliary problem at each iteration under consideration is approached.
These approaches have been proposed in an effort to reduce the computational cost required
for the metric projections, thus leading to more effective projection algorithms. For using the
inexact projection to solve the problem VIPs, let us briefly recall some popular algorithms such
as Outer inexact Schemes proposed by Burachik and Lopes in [8], Block-Iterative Outer Inexact
Methods introduced by Combettes in [11], Outer Inexact Methods of Gibali et al. in [15], Outer
Proximal Algorithms introduced by Anh et al. in [2, 5, 6, 7, 20], and some other interesting
algorithms (see, e.g., [13, 34] and the references therein).

There exists a natural question that: Can we propose a vicosity inexact projection-type ap-
proach with one evaluation of the cost mapping %, one calculation of the inexact projection
without &p, and inertial steps to solve problem VIPs?

Our contribution in this paper is to answer the above question affirmatively and offers a brief
overview of our results and their distinction from prior results. We propose two new inexact
projection algorithms to solve the problem VIPs with the following details:

- It differs from existing algorithms, even in special cases that one inexact projection onto
the constraint set D at each iteration is instead of the metric projection #p;

- our iteration algorithms only use two evaluations of the cost mapping .# at each itera-
tion;

- inertial extrapolation step is incorporated to speed up the iterations;

- we use viscosity technique via a contractive mapping to show that the cluster point of
iteration sequences is a unique solution of problem VIPs;
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- finally, as an application of our proposed algorithms, we apply the algorithms to solve
image restoration models and compare the performances of the algorithms with some
popular results.

The remainder of this paper is structured as follows:

- Section 2 introduces a foundation by basic definitions, comparing the metric projection
with the approximation projection, and reviewing essential concepts and relevant prior
lemmas. One important concept is the ’inexact projection onto constraint set D”’;

- building upon the inexact projection, Section 3 presents two new viscosity inexact algo-
rithms and shows their strong convergence;

- in Section 4, the numerical experiences are performed to evaluate our proposed algo-
rithms. We apply the algorithms to the adaptive image restoration and compare them
with three known algorithms.

2. PRELIMINARIES

We recall several concepts which are needed in this paper. These definitions, lemmas, and
properties are known and can be found, e.g., in two popular books [13, 23].

Let D be a nonempty, convex, and closed subset of a real Hilbert space H. The metric
projection a € H onto D is denoted by &p(a). It is the unique solution to the quadratical
convex programming:

?D(a):argmin{Ha—)’HZZaED}. (2.1)

It is clear that &p is from H onto D, and ||Zp(a) — Pp(b)|| < ||a — b|| for all a,b € H. This
property is said to be nonexpansive. Moreover, &p is the 1-strongly quasi-nonexpansive, i.e.,

|Zp(a) —a|* < la—a|?>— ||a— Zp(a)|]*, VacH,acD.

Let us recall some definitions of Lipschitz continuous and monotone mappings in H, used in
problem VIPs. Cost mapping .% is said to be monotone on D if

(F(u)—F(v),u—v)>0, Vu,veD,
pseudomonotone on D if
(ZF(),u—v)y>0=(F(u),u—v) >0, Vu,veD,
Lipschitz continuous with constant L > 0 on D if
|F () = F W) <Lllu—v], Vu,veD;
partially pseudomonotone with constant 1 > 0 on C C D if
(F()yv—2)>0=(FW),v—2)>n|v—2z|>, WweD,zeC;
partially pseudomonotone on C C D, if we have
(F(2),v—2)>0=(F(v),v—2) >0, VweD,zeC.

Now, we use an inexact projection u € IH onto D relatives to any point z € H with computational
error T > 0. Denote this projection by 22;*(u). It is defined by

@g’z(u) = {w eED: (u—wyyv—w) < ”L’Hw—sz, Vv € D}. (2.2)
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By the definition (2.1) of the metric projection &?p of a point u € H onto D, we see that Zp(u) €
D and (u— Pp(u),y — Pp(u)) <0 forall y € D. From this and 7 > 0, it yields
(u—Pp(u),y— Pp(u)) < 1| Zp(u) —z|%,

and hence Pp(u) € Z°(u) for all u € H,z € H and 7 > 0. This shows that 2;° is a mul-
tivalued mapping from H to D. In the case that T = 0, we have Z2)° = {Zp} for all z € H.
Thus, for each T > 0 and z € H, the inexact projection 9”5’2 is an extended formulation of the
metric projection &p. However, there exists a problem that: Why do we have to use the inexact
projection 935’2 without the metric projection &’p? First, computing the projection of a point x
onto D is to solve the quadratical convex programming:

min{[x—y[2:y € D}.

Computing an inexact projection y, € ,@g’z (x) of a point x onto the constraint D with respect to
the iteration point z € H and the parameter T > 0 is very simple as follows:

Procedure 2.1. (for finding y, € Z5°(x))
St. 1: Take k =0,y° € D,z € Hand 7 € (0,0).
St. 2: Solve the linear programming with the convex constraint:
v = argmin{(y* —x,y —y*) : y € D}.

If (y* —x,yk —vk) < 7|y* — 2|/, then Stop, i.e., y, = y*. Otherwise, compute y**! =

k. k_k
YK 4 8¢ (v — y¥) with the stepsize & = min< 1, W

St. 3: Repeat k := k+ 1 and come back to St. 2.

In fact, computing y, of a point x on computer via the inexact projection ﬁg " proves more
efficient than obtaining the metric projection &’p(x) on Mathlab Software.

Remark 2.1. Let T > 0 and £ > 0. A point x* € D is a solution to problem VIPs if and only if
x* € 25T (v — EF(xY)).
Indeed, by the definition of 25", x* € P25 (x* — E.F (x*)) is equivalent to
(X* —EF(x*) —x*,y—x") < 1|]x* —x*|?, VyeD,
and hence (.7 (x*),y —x*) > 0 for all y in D. Thus x* also is a solution of the problem VIPs.
Lemma 2.1. [27, Remark 4.4] Let {a;} be a positive sequence. For each any positive integer
h, there exists a positive integer p > h such that a, < a, 1. For each positive integer ko such

that ag, < ag,+1, set §(k) =max{i € A ko <i<k,a; <ajr1}. Then, 0 < ap < ag (o)1 for all
k > ko. Moreover, {& (k) }x>k, is nondecreasing and limy_,o, & (k) = oo,

Lemma 2.2. [38, Lemma 2.5] Assume that {a;} is a positive sequence such that ap; < (1 —
Or)ay + Or Ty for all k > 1. Let {6} and {1} be two real sequences satisfying the following
conditions:

(i) {6} C (0,1) and E‘, O = oo;
k=1

(ii) limsupt, <0or Y, |OkTi| < +oo.
k—o0 k=1
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Then, limk_>oo aj = 0.

Lemma 2.3. [12, lemma 2.1] Consider the problem VIPs with D being a nonempty, convex, and
closed subset of a real Hilbert space H and .% : D — H being pseudomonotone and continuous.
Then, x* is a solution to VIPs if and only if (¥ x,x —x*) > 0 for all x € D.

Lemma 2.4. [33, Lemma 3] Consider the constraint D defined in VIPs. Suppose that {x*} C H
satisfies the following conditions:

(i) for all x € D, limy_,., ||x* — x|| exists;

(ii) every sequential weak cluster point of {x*} is belong to D.

Then, {x*} converges weakly to a point belonging to D.

3. ALGORITHMS AND THEIR CONVERGENCE

In this paper, we use the contraction mapping f : H — H with constant § € [0, 1) and the vis-
cosity sequence { } is chosen at each iteration. To solve problem VIPs, we need the following
assumptions on constraint set D and cost mapping %

(Cy) constraint set D is a nonempty, closed and convex subset of H;

(C3) cost mapping .# : H — H is pseudomonotone, L—Lipschitz continuous, and sequen-
tially weakly continuous on D;

(C3) solution set .#(D,.7) of problem VIPs is nonempty.

Parameters satisfies the following restrictions:
be(0,1),0< A <a< ¥t
1 -2 —APL* > b, (3.1)
Bk € (07 1)7220:0 Bk = %9, limk—>°° Bk =0.

Algorithm 3.1 (VAPA - Viscosity Approximation Projection Algorithm)

Initialization: Choose x~ !, x* € H.
Iterative Steps: Calculate x**! as follows, k =0, 1,---,
Step 1. Evaluate wk = x* + oy (x* — x*=1) (inertial technique). Find a point y* via inexact
projection:
e @gkw (wk — /'Lkﬁwk> .
If y* = w*, then Stop. Otherwise, go to Step 2.
Step 2. Compute (viscosity technique)

FH = B () + (1= B [ = (5 — 7))

Step 3. Increase k by 1 and come back Step 1.

Remark 3.1. (i) In the case y* = wX, from Step 1, it follows w* € ﬁg’wk Wk — L. Zwk]. By
Remark 2.1, wk is a solution to problem BV Is under Condition (3.1).
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(if) At each iteration k, we choose the sequence {0y} satisfying the following condition:

ko k—1
fim o =, 3.2)
koo Br
An example is as
B ek k=1
ak _ k||xk—xk_] H lf ||x X || > 07
0 otherwise.

The next lemma shows the relation between the iteration point y* — A;(.Zy* —.Zwk) in Step
2 and any solution of problem BV Is.

Lemma 3.1. Set 7* = y* — L (Fy* — Fwh). It holds:
1 = plI* < [w* = plI* = (1 =28 = AZL) Y = wi|1?, Vpe #(D, 7).
Proof. Since z* = y* — A (Fyk — Zwk), we have
12 = plI* =[Iy* = pI> + AZ[|ZY* — FwH | =2 — p, Y — FwF)
=W = plI> + W =y + 205 —wh wh = p) + A2 |7V — F W
— 20" = p, Fy — W)
=W = plI? + W =y 12 = 205 —wF = wh) 208 —wh )

— 200K = p, Ty — Fwh). (3.3)

By using the definition of the inexact projection y* € @g"’wk (wk — A.Zwk), one has
O =W Wy = p) <&l —wh?,
which is equivalent to
O =Wy = p) < = FWE Y = p) &y — w2 (3.4)
Combining (3.3) and (3.4), we obtain
125 = plI> =[wF = plI* — W — |17 + 205 = w3 = p) + A21|.Z Y — Fwh|?
— 27Lk(yk —p, Ty — ﬂ’wk)
<[IWE = pII> = [Iw* =¥ |I> = 22 (F WK,y — p) + 26 [y* — w1
+ A2 Ty — FWHF =224 OF — p, Ty — Fwh).
=|lwF = pl* — (1 =20 |w* = *|> + A2 | " — Fwh|? =208 = p, Z¥F)
<[IwF = plI* = (1 = 2& = AZL%)|y* — w1,
where the last inequality is deduced from the assumptions p € .7 (D,.%), y* € D of the inexact
projection and pseudomonotonicity of .% in (C3), i.e.,
(Fp.y=p) 2 0= (Fy ) —p) >0.
This completes the proof. U
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Lemma 3.2. The sequences {x*},{w*},{z*},{f(x*)}, and {y*} are bounded.

Proof. By Lemma 3.1 and the condition 1 —2g; — ),ksz > 0 of (3.1), one has

I = pll < w* = pll,  Vk>0. (3.5)
According to wX in Step I, one sees
k & k_ -1 k [
Iw" =Pl < ke = pll+ i =2 = [l =Pl + Beos——p— (3.6)
-1
Using Remark (ii) that limg_,c Otk% = 0, one sees that there exists a constant M; > 0

such that akw < M for all k > 1. Combining (3.5) and (3.6), one deduces ||Z¥ — p|| <

|x* — p|| + BeM for all k > 1. Since f is §—contractive and S € (0, 1), for each k > 1, we have
I = pll < BllF64) = pll + (1= Bo)ll = pll
< B8 = pll + Bell £ (p) — pll + (1= Bo) I — pll + BeMi

Mi+1fp)—p
— (1 (1 8)B I p + (1 - )p D =P
M _
< max ka_pH, 1+Hf(p) P” :
1-6
where z¥ is defined in Lemma 3.1. By induction, we have
My +If(p)—p
Il < max {2 < p), M AP,

which implies that {x*} is bounded. By (3.5) and (3.6), both {z*} and {wX} are also bounded.
Using Lemma 3.1 and the condition 1 —2g; — Aksz > b > 0of (3.1), it follows

by —wH > < W= pl* = I = pII*, VE>1.
Consequently, {y*} is bounded. This finishs the proof. O

Lemma 3.3. Let the subsequence {wki} of {w*} satisfy the conditions that {w*i} converges
weakly to z € H and lim e | WK — y¥i|| = 0. Then, z € .7 (D, 7).

Proof. From the assumptions that w% — z and lim e || Wk — y&i|| = 0, it follows y* — z. Note
that {y*/} C D and D is convex and closed. It yields z € D. From Step 2 and the definition of

k .
. o , & W/ . .
the inexact projection y*i € % (wkf — M T wki ) , we have

<ij _)’kjigwkj _ykja-x_ykj> S gkj”ykj _ij”zv VX €D.

Using A, > 0, we obtain
1
Mk

which is equivalent to

. 4 . 4 &g 4
(W =3, = y) < (FWhx =y 4 S = w1, vxeD,
kj

1 &,
T (Wh M x =y R0) (T3 ) — S P < (P e wh).
k j kj
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Using the boundedness of the sequences {y*} and {wf} in Lemma 3.2, 0 < A, < a < e in
Condition (3.1) and passing the liminf as j — oo, we obtain

liminf(Zwhi x —whi) >0, VxeD. (3.7)

J—ree
Otherwise,
(ﬁykf,x—ykw = L@yki — 9wkf,x—wkf> + (9wk1,x—wkf> + (9ykf,wkf —ykf'>. (3.8)
Since .# is L—Lipschitz continuous and the assumption lim . [|w* —y%i|| = 0, we deduce
0 < lim [[Zwh — ZyN[| < lim L||wh — %] = 0.
J—reo J—reo
Combining this, (3.7) and (3.8) yields liminf j_m(f ykf,x — yk1'> > (0. We can take a sequence

{&;} € (0,1) satisfying lim;_,.,§; = 0 so that, for all j > 1, there exists the smallest positive
integer m; > k; such that

(Fy x—y)+E >0, Vi>m;. (3.9)
Note that ||.Zy¥| # 0. So we can set g" = % Then, (Fy"i,g"i) =1, Vj > 1. From

(3.9), it follows (Fy™i,x+ &jg"i —y™i) > 0. Combining this and the pseudomonotonicity of
F yields (F (x+&;g"i),x+ ;g™ —y™i) > 0, and hence

(Frx—y™) > (Fx— F(xt Eg") x+Eg" —y") — E(Fxg™), Viz1 (3.10)

Next, we prove that lim;j_.&;||g"/|| = 0. As the above proof, y*/ — z and z € D. Since ¥
is sequentially weakly continuous on D, then {.Zy"i} converges weakly to .%z. The proof is
complete with %z =0, i.e.,z € .¥(D, 7).

Now we consider the case .% z # 0. By using the sequentially weak lower semicontinuity of
the norm || - ||, we have 0 < ||.Zz|| < liminf;_e || Zy*i||. From {y™} C {y*},{&;} C (0,),
and lim;_,., &; = 0, it follows

Y

0 <limsup||;g™/|| = limsup

& | fimsup;.& _limjeg;
1L7y4) )~ liminfj e [ Z35] T [ 77|
which means that lim_,., &;||¢"/|| = 0. Taking the limit as j — oo, the right hand side of (3.10)
tends to zero under the fact that .% is Lipschitz continuous, {x"} and {g"} are bounded, and
lim; ;. ;g™ = 0. From (3.10) it follows liminf;_,.(.%#x,x —y™i) > 0. Since {y"/} converges
weakly to z € D, we deduce
(Fx,x—z) = lim (Fx,x—y™) =liminf(Fx,x —y") >0, VxeD.
Joee Joee

By Lemma 2.3, we have z € . (D,.%). The proof is completed. O

Theorem 3.1. Let the cost mapping F satisfy Assumptions (C1) — (C3). Then, under Conditions
(3.1) and (3.2), the sequence {x*} generated by Algorithm 3.1 converges strongly to an element
p € (D, F). Moreover, the point p is a unique solution to the following variational inequality
problem:

Find x* € ./(D,.%) such that ((f —1)(x*),y—x*) <0, Vye.S(D,%). (3.11)
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Proof. Note that, under Assumptions (C;) — (C3), set . (D,.%) is nonempty, closed, and con-
vex. Since f is 6 —contractive, then the existence of solutions for problem (3.11) is guaranteed.
Firstly, we show that there exists a positive constant My satisfying

(126 = AZL?) W =1 < [l = plI? — X" — pl| + Bia.
Indeed, using the viscosity technique in Step 2 and the inequality
la+b|%> < ||a||> +2(b,a+b), Va,beH, (3.12)
we have

I = plI? = (|2 = p+ Be(F () = )P
<1 = pIIP + 2Bk (f (") — &5 = p)
< |2 = pII> + 2Bell £ () = ) 14 = p|
< |2 = pII* + BiMs, (3.13)

where M, = sup{2||f(x*) — Z¥||[|x**! — p|| : k > 1}. By using lemma 3.2, the sequences {x*}
and {z} are bounded and hence M, < . Lemma 3.1 shows that

125 = plI> < W = p|I* — (1 — 28 — AZLH) W —y* |2, vk > 1. (3.14)
By (3.6), it yields

IwWE = pl12 < (% = pl| + B )
= ||o* = pl|* + Be(2My | * — p| + BeM?)
< [|x* = pl|* + BiMs, (3.15)

where M3 = sup{2M, ||x* — p|| + BiM? : k > 1} < . Combining (3.15) and (3.14), we have
I = plI> < [Ix* = plI* — (1 — 26— AZL2) [w* — Y*|1* + B3, (3.16)
By using (3.13) and (3.16), it follows that
e = plIP < o = plI? = (1= 28 = AZL%) [IW* =1 + B3 + B,
which means that
(126 = AZL?) W =1 < [l = pl|? — X" — pl|* + BuMa, (3.17)

where My := M, + M3.
Now we show the following relation:
Ms(1=Bo) , 4 =2
(1-62) Bk

= plI? <[1— Be(1 = 82)]|Ix* — pl|* + Bi(1 - 8?) [

2(f(p) — p,x**! —pq

+ 152

(3.18)
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where Ms = sup{2||[wk — p|| : k > 1} < oo. Indeed, from wk = x* + oy (x* — x*~1) in Step I and
the formula (3.12), we have

IWF = pl|* = o = p+ o (& =12
< || = plI® + 204 <xk —xk Wk —p>
< [ = pl1? + 20l = [ ]wk — pll,
< |l = >+ ol | = . (3.19)
It follows from (3.5) and (3.19) that
IF = pII* < 1w = pII* < [l = plI* + ol =" |IMs, - vk > 1. (3.20)
Combining (3.20) and the contractiveness of f, we deduce that

4 = pl* =[IBe(f(*) = £(p) + (1= B) (& — p) + Be(f(p) — P) I
<[ Be(f () = f(p) + (1= Be) (2 = p) 1>+ 2Bk f (p) — p. ' = p)
<Bell ) = FP)IP+ (1= Bl = plI* +2Be(f (p) — p. X+ = p)
<Bed?||x* = pl>+ (1= Bl = plI> + 2Bk (f (p) — p.x* ' = p)
<P — plI* + (1= Be) 1" — plI> + o (1 — Bi) || — || M5
+2B(f(p) — p. X = p)

11— (1= )] — plP + Bl1 _52>[

2(f(p) — p,x**! —pq
-2 '

Ms(1—By) |l =
1-82) B

_|_

This implies (3.18).

Let us consider two cases as follows.

Case 1. There exists a positive integer ko such that |[x**! — p||?> < ||x* — p||? for all k > k.
Then, we have limy_,., |[x* — p||> = A € [0,0). Taking the limit into (3.17) as k — oo and using
the condition 1 —2¢, — /lksz > b >01in (3.1), one sees that

lim ||w* —y¥|| = 0. (3.21)
k—>oo
Using Step I and Condition (3.2), one obtains
xk — xk1
lim ||x* —w|| = lim oy ||x* —x*71|| = lim /3koaku =0. (3.22)
k—yoo k—yoo k—ro0 Bk
Since .# is L—Lipschitz continuous and (3.21), we have
0 < lim ||ZF —y¥|| = Lim A¢||.Zy* — Zwk| < lim A L|]y* — k| = 0. (3.23)

Combining (3.21), (3.22), and (3.23), we obtain
0 < Jim [l#* =24 < Jim (|l&% = ||+ [ = ¥ + " = 2]) = 0. (3.24)
k—>°° k—}oo
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From Lemma 3.2 and lim;_., B = 0, it follows

0 < lim [X* — x|
k—yo0

< Jim (|| =2+ 1 =)
—>00
= lim (Bl £ () = ]|+ 1 =) = 0.

Consequently
lim ||x*T! —xk|| = 0. (3.25)
k—ro0

By Lemma 3.2 that {x*} is a bounded sequence, one sees there exists {x*/} C {x*} such that
{x*/} converges weakly to z € H and

limsup(f(p) = =p) = lim ((p) = p,x = p) = (£(p) = Pz=p)- (3.26)

—so0

Since xk — z, (3.21) and Lemma 3.1, we have z € < (D,Z). 1t is clear that Pyppz)f H—
< (D,.7) is contractive with constant 6 € (0,1). Therefore, it has a unique fixed point. We
assume p = &4 #)f(p). From the definition of the metric projection &p and z € D, it
implies (f(p) — p,z— p) < 0. Using this and (3.26), we have

limsup(f(p) — p,x* = p) = (f(p) — p,z— p) <0. (3.27)

k—yo0

From (3.25) and (3.27), it follows that

limsup(f(p) — p,x**! — p) <limsup(f(p) — p,** ' —x*) +limsup(f(p) — p,x* — p)

< limsup(|| f(p) — p|||x**! —x*|) +limsup(f(p) — p,x* — p)
k—yoo k—>o00
<o. (3.28)

Applying Lemma 2.2 for (3.18) with

Ms(1-By) [k — k) +2<f(p)—p,xk“—p>
1-82) B 1— 82 !

we have the limit limy_,., a; = 0. Note that limy_,.. Ty < 0 by (3.28). Thus, {x*}, {y*}, and {w*}
converge strongly to the unique solution p of problem (3.11).

Case 2. It does not exist a positive integer ko such that ||x**! — p||? < ||x* — p||? for all k > k.
Therefore, there exists {||x* — p||*} C {||x* — p||*} satisfying ||x*/ — p||> < [|x%*! — p||? for all
j > 1. By the interesting results proposed by Maingé in Lemma 2.1, there exists a nondecreasing
sequence {n;} C {1,2,...} such that lim; ,.,n; = c and the following relations hold:

ar = | = pl?, 0 := Be(1— 82), 1 ==

I = plI? < w1 = pl% I = plI? < I = plP, V> 1. (3.29)
By (3.17), we have
bllw" =y < (1 =28 — AZL?)||w" — " ||* < ||¥ = pl|* — || = pl|* + B, Ma < B, M.

Taking the limit as j — oo and using liminfy_,., B = 0, we see that limj_,. ||y —w"/ || = 0. As
Case 1, we also have lim e [ — 2% || = 0, lim j_yc0 [|x% 71 — || = 0, and limsup;_,.(f(p) —
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p, X1 — p) <0. Substituting k := n; into (3.18), it follows that
I = > < [1 = B, (1= %)) = pl|?

Ms |l — x| 2<f(p)—p,x"f“ -

?)

+an(1_52) aﬂj

=™ B, " i~ o

< (1= By (1= )] — p|P

B (s | M5 v 2 p)
"j (1—52) K an 1-62
which implies that
[ — p|? < M;s o [ — X" 1H+2<f(p) px" p>
S0=8)" B, 1-82
By (3.29), we obtain
+1
. | M -ty 20— —p)
J_plI?2 < |6t — plI?2 < S :
b =pI” < I =l < gy o —— 1—52

This implies that limsup; ., ||x/ — p[|* = 0. Thus s {x*}, {*}, and {w*} converge strongly to

the unique solution p of problem (3.11). This finishes the proof.

Note that algorithm 3.1 requires the knowledge of Lipschitz constant L > 0 of cost mapping
F. In fact, L is usually difficult to evaluate. In order to overcome these drawbacks, we use
Tseng’s linesearch technique to present a new modified algorithm of the above algorithm with

a pseudomonotone cost mapping without the knowledge of Lipschitz constant L.

Algorithm 3.2 (MVAPA - Modified Viscosity Approximation Projection Algorithm)

Initialization: Choose starting points x~',x° € H, u > 0,y € (0,1),1 € (0,1).
Iterative Steps: Calculate x**! as follows, k=0, 1,---,
Step 1. Evaluate wk = x* 4 o (x* —x*~1). Find an inexact projection point:
k
Ye P (wh— T ),
where A; := yI"™ and my is the smallest nonnegative integer m such that
Ty = FwH| < plly* = v

If y* = w*, then Stop. Otherwise, go to Step 2;,.
Step 2,.Compute

=B f () + (1= Bo) | — M( Ty — Fwh|.

Step 3,. Let k := k+ 1 and go back Step 1.

(3.30)
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Lemma 3.4. Under Assumptions (C1) — (C3) of the cost mapping %, the rule (3.30) is well
defined. Moreover, the following relation holds

min{y,‘%l} <M<y, Vk>O0.

Proof. Since .% is L—Lipschitz continuous on H in Assumption (C;), then ||.Zwk — Zy*|| <
L||wk —yK||. Consequently

Hu k k k. k
ZH%V —Fy | < pfwt =yl

Thus rule (3.30) is satisfied in the case that y/"* < % Hence, A4 is well defined. Since [ €
(0,1) and my is a nonnegative integer, it follows A, = yI" < y. If A = 7, then the lemma is
proved. Otherwise, we consider the case A; < ¥ and hence my > 1. Since my is the smallest
nonnegative integer satisfying the rule (3.30), we deduce that Y™~ !||.Zyk — Zwk|| > u|y* -
wk||. Consequently,

Tk _ gk H k k
|7 =2 > g o =4
l
By using y* # w* and the L—Lipschitz continuity of the cost mapping .%, one sees
l l
Ak > ,LLI élkzmln{y,%}
The proof is completed. O

Lemma 3.5. Let the cost mapping .F satisfy Conditions (C1) — (C3), and let {w*} and {y*}
be generated by Algorithm 3.2. If there exists a subsequence {w*'} C {w*} such that {wki}
converges weakly to z € H and limj_,o. |[WKi —y%i|| = 0, then z € 7 (D, F).
Proof. 1t is the same as in the proof of Lemma 3.3. U
By a similar way as in Lemma 3.1, we also obtain the following result.

Lemma 3.6. Let 25 = y* — A (Fy* — Fwk) and p € .7 (D,.F). Then,

1= pII> < w* = plI* = (1 —2& — u?) [y — w2 (3.31)
Theorem 3.2. Assume that the cost mapping F satisfy (Cy) — (C3). Then, under Conditions
(3.1) and (3.2), three sequences {x*} {y*}, and {w*} generated by Algorithm 3.2 converges

strongly to a common element p € . (D, F). Moreover, the solution point p is the unique
solution to problem (3.11).

Proof. By using Lemma 3.5 and Lemma 3.6 and following the proof of Theorem 3.2, we can
conclude the desired conclusion immediately. U

4. NUMERICAL EXPERIMENTS

In what follows, we provide an instance to show the practicability and feasibility of the pro-
posed viscosity inexact projection algorithms (VAPA) and (MVAPA). At each iteration, the
main computational iteration step of the two algorithms is to compute an inexact projection

k
point via w¥ as follows: y* € 22" (wk — 4. Fw*). By using (2.2), one has
(W =y y =) < el =w(?, wyeD,
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where uf := wk — £.7 (w¥), which is equivalent to
maX{(M"—yk,y—y"> Ly € D} = —min{<y"—uk,y—y"> Ly € D} <gly —wiP @

Then, by using the celebrated Gradient Descent Method, it is formally defined to compute an
inexact projection point y* of a point u* onto constraint D by Procedure 2.1. Moreover, solving
the problem (4.1) with error &]|y* — w*||? is simple and more effective on software Matlab
2023 than computing exact the projection Zp(xk — A;.%xX) via an auxiliary function such as
Quadratic Program.

Example 4.1. Consider adaptive image restoration in H := R”, the Euclidean space. In fact,
there always exists any noisy observed signal/image y € R". Our main goal is to recover an
original signal/image x € R" from a noisy vector y € R". It means that y is some observed data,
which are obtained from a noise-free image x. Let B be a m x n matrix which is called the linear
blurring operator. Denote a sample of zero-mean white Gaussian noise by an additive noise
vector € with variance 62, where € is usually called a realization of a Gaussian random variable
with zero mean. This means that p(s) = .4 (s|0, 6Id), where .4 (s|i,¥) denotes a multivariate
Gaussian density with mean u and covariance X, evaluated at s. The image restoration problem
is formulated as:

y=DBx+e. (4.2)

Examples of observation mechanisms which are adequately approximated by (4.2) include op-
tical or motion blur, tomographic projections, electronic noise, photoelectric noise, and more.
One classical approach for handling (4.1) is the following Least Absolute Shrinkage and Selec-
tion Operator Model in compressing sensing, mainly known as LASSO proposed by Osher et
al. in [32], that aims at minimizing:

1
min{§||y—]]33x||2+)»||x||1 :xE]R"}, (4.3)

where [lx]; = £ bl

Note that (4.3) is an unconstrained convex problem, however the objective function including
|| - [[1 which is not easy to solve when 7 is enough large.

Our main task is to restore the original image x given the data of the blurred image y. Problem
(4.3) is convex, subdifferentiable and the objective function bounded by 0. Then, its solution
set is nonempty. By using the necessary and sufficient conditions in optimization, a point x*
is a solution to the problem if and only if 0 € d,(||y —Bx||> + A||x|1). This is equivalent to
0=B"(Bx—y)+ A sign(x). The least square problem (4.3) can be expressed as a variational
inequality problem by setting .7 (x) := B (Bx —y) + 4 sign(x). It is not difficult to show that
the function sign(-) is monotone on R". So, the cost mapping .% in this case is monotone (hence
it is pseudomonotone) and Lipschitz continuous with constant L = || B B|| +2A/n.

This section reports some numerical results to illustrate the effectiveness of the proposed al-
gorithms (VAPA) and (MVAPA) in comparisons with three popular algorithms using the exact
metric projections: Subgradient Extragradient Algorithm (SEA) proposed by Censor, Gibali
and Reich in [10, Algorithm 4.1], Halpern Subgradient Extragradient Algorithm (HSEA) intro-
duced by Kraikaew and Saejung in [22, Scheme (4)] and Forward - Backward Splitting Algo-
rithm (FBSA) of Tseng in [36].
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We consider the grey scale image of m pixels wide and n pixel height, each value is known
to be in the closed interval [0,256]. The quality of the restored image is measured by the Peak
Signal-to-Noise Ratio (PSNR) in decibel (dB) in [35] which is defined by:

PSNR = 201g (H I+l H) .
x—y

Note that the larger the value of PSNR is the better the quality of the restored image. The Struc-
tural Similarity Index Metric (SSIM), in [37], is to explore the structural information between
original signal x and noisy image y. The (SSIM) is defined in the following form:

(2cpty +C1) (205 + C2)
(U2 +u2+Cr)(02+02+Ca)

SSIM(x,y) =

where

- the parameter u, is the mean of x:

n
— 2.
- the parameter oy is the covariance between vector x and y:

: 1i(xi_.ux)<)’i_.uy);

n—

ny —

~

1
- the parameters C; = (K|L)? and C; = (K,L)? are small constants to stabilize the division
with
* the number L is the dynamic range of the pixel values (e.g., L = 255 for 8-bit
images);
* the numbers K| and K, are small constants (e.g., K| = 0.01, K, = 0.03).
For each € > 0, the stopping condition of all the algorithms is given as follows:

- Algorithms (VAPA) and (MVAPA):
T = || Pp(x* — L Fx) — || < e (4.4)
- Algorithms (VAPA) and (MVAPA):

Iy = | 25" (Wk — 4 Zwh) —wh| <e. 4.5)
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All programming is implemented in Matlab R2023a running on a PC with Intel(R) Core(TM)
19 —9900KS CPU @ 4.00GHz 32.0 GB Ram. The inexact projection &p is computed via the
Matlab optimization toolbox by fmincon or quadratic functions.

Test 1. In this test, we apply two our proposed algorithms (VAPA) and (MVAPA) for the
image restoration model with n = 2500 which is generated by the uniform distribution on the
closed interval [—3,3] with 170 non-zero elements. The matrix B is generated by the normal
distribution with mean zero and variance one while the observation y with m = 550 is generated
by Gaussian noise with PSNR = 37. The initial points x !, x? are taken randomly. The quality
of restoration is measured by the Mean of Squared Error (MSE) to the original signal x, that is
MSE = 1|x—y||?. We compare the performance of each algorithm with respect to the number

of iterations, CPU time and MSE values, see Figure 1 and Figure 2.

Original (n = 2500, number of nonzeros = 170)
2 T T T T \

1 il s | . L
"] Tm i |

0 500 1000 1500 2000 2500

=)

Measurement

OWWW\‘W' i ‘wmr“f” 'JWVJV"V%WAJ\ ”WWMW f Wl el WWuJ\JW\\/\Mﬂ»”JMMu;w .
WM w ‘”‘““WWWW oy

MVAPA(Time = 0.8941s, MSE = 2.0946e-02)

_ Www WWWWWWWWWWWWMM f

500 1000 1500 2000 2500

FIGURE 1. Sparse signal recovery includes the original signal, the measure-
ment, the reconstructed signal using Algorithms (SAPA) and (MSAPA), where
A :=0.2683.

The parameters in all above algorithms are chosen as follows:
- Our algorithms (VAPA) and (MVAPA):

Vi-b  1-I*A2-b 1

=10,b=0,1205 4y = ——, & = Vk > 1;
TR e Tk 1) 4 ak+s50 T
- Algorithm (SEA)— Censor, Gibali and Reich, and Algorithm (HSEA)— Kraikaew and
Saejung:
T= L.
o

- Algorithm (FBSA)— Tseng:
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2 Original (n = 2048, number of nonzeros = 32)
[ T \i

| | ’ | ‘ ‘ | [ |
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OWW M D |
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FIGURE 2. Sparse signal recovery includes the original signal, the measure-
ment, the reconstructed signal using Algorithms (SEA),(HSEA) and (FBSA),
where A := 0.2683.

Test 2. We compare the convergence of the (VAPA), the (MVAPA), the (SEA), (HSEA) and
(FBSA) for the image restoration problem by means of (PSNR) and (SSIM) . The blurring
operator is chosen as

B := fspecial (' gaussian’,[256 256],4).

The results are showed in Figure 3.

Example 4.2. Consider in the real Hilbert space .7¢ := [, which is given as follows:
L= {(xk) CX: Zx,% < +°°}.
k=1

The inner product is (x,y) = Y7 | xxyk, forall x,y € [, and its deduced norm is ||x|| = 1/ ¥;°, x,%,

for all x € [,. For each § € (0,1), let the viscosity mapping f : H — R be defined by f(x) =
{ cos(]|x||) that is { —contractive. The cost mapping F : H — H and the constraint D are given

in the forms:
D={xe: |x|* <R (rx) <1}, F(x) = [gsin(p|x|| + q) + hcos(e|x|| + fo) +m] z,
where R, p,q.,e, fo € R, 1 > 0,8 >0,h>0,m € (g+h,),(z,r) € Hx H.

It is clear that the D is nonempty, closed, and convex. By [4, Proposition 5.1], mapping F is
pseudomonotone and L—Lipschitz continuous, where L = (g|p|+ hle|)||z||-

Test 3. We compare our algorithms (VAPA) and (MVAPA) with three the above algorithms
with different starting points x’. The constraint C and the cost mapping .% are defined in
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LA gunan 1mage

MVAPA (PSHR =65 DG6E, 551M =0 TEE0

i

FIGURE 3. Restoration results using five the above algorithms, where € = 1072.

Example 4.2. Parameters R, [, g, p,q,h,e, f and m are randomly taken as follows:

[ =4, g:67 p1:_27 611:77 h=3, e=10, f0:5, m=15.

The vectors are chosen in the form:

2 T T N
r= 172735 ’k’ ) =

The numerical results are showed in Table 1.

0

X :(%,%’%’...)T 0

Algorithm I

Times Ty

0.2945e-5
0.8296¢-5
0.2295e-4

37.0942 1.0046e-5
39.1158 1.9905e-5
47.0719 0.3061e-4

40.97738
41.3085
47.0992

2.8055e-5
4.0041e-5 63.0230
0.5964e-4  59.0782

58.5072

2.0083e-4
6.8904¢-4

87.0496
74.8841

3.0965¢-4
6.9930e-4

101.9152
84.4216

12.5596e-4 162.0458
14.6037e-4  92.0052

defined in (4.4) and (4.5).

. Comparison results with different starting points in /, where Iy, is
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Since the preliminary numerical results reported in Figures 1 — 3 and Table 1 of five the
above algorithms, based on (PSNR) and (SSIM), we can see that the convergence speed of all
the algorithms is very sensitive to the different starting points x", the CPU time (second) and
the number of iterations of two our proposed algorithms are quite effective and less than three
(SEA),(HSEA), and (FBSA) when solving problem VIPs.

5. CONCLUSION

In this paper, we proposed two new inexact projection algorithms for solving pseudomono-
tone variational inequality problems based on self-adaptive step sizes, viscosity technique, and
inexact projections. Then, we proposed two new algorithms and proved strong convergence
of their iteration sequences. Primary numerical experiments illustrate and compare the per-
formances of these proposed algorithms with some other known results via image restoration
models.
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