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Abstract. In this paper, we propose two new inexact projection algorithms, which can be easily imple-
mented, for solving pseudomonotone variational inequality problems based on self-adaptive step sizes,
viscosity technique, and inexact projections. We obtain two strongly convergent theorems of solutions
in a real Hilbert space. Numerical experiments illustrate and compare the performances of the proposed
algorithms with three other known results.
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1. INTRODUCTION

In a real Hilbert space H, let D be a nonempty, convex, and closed subset of H and denote
〈·, ·〉 by the inner product, ‖ · ‖ by the induced norm, PD by the metric projection from H onto
D, ⇀ by the weak convergence, and→ by the strong convergence. The well-known variational
inequality problem, shortly V IPs, is a model of the form:

Find x∗ ∈ D such that 〈F (x∗),x− x∗〉 ≥ 0, ∀x ∈ D,

where F : D→ H is usually called cost mapping. Let us denote S (D,F ) by the solution set
of the problem V IPs. The problem was first introduced by Kinderlehrer and Stampacchia in
[21]. Note that problem V IPs has been developed rapidly in the last few years and has been
successfully used as a tool in medicine, biology, economics, heat conduction modeling, tomog-
raphy, and many others branches of science and technology [1]. Various solution algorithms
were introduced and studied due to active links with applied fields, such as poroelasticity for
petroleum engineering [26], financial analysis in economics [23], the reconstruction of images
in imaging processing [19], telecommunication networks and noncooperative games [29], and
many others [23, 24, 25]. It is remarkably known that if F = ∇ f , where f : D→R is a convex
and differentiable function with its gradient ∇ f , then problem V IPs is equivalent to the prob-
lem: min{ f (x) : x ∈ D}. To address V IPs, one of the earliest solution algorithms employed is
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the projection algorithm, although this approach is challenging to implement numerically. One
notable feature for solving problem V IPs involves the metric projection. Let F : D→ H be a
cost mapping. Then, the following statements are equivalent:

(i) x∗ ∈S (D,F );
(ii) x∗ is a fixed point of the solution mapping Aλ : D→ D defined in the form:

Aλ (x) = PD[x−λF (x)], ∀x ∈ D,

where λ ∈ (0,∞) and PD is the metric projection from H onto D.

This is an important basis to the gradient projection method, first proposed by Goldstein in [16]:

x0 ∈ D,xk+1 = Aλ (x
k).

Under the β -strongly monotone and L-Lipschitz continuous assumptions on mapping F , and
λ ∈ (0, 2β

L ), the solution mapping Aλ is contractive. By the Banach Contraction Principle,
the sequence {xk} defined above converges strongly to the unique solution of problem V IPs.
There are modified instances of the projection algorithm for solving problem V IPs such as
in the papers [2, 3, 4, 9, 10, 14, 17, 18, 19, 27, 28, 30, 31] and some results in books [13,
23]. Most of these algorithms, at each iteration, require to compute the metric projection of
iteration points onto constraint set D. However, this may not be easy to calculate unless D has a
simple structure. In fact, computing the projection onto D requires solving a convex quadratic
optimization problem constrained to D at each iteration, which can significantly raise the cost
per iteration if the number of unknowns is large.

Recently, there are some inexact algorithms, which become increasingly accurate as the opti-
mization solution of the auxiliary problem at each iteration under consideration is approached.
These approaches have been proposed in an effort to reduce the computational cost required
for the metric projections, thus leading to more effective projection algorithms. For using the
inexact projection to solve the problem V IPs, let us briefly recall some popular algorithms such
as Outer inexact Schemes proposed by Burachik and Lopes in [8], Block-Iterative Outer Inexact
Methods introduced by Combettes in [11], Outer Inexact Methods of Gibali et al. in [15], Outer
Proximal Algorithms introduced by Anh et al. in [2, 5, 6, 7, 20], and some other interesting
algorithms (see, e.g., [13, 34] and the references therein).

There exists a natural question that: Can we propose a vicosity inexact projection-type ap-
proach with one evaluation of the cost mapping F , one calculation of the inexact projection
without PD, and inertial steps to solve problem V IPs?

Our contribution in this paper is to answer the above question affirmatively and offers a brief
overview of our results and their distinction from prior results. We propose two new inexact
projection algorithms to solve the problem V IPs with the following details:

- It differs from existing algorithms, even in special cases that one inexact projection onto
the constraint set D at each iteration is instead of the metric projection PD;

- our iteration algorithms only use two evaluations of the cost mapping F at each itera-
tion;

- inertial extrapolation step is incorporated to speed up the iterations;
- we use viscosity technique via a contractive mapping to show that the cluster point of

iteration sequences is a unique solution of problem V IPs;
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- finally, as an application of our proposed algorithms, we apply the algorithms to solve
image restoration models and compare the performances of the algorithms with some
popular results.

The remainder of this paper is structured as follows:
- Section 2 introduces a foundation by basic definitions, comparing the metric projection

with the approximation projection, and reviewing essential concepts and relevant prior
lemmas. One important concept is the ”inexact projection onto constraint set D”;

- building upon the inexact projection, Section 3 presents two new viscosity inexact algo-
rithms and shows their strong convergence;

- in Section 4, the numerical experiences are performed to evaluate our proposed algo-
rithms. We apply the algorithms to the adaptive image restoration and compare them
with three known algorithms.

2. PRELIMINARIES

We recall several concepts which are needed in this paper. These definitions, lemmas, and
properties are known and can be found, e.g., in two popular books [13, 23].

Let D be a nonempty, convex, and closed subset of a real Hilbert space H. The metric
projection a ∈ H onto D is denoted by PD(a). It is the unique solution to the quadratical
convex programming:

PD(a) = argmin
{
‖a− y‖2 : a ∈ D

}
. (2.1)

It is clear that PD is from H onto D, and ‖PD(a)−PD(b)‖ ≤ ‖a− b‖ for all a,b ∈ H. This
property is said to be nonexpansive. Moreover, PD is the 1-strongly quasi-nonexpansive, i.e.,∥∥PD(a)− ā

∥∥2 ≤ ‖a− ā‖2−
∥∥a−PD(a)

∥∥2
, ∀a ∈H, ā ∈ D.

Let us recall some definitions of Lipschitz continuous and monotone mappings in H, used in
problem V IPs. Cost mapping F is said to be monotone on D if

〈F (u)−F (v),u− v〉 ≥ 0, ∀u,v ∈ D;

pseudomonotone on D if

〈F (v),u− v〉 ≥ 0⇒ 〈F (u),u− v〉 ≥ 0, ∀u,v ∈ D;

Lipschitz continuous with constant L > 0 on D if

‖F (u)−F (v)‖ ≤ L‖u− v‖, ∀u,v ∈ D;

partially pseudomonotone with constant η > 0 on C ⊂ D if

〈F (z),v− z〉 ≥ 0⇒ 〈F (v),v− z〉 ≥ η‖v− z‖2, ∀v ∈ D,z ∈C;

partially pseudomonotone on C ⊂ D, if we have

〈F (z),v− z〉 ≥ 0⇒ 〈F (v),v− z〉 ≥ 0, ∀v ∈ D,z ∈C.

Now, we use an inexact projection u∈H onto D relatives to any point z∈H with computational
error τ ≥ 0. Denote this projection by Pτ,z

D (u). It is defined by

Pτ,z
D (u) =

{
w ∈ D : 〈u−w,v−w〉 ≤ τ‖w− z‖2, ∀v ∈ D

}
. (2.2)
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By the definition (2.1) of the metric projection PD of a point u∈H onto D, we see that PD(u)∈
D and 〈u−PD(u),y−PD(u)〉 ≤ 0 for all y ∈ D. From this and τ ≥ 0, it yields

〈u−PD(u),y−PD(u)〉 ≤ τ‖PD(u)− z‖2,

and hence PD(u) ∈Pτ,z
D (u) for all u ∈ H,z ∈ H and τ ≥ 0. This shows that Pτ,z

D is a mul-
tivalued mapping from H to D. In the case that τ = 0, we have P0,z

D = {PD} for all z ∈ H.
Thus, for each τ ≥ 0 and z ∈ H, the inexact projection Pτ,z

D is an extended formulation of the
metric projection PD. However, there exists a problem that: Why do we have to use the inexact
projection Pτ,z

D without the metric projection PD? First, computing the projection of a point x
onto D is to solve the quadratical convex programming:

min{‖x− y‖2 : y ∈ D}.

Computing an inexact projection yx ∈Pτ,z
D (x) of a point x onto the constraint D with respect to

the iteration point z ∈H and the parameter τ ≥ 0 is very simple as follows:

Procedure 2.1. (for finding yx ∈Pτ,z
D (x))

St. 1: Take k = 0,y0 ∈ D,z ∈H and τ ∈ (0,∞).
St. 2: Solve the linear programming with the convex constraint:

vk = argmin{〈yk− x,y− yk〉 : y ∈ D}.

If 〈yk− x,yk− vk〉 ≤ τ‖yk− z‖2, then Stop, i.e., yx = yk. Otherwise, compute yk+1 =

yk +δk(vk− yk) with the stepsize δk = min
{

1, 〈y
k−x,yk−vk〉
‖vk−yk‖2

}
.

St. 3: Repeat k := k+1 and come back to St. 2.

In fact, computing yx of a point x on computer via the inexact projection P
τ j,x
D proves more

efficient than obtaining the metric projection PD(x) on Mathlab Software.

Remark 2.1. Let τ ≥ 0 and ξ > 0. A point x∗ ∈ D is a solution to problem V IPs if and only if
x∗ ∈Pτ,x∗

D (x∗−ξF (x∗)).

Indeed, by the definition of Pτ,x
D , x∗ ∈Pτ,x∗

D (x∗−ξF (x∗)) is equivalent to

〈x∗−ξF (x∗)− x∗,y− x∗〉 ≤ τ‖x∗− x∗‖2, ∀y ∈ D,

and hence 〈F (x∗),y− x∗〉 ≥ 0 for all y in D. Thus x∗ also is a solution of the problem V IPs.

Lemma 2.1. [27, Remark 4.4] Let {ak} be a positive sequence. For each any positive integer
h, there exists a positive integer p > h such that ap ≤ ap+1. For each positive integer k0 such
that ak0 ≤ ak0+1, set ξ (k) = max{i ∈N : k0 ≤ i≤ k,ai ≤ ai+1}. Then, 0≤ ak ≤ aξ (k)+1 for all
k ≥ k0. Moreover, {ξ (k)}k≥k0 is nondecreasing and limk→∞ ξ (k) = +∞.

Lemma 2.2. [38, Lemma 2.5] Assume that {ak} is a positive sequence such that ak+1 ≤ (1−
θk)ak + θkτk for all k ≥ 1. Let {θk} and {τk} be two real sequences satisfying the following
conditions:

(i) {θk} ⊂ (0,1) and
∞

∑
k=1

θk = ∞;

(ii) limsup
k→∞

τk ≤ 0 or
∞

∑
k=1
|θkτk|<+∞.
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Then, limk→∞ ak = 0.

Lemma 2.3. [12, lemma 2.1] Consider the problem V IPs with D being a nonempty, convex, and
closed subset of a real Hilbert space H and F : D→H being pseudomonotone and continuous.
Then, x∗ is a solution to V IPs if and only if 〈F x,x− x∗〉 ≥ 0 for all x ∈ D.

Lemma 2.4. [33, Lemma 3] Consider the constraint D defined in V IPs. Suppose that {xk} ⊂H
satisfies the following conditions:

(i) for all x ∈ D, limk→∞ ‖xk− x‖ exists;
(ii) every sequential weak cluster point of {xk} is belong to D.
Then, {xk} converges weakly to a point belonging to D.

3. ALGORITHMS AND THEIR CONVERGENCE

In this paper, we use the contraction mapping f : H→H with constant δ ∈ [0,1) and the vis-
cosity sequence {αk} is chosen at each iteration. To solve problem V IPs, we need the following
assumptions on constraint set D and cost mapping F :

(C1) constraint set D is a nonempty, closed and convex subset of H;
(C2) cost mapping F : H→ H is pseudomonotone, L−Lipschitz continuous, and sequen-

tially weakly continuous on D;
(C3) solution set S (D,F ) of problem V IPs is nonempty.

Parameters satisfies the following restrictions:
b ∈ (0,1),0 < λk < a≤

√
1−b
L ,

1−2εk−λ 2
k L2 ≥ b,

βk ∈ (0,1),∑∞
k=0 βk = ∞, limk→∞ βk = 0.

(3.1)

Algorithm 3.1 (VAPA - Viscosity Approximation Projection Algorithm)

Initialization: Choose x−1,x0 ∈H.
Iterative Steps: Calculate xk+1 as follows, k = 0,1, · · · ,
Step 1. Evaluate wk = xk +αk(xk− xk−1) (inertial technique). Find a point yk via inexact
projection:

yk ∈Pεk,wk

D

(
wk−λkFwk

)
.

If yk = wk, then Stop. Otherwise, go to Step 2.
Step 2. Compute (viscosity technique)

xk+1 = βk f (xk)+(1−βk)
[
yk−λk(F yk−Fwk)

]
.

Step 3. Increase k by 1 and come back Step 1.

Remark 3.1. (i) In the case yk = wk, from Step 1, it follows wk ∈Pεk,wk

D [wk− λkFwk]. By
Remark 2.1, wk is a solution to problem BV Is under Condition (3.1).
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(ii) At each iteration k, we choose the sequence {αk} satisfying the following condition:

lim
k→∞

αk
‖xk− xk−1‖

βk
= 0. (3.2)

An example is as

αk =


βk

k‖xk−xk−1‖ if ‖xk− xk−1‖> 0,

0 otherwise.

The next lemma shows the relation between the iteration point yk−λk(F yk−Fwk) in Step
2 and any solution of problem BV Is.

Lemma 3.1. Set zk = yk−λk(F yk−Fwk). It holds:

‖zk− p‖2 ≤ ‖wk− p‖2− (1−2εk−λ
2
k L2)‖yk−wk‖2, ∀p ∈S (D,F ).

Proof. Since zk = yk−λk(F yk−Fwk), we have

‖zk− p‖2 =‖yk− p‖2 +λ
2
k ‖F yk−Fwk‖2−2λk〈yk− p,F yk−Fwk〉

=‖wk− p‖2 +‖wk− yk‖2 +2〈yk−wk,wk− p〉+λ
2
k ‖F yk−Fwk‖2

−2λk〈yk− p,F yk−Fwk〉

=‖wk− p‖2 +‖wk− yk‖2−2〈yk−wk,yk−wk〉+2〈yk−wk,yk− p〉

+λ
2
k ‖F yk−Fwk‖2−2λk〈yk− p,F yk−Fwk〉

=‖wk− p‖2−‖wk− yk‖2 +2〈yk−wk,yk− p〉+λ
2
k ‖F yk−Fwk‖2

−2λk〈yk− p,F yk−Fwk〉. (3.3)

By using the definition of the inexact projection yk ∈Pεk,wk

D (wk−λkFwk), one has

〈yk−wk +λkFwk,yk− p〉 ≤ εk‖yk−wk‖2,

which is equivalent to

〈yk−wk,yk− p〉 ≤ −λk〈Fwk,yk− p〉+ εk‖yk−wk‖2. (3.4)

Combining (3.3) and (3.4), we obtain

‖zk− p‖2 =‖wk− p‖2−‖wk− yk‖2 +2〈yk−wk,yk− p〉+λ
2
k ‖F yk−Fwk‖2

−2λk〈yk− p,F yk−Fwk〉

≤‖wk− p‖2−‖wk− yk‖2−2λk〈Fwk,yk− p〉+2εk‖yk−wk‖2

+λ
2
k ‖F yk−Fwk‖2−2λk〈yk− p,F yk−Fwk〉.

=‖wk− p‖2− (1−2εk)‖wk− yk‖2 +λ
2
k ‖F yk−Fwk‖2−2λk〈yk− p,F yk〉

≤‖wk− p‖2− (1−2εk−λ
2
k L2)‖yk−wk‖2,

where the last inequality is deduced from the assumptions p ∈S (D,F ), yk ∈ D of the inexact
projection and pseudomonotonicity of F in (C2), i.e.,

〈F p,yk− p〉 ≥ 0⇒ 〈F yk,yk− p〉 ≥ 0.

This completes the proof. �
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Lemma 3.2. The sequences {xk},{wk},{zk},{ f (xk)}, and {yk} are bounded.

Proof. By Lemma 3.1 and the condition 1−2εk−λ 2
k L2 > 0 of (3.1), one has

‖zk− p‖ ≤ ‖wk− p‖, ∀k ≥ 0. (3.5)

According to wk in Step 1, one sees

‖wk− p‖ ≤ ‖xk− p‖+αk‖xk− xk−1‖= ‖xk− p‖+βkαk
‖xk− xk−1‖

βk
. (3.6)

Using Remark (ii) that limk→∞ αk
‖xk−xk−1‖

βk
= 0, one sees that there exists a constant M1 > 0

such that αk
‖xk−xk−1‖

βk
≤M1 for all k ≥ 1. Combining (3.5) and (3.6), one deduces ‖zk− p‖ ≤

‖xk− p‖+βkM1 for all k≥ 1. Since f is δ−contractive and βk ∈ (0,1), for each k≥ 1, we have

‖xk+1− p‖ ≤ βk‖ f (xk)− p‖+(1−βk)‖zk− p‖

≤ βkδ‖xk− p‖+βk‖ f (p)− p‖+(1−βk)‖xk− p‖+βkM1

= [1− (1−δ )βk]‖xk− p‖+(1−δ )βk
M1 +‖ f (p)− p‖

1−δ

≤max
{
‖xk− p‖, M1 +‖ f (p)− p‖

1−δ

}
,

where zk is defined in Lemma 3.1. By induction, we have

‖xk− p‖ ≤max
{
‖x0− p‖, M1 +‖ f (p)− p‖

1−δ

}
,

which implies that {xk} is bounded. By (3.5) and (3.6), both {zk} and {wk} are also bounded.
Using Lemma 3.1 and the condition 1−2εk−λ 2

k L2 ≥ b > 0 of (3.1), it follows

b‖yk−wk‖2 ≤ ‖wk− p‖2−‖zk− p‖2, ∀k ≥ 1.

Consequently, {yk} is bounded. This finishs the proof. �

Lemma 3.3. Let the subsequence {wk j} of {wk} satisfy the conditions that {wk j} converges
weakly to z ∈H and lim j→∞ ‖wk j − yk j‖= 0. Then, z ∈S (D,F ).

Proof. From the assumptions that wk j ⇀ z and lim j→∞ ‖wk j−yk j‖= 0, it follows yk j ⇀ z. Note
that {yk j} ⊂ D and D is convex and closed. It yields z ∈ D. From Step 2 and the definition of

the inexact projection yk j ∈P
εk j ,w

k j

D

(
wk j −λk jFwk j

)
, we have

〈wk j −λk jFwk j − yk j ,x− yk j〉 ≤ εk j‖y
k j −wk j‖2, ∀x ∈ D.

Using λk > 0, we obtain
1

λk j

〈wk j − yk j ,x− yk j〉 ≤ 〈Fwk j ,x− yk j〉+
εk j

λk j

‖yk j −wk j‖2, ∀x ∈ D,

which is equivalent to
1

λk j

〈wk j − yk j ,x− yk j〉+ 〈Fwk j ,yk j −wk j〉−
εk j

λk j

‖yk j −wk j‖2 ≤ 〈Fwk j ,x−wk j〉.
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Using the boundedness of the sequences {yk} and {wk} in Lemma 3.2, 0 < λk ≤ a < ∞ in
Condition (3.1) and passing the liminf as j→ ∞, we obtain

liminf
j→∞
〈Fwk j ,x−wk j〉 ≥ 0, ∀x ∈ D. (3.7)

Otherwise,

〈F yk j ,x− yk j〉= 〈F yk j −Fwk j ,x−wk j〉+ 〈Fwk j ,x−wk j〉+ 〈F yk j ,wk j − yk j〉. (3.8)

Since F is L−Lipschitz continuous and the assumption lim j→∞ ‖wk j − yk j‖= 0, we deduce

0≤ lim
j→∞
‖Fwk j −F yk j‖ ≤ lim

j→∞
L‖wk j − yk j‖= 0.

Combining this, (3.7) and (3.8) yields liminf j→∞〈F yk j ,x− yk j〉 ≥ 0. We can take a sequence
{ξ j} ⊂ (0,1) satisfying lim j→∞ ξ j = 0 so that, for all j ≥ 1, there exists the smallest positive
integer m j ≥ k j such that

〈F yi,x− yi〉+ξ j ≥ 0, ∀i≥ m j. (3.9)

Note that ‖F yk‖ 6= 0. So we can set gm j = F ym j

‖F ym j‖2 . Then, 〈F ym j ,gm j〉 = 1, ∀ j ≥ 1. From
(3.9), it follows 〈F ym j ,x+ ξ jgm j − ym j〉 ≥ 0. Combining this and the pseudomonotonicity of
F yields 〈F (x+ξ jgm j),x+ξ jgm j − ym j〉 ≥ 0, and hence

〈F x,x− ym j〉 ≥ 〈F x−F (x+ξ jgm j),x+ξ jgm j − ym j〉−ξ j〈F x,gm j〉, ∀ j ≥ 1. (3.10)

Next, we prove that lim j→∞ ξ j‖gm j‖ = 0. As the above proof, yk j ⇀ z and z ∈ D. Since F
is sequentially weakly continuous on D, then {F yk j} converges weakly to F z. The proof is
complete with F z = 0, i.e., z ∈S (D,F ).

Now we consider the case F z 6= 0. By using the sequentially weak lower semicontinuity of
the norm ‖ · ‖, we have 0 < ‖F z‖ ≤ liminf j→∞ ‖F yk j‖. From {ym j} ⊂ {yk j},{ξ j} ⊂ (0,∞),
and lim j→∞ ξ j = 0, it follows

0≤ limsup
j→∞

‖ξ jgm j‖= limsup
j→∞

(
ξ j

‖F yk j‖

)
≤

limsup j→∞ ξ j

liminf j→∞ ‖F yk j‖
≤

lim j→∞ ξ j

‖F z‖
= 0,

which means that lim j→∞ ξ j‖gm j‖= 0. Taking the limit as j→ ∞, the right hand side of (3.10)
tends to zero under the fact that F is Lipschitz continuous, {xm j} and {gm j} are bounded, and
lim j→∞ ξ jgm j = 0. From (3.10) it follows liminf j→∞〈F x,x− ym j〉 ≥ 0. Since {ym j} converges
weakly to z ∈ D, we deduce

〈F x,x− z〉= lim
j→∞
〈F x,x− ym j〉= liminf

j→∞
〈F x,x− ym j〉 ≥ 0, ∀x ∈ D.

By Lemma 2.3, we have z ∈S (D,F ). The proof is completed. �

Theorem 3.1. Let the cost mapping F satisfy Assumptions (C1)−(C3). Then, under Conditions
(3.1) and (3.2), the sequence {xk} generated by Algorithm 3.1 converges strongly to an element
p∈S (D,F ). Moreover, the point p is a unique solution to the following variational inequality
problem:

Find x∗ ∈S (D,F ) such that 〈( f − I)(x∗),y− x∗〉 ≤ 0, ∀y ∈S (D,F ). (3.11)
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Proof. Note that, under Assumptions (C1)− (C3), set S (D,F ) is nonempty, closed, and con-
vex. Since f is δ−contractive, then the existence of solutions for problem (3.11) is guaranteed.
Firstly, we show that there exists a positive constant M4 satisfying

(1−2εk−λ
2
k L2)‖wk− yk‖2 ≤ ‖xk− p‖2−‖xk+1− p‖2 +βkM4.

Indeed, using the viscosity technique in Step 2 and the inequality

‖a+b‖2 ≤ ‖a‖2 +2〈b,a+b〉, ∀a,b ∈H, (3.12)

we have

‖xk+1− p‖2 = ‖zk− p+βk( f (xk)− zk)‖2

≤ ‖zk− p‖2 +2βk〈 f (xk)− zk,xk+1− p〉

≤ ‖zk− p‖2 +2βk‖ f (xk)− zk‖‖xk+1− p‖

≤ ‖zk− p‖2 +βkM2, (3.13)

where M2 = sup{2‖ f (xk)− zk‖‖xk+1− p‖ : k ≥ 1}. By using lemma 3.2, the sequences {xk}
and {zk} are bounded and hence M2 < ∞. Lemma 3.1 shows that

‖zk− p‖2 ≤ ‖wk− p‖2− (1−2εk−λ
2
k L2)‖wk− yk‖2, ∀k ≥ 1. (3.14)

By (3.6), it yields

‖wk− p‖2 ≤ (‖xk− p‖+βkM1)
2

= ‖xk− p‖2 +βk(2M1‖xk− p‖+βkM2
1)

≤ ‖xk− p‖2 +βkM3, (3.15)

where M3 = sup{2M1‖xk− p‖+βkM2
1 : k ≥ 1}< ∞. Combining (3.15) and (3.14), we have

‖zk− p‖2 ≤ ‖xk− p‖2− (1−2εk−λ
2
k L2)‖wk− yk‖2 +βkM3. (3.16)

By using (3.13) and (3.16), it follows that

‖xk+1− p‖2 ≤ ‖xk− p‖2− (1−2εk−λ
2
k L2)‖wk− yk‖2 +βkM3 +βkM2,

which means that

(1−2εk−λ
2
k L2)‖wk− yk‖2 ≤ ‖xk− p‖2−‖xk+1− p‖2 +βkM4, (3.17)

where M4 := M2 +M3.
Now we show the following relation:

‖xk+1− p‖2 ≤[1−βk(1−δ
2)]‖xk− p‖2 +βk(1−δ

2)

[
M5(1−βk)

(1−δ 2)
αk
‖xk− xk−1‖

βk

+
2〈 f (p)− p,xk+1− p〉

1−δ 2

]
, (3.18)
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where M5 = sup{2‖wk− p‖ : k ≥ 1}< ∞. Indeed, from wk = xk +αk(xk− xk−1) in Step 1 and
the formula (3.12), we have

‖wk− p‖2 = ‖xk− p+αk(xk− xk−1)‖2

≤ ‖xk− p‖2 +2αk

〈
xk− xk−1,wk− p

〉
≤ ‖xk− p‖2 +2αk‖xk− xk−1‖‖wk− p‖,

≤ ‖xk− p‖2 +αk‖xk− xk−1‖M5. (3.19)

It follows from (3.5) and (3.19) that

‖zk− p‖2 ≤ ‖wk− p‖2 ≤ ‖xk− p‖2 +αk‖xk− xk−1‖M5, ∀k ≥ 1. (3.20)

Combining (3.20) and the contractiveness of f , we deduce that

‖xk+1− p‖2 =‖βk( f (xk)− f (p))+(1−βk)(zk− p)+βk( f (p)− p)‖2

≤‖βk( f (xk)− f (p))+(1−βk)(zk− p)‖2 +2βk〈 f (p)− p,xk+1− p〉

≤βk‖ f (xk)− f (p)‖2 +(1−βk)‖zk− p‖2 +2βk〈 f (p)− p,xk+1− p〉

≤βkδ
2‖xk− p‖2 +(1−βk)‖zk− p‖2 +2βk〈 f (p)− p,xk+1− p〉

≤βkδ
2‖xk− p‖2 +(1−βk)‖xk− p‖2 +αk(1−βk)‖xk− xk−1‖M5

+2βk〈 f (p)− p,xk+1− p〉

=[1−βk(1−δ
2)]‖xk− p‖2 +βk(1−δ

2)

[
M5(1−βk)

(1−δ 2)
αk
‖xk− xk−1‖

βk

+
2〈 f (p)− p,xk+1− p〉

1−δ 2

]
.

This implies (3.18).
Let us consider two cases as follows.
Case 1. There exists a positive integer k0 such that ‖xk+1− p‖2 ≤ ‖xk− p‖2 for all k ≥ k0.

Then, we have limk→∞ ‖xk− p‖2 = A ∈ [0,∞). Taking the limit into (3.17) as k→ ∞ and using
the condition 1−2εk−λ 2

k L2 ≥ b > 0 in (3.1), one sees that

lim
k→∞
‖wk− yk‖= 0. (3.21)

Using Step 1 and Condition (3.2), one obtains

lim
k→∞
‖xk−wk‖= lim

k→∞
αk‖xk− xk−1‖= lim

k→∞
βkαk

‖xk− xk−1‖
βk

= 0. (3.22)

Since F is L−Lipschitz continuous and (3.21), we have

0≤ lim
k→∞
‖zk− yk‖= lim

k→∞
λk‖F yk−Fwk‖ ≤ lim

k→∞
λkL‖yk−wk‖= 0. (3.23)

Combining (3.21), (3.22), and (3.23), we obtain

0≤ lim
k→∞
‖xk− zk‖ ≤ lim

k→∞
(‖xk−wk‖+‖wk− yk‖+‖yk− zk‖) = 0. (3.24)
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From Lemma 3.2 and limk→∞ βk = 0, it follows

0≤ lim
k→∞
‖xk+1− xk‖

≤ lim
k→∞

(‖xk+1− zk‖+‖zk− xk‖)

= lim
k→∞

(βk‖ f (xk)− zk‖+‖zk− xk‖) = 0.

Consequently
lim
k→∞
‖xk+1− xk‖= 0. (3.25)

By Lemma 3.2 that {xk} is a bounded sequence, one sees there exists {xk j} ⊂ {xk} such that
{xk j} converges weakly to z ∈H and

limsup
k→∞

〈 f (p)− p,xk− p〉= lim
j→∞
〈 f (p)− p,xk j − p〉= 〈 f (p)− p,z− p〉. (3.26)

Since xk j ⇀ z, (3.21) and Lemma 3.1, we have z ∈S (D,F ). It is clear that PS (D,F ) f : H→
S (D,F ) is contractive with constant δ ∈ (0,1). Therefore, it has a unique fixed point. We
assume p = PS (D,F ) f (p). From the definition of the metric projection PD and z ∈ D, it
implies 〈 f (p)− p,z− p〉 ≤ 0. Using this and (3.26), we have

limsup
k→∞

〈 f (p)− p,xk− p〉= 〈 f (p)− p,z− p〉 ≤ 0. (3.27)

From (3.25) and (3.27), it follows that

limsup
k→∞

〈 f (p)− p,xk+1− p〉 ≤ limsup
k→∞

〈 f (p)− p,xk+1− xk〉+ limsup
k→∞

〈 f (p)− p,xk− p〉

≤ limsup
k→∞

(‖ f (p)− p‖‖xk+1− xk‖)+ limsup
k→∞

〈 f (p)− p,xk− p〉

≤ 0. (3.28)

Applying Lemma 2.2 for (3.18) with

ak := ‖xk− p‖2,θk := βk(1−δ
2),τk :=

M5(1−βk)

(1−δ 2)
αk
‖xk− xk−1‖

βk
+

2〈 f (p)− p,xk+1− p〉
1−δ 2 ,

we have the limit limk→∞ ak = 0. Note that limk→∞ τk ≤ 0 by (3.28). Thus, {xk},{yk}, and {wk}
converge strongly to the unique solution p of problem (3.11).

Case 2. It does not exist a positive integer k0 such that ‖xk+1− p‖2≤‖xk− p‖2 for all k≥ k0.
Therefore, there exists {‖xk j− p‖2} ⊂ {‖xk− p‖2} satisfying ‖xk j− p‖2 ≤ ‖xk j+1− p‖2 for all
j≥ 1. By the interesting results proposed by Maingé in Lemma 2.1, there exists a nondecreasing
sequence {n j} ⊂ {1,2, . . .} such that lim j→∞ n j = ∞ and the following relations hold:

‖xn j − p‖2 ≤ ‖xn j+1− p‖2,‖x j− p‖2 ≤ ‖xn j+1− p‖2, ∀ j ≥ 1. (3.29)

By (3.17), we have

b‖wn j − yn j‖2 ≤ (1−2εk−λ
2
k L2)‖wn j − yn j‖2 ≤ ‖xn j − p‖2−‖xn j+1− p‖2 +βn jM4 ≤ βn jM4.

Taking the limit as j→ ∞ and using liminfk→∞ βk = 0, we see that lim j→∞ ‖yn j −wn j‖= 0. As
Case 1, we also have lim j→∞ ‖xn j−zn j‖= 0, lim j→∞ ‖xn j+1−xn j‖= 0, and limsup j→∞〈 f (p)−
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p,xn j+1− p〉 ≤ 0. Substituting k := n j into (3.18), it follows that

‖xn j+1− p‖2 ≤ [1−βn j(1−δ
2)]‖xn j − p‖2

+βn j(1−δ
2)

 M5

(1−δ 2)
αn j

‖xn j − xn j−1‖
βn j

+
2
〈

f (p)− p,xn j+1− p
〉

1−δ 2


≤ [1−βn j(1−δ

2)]‖xn j+1− p‖2

+βn j(1−δ
2)

 M5

(1−δ 2)
αn j

‖xn j − xn j−1‖
βn j

+
2
〈

f (p)− p,xn j+1− p
〉

1−δ 2

 ,
which implies that

‖xn j+1− p‖2 ≤ M5

(1−δ 2)
αn j

‖xn j − xn j−1‖
βn j

+
2
〈

f (p)− p,xn j+1− p
〉

1−δ 2 .

By (3.29), we obtain

‖x j− p‖2 ≤ ‖xn j+1− p‖2 ≤ M5

(1−δ 2)
αn j

‖xn j − xn j−1‖
βn j

+
2
〈

f (p)− p,xn j+1− p
〉

1−δ 2 .

This implies that limsup j→∞ ‖x j− p‖2 = 0. Thus s {xk},{yk}, and {wk} converge strongly to
the unique solution p of problem (3.11). This finishes the proof. �

Note that algorithm 3.1 requires the knowledge of Lipschitz constant L > 0 of cost mapping
F . In fact, L is usually difficult to evaluate. In order to overcome these drawbacks, we use
Tseng’s linesearch technique to present a new modified algorithm of the above algorithm with
a pseudomonotone cost mapping without the knowledge of Lipschitz constant L.

Algorithm 3.2 (MVAPA - Modified Viscosity Approximation Projection Algorithm)

Initialization: Choose starting points x−1,x0 ∈H,µ > 0,γ ∈ (0,1), l ∈ (0,1).
Iterative Steps: Calculate xk+1 as follows, k = 0,1, · · · ,
Step 1b. Evaluate wk = xk +αk(xk− xk−1). Find an inexact projection point:

yk ∈Pεk,wk

D (wk−λkFwk),

where λk := γlmk and mk is the smallest nonnegative integer m such that

γlm‖F yk−Fwk‖ ≤ µ‖yk−wk‖. (3.30)

If yk = wk, then Stop. Otherwise, go to Step 2b.
Step 2b.Compute

xk+1 = βk f (xk)+(1−βk)
[
yk−λk(F yk−Fwk

]
.

Step 3b. Let k := k+1 and go back Step 1b.
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Lemma 3.4. Under Assumptions (C1)− (C3) of the cost mapping F , the rule (3.30) is well
defined. Moreover, the following relation holds

min
{

γ,
µl
L

}
≤ λk ≤ γ, ∀k ≥ 0.

Proof. Since F is L−Lipschitz continuous on H in Assumption (C2), then ‖Fwk−F yk‖ ≤
L‖wk− yk‖. Consequently

µ

L
‖Fwk−F yk‖ ≤ µ‖wk− yk‖.

Thus rule (3.30) is satisfied in the case that γlmk ≤ µ

L . Hence, λk is well defined. Since l ∈
(0,1) and mk is a nonnegative integer, it follows λk = γlmk ≤ γ . If λk = γ , then the lemma is
proved. Otherwise, we consider the case λk < γ and hence mk ≥ 1. Since mk is the smallest
nonnegative integer satisfying the rule (3.30), we deduce that γlmk−1‖F yk−Fwk‖ > µ‖yk−
wk‖. Consequently, ∥∥∥Fwk−F yk

∥∥∥> µ

λk
l

∥∥∥wk− yk
∥∥∥ .

By using yk 6= wk and the L−Lipschitz continuity of the cost mapping F , one sees

λk >
µl
L
⇒ λk ≥min

{
γ,

µl
L

}
.

The proof is completed. �

Lemma 3.5. Let the cost mapping F satisfy Conditions (C1)− (C3), and let {wk} and {yk}
be generated by Algorithm 3.2. If there exists a subsequence {wk j} ⊂ {wk} such that {wk j}
converges weakly to z ∈ H and lim j→∞ ‖wk j − yk j‖= 0, then z ∈S (D,F ).

Proof. It is the same as in the proof of Lemma 3.3. �

By a similar way as in Lemma 3.1, we also obtain the following result.

Lemma 3.6. Let zk = yk−λk(F yk−Fwk) and p ∈S (D,F ). Then,

‖zk− p‖2 ≤ ‖wk− p‖2− (1−2εk−µ
2)‖yk−wk‖2. (3.31)

Theorem 3.2. Assume that the cost mapping F satisfy (C1)− (C3). Then, under Conditions
(3.1) and (3.2), three sequences {xk},{yk}, and {wk} generated by Algorithm 3.2 converges
strongly to a common element p ∈ S (D,F ). Moreover, the solution point p is the unique
solution to problem (3.11).

Proof. By using Lemma 3.5 and Lemma 3.6 and following the proof of Theorem 3.2, we can
conclude the desired conclusion immediately. �

4. NUMERICAL EXPERIMENTS

In what follows, we provide an instance to show the practicability and feasibility of the pro-
posed viscosity inexact projection algorithms (VAPA) and (MVAPA). At each iteration, the
main computational iteration step of the two algorithms is to compute an inexact projection
point via wk as follows: yk ∈Pεk,wk

D (wk−λkFwk). By using (2.2), one has

〈uk− yk,y− yk〉 ≤ εk‖yk−wk‖2, ∀y ∈ D,
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where uk := wk−ξkF (wk), which is equivalent to

max
{
〈uk− yk,y− yk〉 : y ∈ D

}
=−min

{
〈yk−uk,y− yk〉 : y ∈ D

}
≤ εk‖yk−wk‖2. (4.1)

Then, by using the celebrated Gradient Descent Method, it is formally defined to compute an
inexact projection point yk of a point uk onto constraint D by Procedure 2.1. Moreover, solving
the problem (4.1) with error εk‖yk −wk‖2 is simple and more effective on software Matlab
2023 than computing exact the projection PD(xk−λkF xk) via an auxiliary function such as
Quadratic Program.

Example 4.1. Consider adaptive image restoration in H := Rn, the Euclidean space. In fact,
there always exists any noisy observed signal/image y ∈ Rn. Our main goal is to recover an
original signal/image x ∈Rn from a noisy vector y ∈Rn. It means that y is some observed data,
which are obtained from a noise-free image x. Let B be a m×n matrix which is called the linear
blurring operator. Denote a sample of zero-mean white Gaussian noise by an additive noise
vector ε with variance σ2, where ε is usually called a realization of a Gaussian random variable
with zero mean. This means that p(s) =N (s|0,σ2Id), where N (s|µ,Σ) denotes a multivariate
Gaussian density with mean µ and covariance Σ, evaluated at s. The image restoration problem
is formulated as:

y = Bx+ ε. (4.2)

Examples of observation mechanisms which are adequately approximated by (4.2) include op-
tical or motion blur, tomographic projections, electronic noise, photoelectric noise, and more.
One classical approach for handling (4.1) is the following Least Absolute Shrinkage and Selec-
tion Operator Model in compressing sensing, mainly known as LASSO proposed by Osher et
al. in [32], that aims at minimizing:

min
{

1
2
‖y−Bx‖2 +λ‖x‖1 : x ∈ Rn

}
, (4.3)

where ‖x‖1 = ∑
n
k=1 |xk|.

Note that (4.3) is an unconstrained convex problem, however the objective function including
‖ · ‖1 which is not easy to solve when n is enough large.

Our main task is to restore the original image x given the data of the blurred image y. Problem
(4.3) is convex, subdifferentiable and the objective function bounded by 0. Then, its solution
set is nonempty. By using the necessary and sufficient conditions in optimization, a point x∗

is a solution to the problem if and only if 0 ∈ ∂x(‖y−Bx‖2 + λ‖x‖1). This is equivalent to
0 = B>(Bx− y)+λ sign(x). The least square problem (4.3) can be expressed as a variational
inequality problem by setting F (x) := B>(Bx− y)+λ sign(x). It is not difficult to show that
the function sign(·) is monotone on Rn. So, the cost mapping F in this case is monotone (hence
it is pseudomonotone) and Lipschitz continuous with constant L = ‖B>B‖+2λ

√
n.

This section reports some numerical results to illustrate the effectiveness of the proposed al-
gorithms (VAPA) and (MVAPA) in comparisons with three popular algorithms using the exact
metric projections: Subgradient Extragradient Algorithm (SEA) proposed by Censor, Gibali
and Reich in [10, Algorithm 4.1], Halpern Subgradient Extragradient Algorithm (HSEA) intro-
duced by Kraikaew and Saejung in [22, Scheme (4)] and Forward - Backward Splitting Algo-
rithm (FBSA) of Tseng in [36].
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We consider the grey scale image of m pixels wide and n pixel height, each value is known
to be in the closed interval [0,256]. The quality of the restored image is measured by the Peak
Signal-to-Noise Ratio (PSNR) in decibel (dB) in [35] which is defined by:

PSNR = 20lg
(
‖x‖
‖x− y‖

)
.

Note that the larger the value of PSNR is the better the quality of the restored image. The Struc-
tural Similarity Index Metric (SSIM), in [37], is to explore the structural information between
original signal x and noisy image y. The (SSIM) is defined in the following form:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
,

where
- the parameter µx is the mean of x:

µx =
1
n

n

∑
i=1

xi;

- the parameter µy is the mean of y:

µy =
1
n

n

∑
i=1

yi;

- the parameter σ2
x is the variance of x:

σ
2
x =

1
n−1

n

∑
i=1

(xi−µx)
2;

- the parameter σ2
y is the variance of y:

σ
2
y =

1
n−1

n

∑
i=1

(yi−µy)
2;

- the parameter σxy is the covariance between vector x and y:

σxy =
1

n−1

n

∑
i=1

(xi−µx)(yi−µy);

- the parameters C1 = (K1L)2 and C2 = (K2L)2 are small constants to stabilize the division
with

* the number L is the dynamic range of the pixel values (e.g., L = 255 for 8-bit
images);

* the numbers K1 and K2 are small constants (e.g., K1 = 0.01, K2 = 0.03).
For each ε ≥ 0, the stopping condition of all the algorithms is given as follows:

- Algorithms (VAPA) and (MVAPA):

Γk = ‖PD(xk−λkF xk)− xk‖ ≤ ε; (4.4)

- Algorithms (VAPA) and (MVAPA):

Γk = ‖Pεk,wk

D (wk−λkFwk)−wk‖ ≤ ε. (4.5)



142 D.D. THANH, P.N. ANH

All programming is implemented in Matlab R2023a running on a PC with Intel(R) Core(TM)
i9−9900KS CPU @ 4.00GHz 32.0 GB Ram. The inexact projection PD is computed via the
Matlab optimization toolbox by fmincon or quadratic functions.

Test 1. In this test, we apply two our proposed algorithms (VAPA) and (MVAPA) for the
image restoration model with n = 2500 which is generated by the uniform distribution on the
closed interval [−3,3] with 170 non-zero elements. The matrix B is generated by the normal
distribution with mean zero and variance one while the observation y with m = 550 is generated
by Gaussian noise with PSNR = 37. The initial points x−1, x0 are taken randomly. The quality
of restoration is measured by the Mean of Squared Error (MSE) to the original signal x, that is
MSE = 1

n‖x− y‖2. We compare the performance of each algorithm with respect to the number
of iterations, CPU time and MSE values, see Figure 1 and Figure 2.

FIGURE 1. Sparse signal recovery includes the original signal, the measure-
ment, the reconstructed signal using Algorithms (SAPA) and (MSAPA), where
λ := 0.2683.

The parameters in all above algorithms are chosen as follows:
- Our algorithms (VAPA) and (MVAPA):

a = 10,b = 0,1205,λk =

√
1−b

L(2k+1)
,εk =

1−L2λ 2
k −b

4
,

1
4k+50

, ∀k ≥ 1;

- Algorithm (SEA)− Censor, Gibali and Reich, and Algorithm (HSEA)− Kraikaew and
Saejung:

τ =
1

2L
;

- Algorithm (FBSA)− Tseng:

λ =
1

2L
.
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FIGURE 2. Sparse signal recovery includes the original signal, the measure-
ment, the reconstructed signal using Algorithms (SEA),(HSEA) and (FBSA),
where λ := 0.2683.

Test 2. We compare the convergence of the (VAPA), the (MVAPA), the (SEA),(HSEA) and
(FBSA) for the image restoration problem by means of (PSNR) and (SSIM) . The blurring
operator is chosen as

B := f special(′gaussian′, [256 256],4).

The results are showed in Figure 3.

Example 4.2. Consider in the real Hilbert space H := l2, which is given as follows:

l2 =

{
(xk)⊂R :

∞

∑
k=1

x2
k <+∞

}
.

The inner product is 〈x,y〉=∑
∞
k=1 xkyk, for all x,y∈ l2, and its deduced norm is ‖x‖=

√
∑

∞
k=0 x2

k ,

for all x ∈ l2. For each ζ ∈ (0,1), let the viscosity mapping f : H→ R be defined by f (x) =
ζ cos(‖x‖) that is ζ−contractive. The cost mapping F : H→H and the constraint D are given
in the forms:

D = {x ∈H : ‖x‖2 ≤ R2,〈r,x〉 ≤ l}, F(x) =
[
gsin(p‖x‖+q)+hcos(e‖x‖+ f0)+m

]
z,

where R, p,q,e, f0 ∈ R, l > 0,g > 0,h > 0,m ∈ (g+h,∞),(z,r) ∈H×H.

It is clear that the D is nonempty, closed, and convex. By [4, Proposition 5.1], mapping F is
pseudomonotone and L−Lipschitz continuous, where L = (g|p|+h|e|)‖z‖.

Test 3. We compare our algorithms (VAPA) and (MVAPA) with three the above algorithms
with different starting points x0. The constraint C and the cost mapping F are defined in
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FIGURE 3. Restoration results using five the above algorithms, where ε = 10−3.

Example 4.2. Parameters R, l,g, p,q,h,e, f and m are randomly taken as follows:

l = 4, g = 6, p1 =−2, q1 = 7, h = 3, e = 10, f0 = 5, m = 15.

The vectors are chosen in the form:

r =
(

1
1
,
1
2
,
1
3
, · · · , 1

k
, · · ·
)>

, z =
(

1
3
,
1
5
,
1
7
, · · · , 1

2k+1
, · · ·
)>

.

The numerical results are showed in Table 1.

x0 = (1
2 ,

1
4 ,

1
6 , · · ·)

> x0 = (1
1 ,

1
3 ,

1
5 , · · ·)

> x0 = ( 1
12 ,

1
52 ,

1
92 , · · ·)>

Algorithm Γk Times Γk Times Γk Times

(VAPA) 0.2945e-5 37.0942 1.0046e-5 40.97738 2.8055e-5 58.5072
(MVAPA) 0.8296e-5 39.1158 1.9905e-5 41.3085 4.0041e-5 63.0230
(SEA) 0.2295e-4 47.0719 0.3061e-4 47.0992 0.5964e-4 59.0782
(HSEA) 2.0083e-4 87.0496 3.0965e-4 101.9152 12.5596e-4 162.0458
(FBSA) 6.8904e-4 74.8841 6.9930e-4 84.4216 14.6037e-4 92.0052
TABLE 1. Comparison results with different starting points in l2, where Γk is
defined in (4.4) and (4.5).
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Since the preliminary numerical results reported in Figures 1− 3 and Table 1 of five the
above algorithms, based on (PSNR) and (SSIM), we can see that the convergence speed of all
the algorithms is very sensitive to the different starting points x0, the CPU time (second) and
the number of iterations of two our proposed algorithms are quite effective and less than three
(SEA),(HSEA), and (FBSA) when solving problem V IPs.

5. CONCLUSION

In this paper, we proposed two new inexact projection algorithms for solving pseudomono-
tone variational inequality problems based on self-adaptive step sizes, viscosity technique, and
inexact projections. Then, we proposed two new algorithms and proved strong convergence
of their iteration sequences. Primary numerical experiments illustrate and compare the per-
formances of these proposed algorithms with some other known results via image restoration
models.
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