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Abstract. The focus of this study is a dynamic frictional contact model involving a viscoelastic body
with thermal effects and a conductive foundation. Coulomb’s law describes the frictional behavior, while
a normal compliance model simulates the contact. We derive a variational formulation for the problem
and establish the existence of a unique weak solution by using the Banach fixed point theorem. To solve
the problem, we propose a fully discrete scheme that combines the finite element method for spatial
approximation with the Euler scheme for the time discretization. Error estimates for the solutions are
derived, and linear convergence is achieved under suitable regularity assumptions. Finally, numerical
simulations are presented to demonstrate the performance of the proposed method.
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1. INTRODUCTION

Contact problems arise in numerous applications across mechanics, physics, and engineer-
ing. Examples from the automotive industry include the contact between brake pads and rotors
or between pistons and cylinders. Thermal effects in contact processes influence the composi-
tion and stiffness of contacting surfaces, while also inducing thermal stresses in the contacting
bodies (see [16]). Conversely, temperature can significantly affect the elastic response of ma-
terials. The literature contains a variety of works that study and develop thermomechanical
frictional problems, such as those in [9, 10, 11, 16, 19] and the references therein. These works
rigorously constructed mathematical models of contact with thermal effects and established the
unique weak solvability of the models using variational and hemivariational inequality tech-
niques.
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In [4], Chau, Goeleven, and Oujja analyzed a class of dynamic thermal contact problems for
viscoelastic materials involving the normal compliance condition and friction. They proposed
a numerical scheme for approximating solution fields and performed corresponding numerical
computations. Other works in the literature, such as [2, 12, 13, 15, 18], presented numerical
solutions to frictional contact problems that account for thermal effects. Bouallala and Essouf
[3] addressed a dynamic contact problem between a thermo-viscoelastic body and a conductive
foundation under normal compliance and Coulomb’s friction. Building on this work, we study
the same problem and prove the existence-uniqueness of a weak solution by employing dynamic
nonlinear quasi-variational inequalities, nonlinear parabolic variational equalities, and the fixed
point method.

To address the problem numerically, we present a discrete formulation by using the finite
element method for spatial discretization and a backward Euler scheme for time discretization.
We also demonstrate the convergence of the numerical solution. This study faced significant
challenges due to the nonlinearity of the boundary conditions and the dynamic nature of the
problem. A key novelty of this work is the inclusion of numerical simulations that analyze
various problem parameters. Notably, our results are consistent with those found in [4] for a
non-clamped body. However, unlike [4], this work assumes Dirichlet boundary conditions on
part of the body’s surface. Furthermore, our model includes a heat exchange condition in which
the heat transfer coefficient is assumed to be constant along the contact boundary.

The rest of the paper is structured as follows. The model of the dynamic process of the
thermo-viscoelastic body is presented in Section 2, together with its variational formulation.
In Section 3, we state and prove our main existence and uniqueness result, Theorem 3.1. The
main result concerning the error estimate for fully discrete numerical scheme is presented in
Section 4. Finally, in Section 5, we present numerical simulations for a two-dimensional test
problem to illustrate the theoretical error estimate and the evolution of the displacement and the
temperature fields.

2. PROBLEM STATEMENT AND WEAK FORMULATION

In this paper, we denote by Sd , (d = 2,3), the space of second order symmetric tensor on
Rd and by ” · ” and ‖ · ‖ the inner product and the Euclidean norm on the space Rd and Sd ,
respectively, that is, for all u, v ∈ Rd and for all σ , τ ∈ Sd ,

u · v = uivi, ‖v‖=
√

v · v, σ · τ = σi jτi j, ‖τ‖=
√

τ · τ.

Also, we denote by t ∈ [0,T ] and x∈Ω the time and spatial variables, respectively, where T > 0.
We consider a body made of a thermo-viscoelastic material that occupies the domain Ω ⊂

Rd with a smooth boundary Γ = ∂Ω. The boundary is divided into three disjoint measurable
parts: ΓD, ΓN , and ΓC, such that meas(ΓD) > 0. Additionally, ν = {νi} represents the unit
outward normal vector to the boundary. The body is subjected to body forces of density f0
and a volumetric heat source of constant intensity q0 in Ω. It is clamped on ΓD, where the
displacement field vanishes. Surface traction forces of density fN act on ΓN . The temperature
is assumed to vanish on ΓD∪ΓN). The body may come into frictional contact with a thermally
conductive foundation, whose temperature is maintained at θF . The normal gap between ΓC
and the foundation is denoted by g.
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For the displacement field u : Ω× (0,T ) −→ Rd and the stress tensor σ : Ω× (0,T ) −→
Sd , the symbols uν , σν , uτ , and στ represent their normal and tangential components on the
boundary, respectively, and are defined as follows:

uν = u ·ν , uτ = u−uνν ,

σν = (σν) ·ν , στ = σν−σνν .

We denote by q = (qi) : Ω× (0,T )−→R the heat flux vector, θ : Ω× (0,T )−→R the temper-
ature and by ε(u) the linearized strain tensor given by ε(u) =

(
εi j(u)

)
, εi j(u) = 1

2

(
ui, j +u j,i

)
,

where ui, j =
∂ui

∂x j
. Here and below Div(σ) = σi j, j and div(q) = qi,i denote the divergence oper-

ator for tensor and vector valued function, respectively.
The classical model for a dynamic contact problem with Coulomb’s friction in thermo-

viscoelasticity is as follows.
• Problem (P) : Find a displacement field u : Ω× (0,T ) −→ Rd and a temperature field

θ : Ω× (0,T )−→ R such that, for all t ∈ (0,T ),

σ(t) = A ε(u̇(t))+F ε(u(t))−θ(t)M in Ω, (2.1)

q(t) =−K ∇θ(t) in Ω, (2.2)

ρ ü(t)−Div σ(t) = f0(t) in Ω, (2.3)

θ̇(t)+div q(t)−Rε(u̇(t)) = q0(t) in Ω, (2.4)

u(t) = 0 on ΓD, (2.5)

σ(t)ν = fN(t) on ΓN , (2.6)

θ(t) = 0 on ΓD∪ΓN , (2.7)

−σν(u(t)−g) = pν(uν(t)−g), on ΓC, (2.8)

‖στ(t)‖ ≤ pτ(uν(t)−g),

u̇τ(t) 6= 0−→ στ(t) =−pτ(uν(t)−g)
u̇τ(t)
‖u̇τ(t)‖

 on ΓC, (2.9)

q(t) ·ν = kc(θ(t)−θF) on ΓC, (2.10)

u(0) = u0, u̇(0) = v0, θ(0) = θ0 in Ω. (2.11)

Equations (2.1) and (2.2) represent the thermo-viscoelastic constitutive law, where F =(Fi jkl),
A = (Ai jkl), M = (Mi j), and K = (Ki j) are, respectively, the elastic tensor, the viscosity ten-
sor, the thermal expansion tensor, and the thermal conductivity tensor. Equation (2.3) describes
the equation of motion with a mass density ρ = 1. Equation (2.4) represents Fourier’s law of
heat conduction, where the function R = (Ri j) captures the influence of the displacement field.

In addition, (2.5)–(2.7) define the displacement and thermal boundary conditions. The nor-
mal compliance contact condition is specified in (2.8), where pν is a prescribed function. When
pν > 0, the term uν − g represents the penetration of the surface of the body into the founda-
tion. Relation (2.9) represents Coulomb’s law of friction, where pτ is a prescribed non-negative
function, known as the friction bound. Relation (2.10) describes a thermal contact condition,
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where kc > 0 is the coefficient of heat exchange and θF is the temperature of the foundation.
Finally, the initial conditions are specified in Equation (2.11).

The variational formulation of Problem (P) requires some additional notations and prelimi-
naries. First, we define the following spaces:

H =
{

u = (ui) : ui ∈ L2(Ω)
}
, H =

{
σ = (σi j) : σi j = σ ji ∈ L2(Ω)

}
,

H1 =

{
u ∈ L2

(
Ω;Rd

)
: ε(u) ∈H

}
.

These are real Hilbert spaces endowed with the following inner products:

(u,v)H =
∫

Ω

uivi dx, ∀u,v ∈ H, (σ ,τ)H =
∫

Ω

σi jτi j dx, ∀σ ,τ ∈H ,

(u,v)H1 = (u,v)H +(ε(u),ε(v))H ,

and the associated norms: ‖ · ‖H , ‖ · ‖H1 , and ‖ · ‖H .
For the mechanical and thermal unknowns, we introduce the following spaces:

V = {v ∈ H : v = 0 on ΓD} , Q = {η ∈ H1 : η = 0 on ΓD∪ΓN} ,
endowed with the inner products and norms given by:

(u,v)V = (ε(u),ε(v))H , ‖v‖V =
√
(v,v)V , (θ ,η)Q = (∇θ ,∇η)H , ‖η‖Q =

√
(η ,η)Q.

The following Korn and Friedrichs-Poincaré inequalities hold

‖ε(v)‖H ≥ ck‖v‖H1, for all v ∈V, ‖∇η‖L2(Ω) ≥ cp‖η‖Q, for all η ∈ Q,

where ck and cp are two positive constants depend on Ω and ΓD. By the Sobolev trace theorem,

‖v‖
[L2(ΓC)]

d ≤ c1‖v‖V , for all v ∈V, ‖η‖L2(ΓC)
≤ c2‖η‖Q, for all η ∈ Q,

where c1 and c2 are two positive constants depend on Ω, ΓD and ΓC. We denote by V ∗ the dual
space of V and by identifying H with its own dual, and we have V ⊂ H = H∗ ⊂V ∗. We denote
(·, ·)V ∗×V the duality pairing between V ∗ and V . Next, we consider the following mappings

( f ,v)V ∗×V :=
∫

Ω

f0.vdx+
∫

ΓN

fN .vda,

(qc,η)Q∗×Q :=
∫

Ω

q0ηdx,

jd(u,v) :=
∫

ΓC

pν(uν −g)vνda+
∫

ΓC

pτ(uτ −g)‖vτ‖da,

jc(θ ,η) :=
∫

ΓC

kc(θ −θF)ηda.

We now introduce assumptions regarding the data in the study of Problem (P):
(H1) The viscosity operator A = Ai jkl : Ω×Sd −→ Sd satisfies

i) There exists mb > 0 such that for all ξ1,ξ2 ∈ Sd and a.e. x ∈Ω(
A (x,ξ1)−A (x,ξ2)

)
.
(
ξ1−ξ2

)
≥ mb‖ξ1−ξ2‖2.

ii) There exists Mb > 0 such that for all ξ1,ξ2 ∈ Sd and a.e. x ∈Ω∥∥A (x,ξ1)−A (x,ξ2)
∥∥≤Mb‖ξ1−ξ2‖.
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iii) The mapping x 7→A (x,ξ ) is measurable on Ω, for all ξ ∈ Sd .
iv) A (x,0) = 0 a.e. x ∈Ω.

(H2) The elasticity operator F = Fi jkl : Ω×Sd −→ Sd satisfies
i) There exists ma > 0 such that for all ξ1,ξ2 ∈ Sd and a.e. x ∈Ω(

F (x,ξ1)−F (x,ξ2)
)
.
(
ξ1−ξ2

)
≥ ma‖ξ1−ξ2‖2.

ii) There exists Ma > 0 such that for all ξ1,ξ2 ∈ Sd and a.e. x ∈Ω∥∥F (x,ξ1)−F (x,ξ2)
∥∥≤Ma‖ξ1−ξ2‖.

iii) The mapping x 7→F (x,ξ ) is measurable on Ω, for all ξ ∈ Sd .
iv) F (x,0) = 0 a.e. x ∈Ω.

(H3) The thermal conductivity tensor K = (Ki j) : Ω×Rd −→ Rd satisfies
i) Ki j = K ji ∈ L∞(Ω).

ii) Ki j(x)ξiξ j ≥ md‖ξ‖2, with md > 0, for all ξ ∈ Rd, x ∈Ω.
iii) ‖(K ∇θ ,∇η)‖H ≤Md‖θ‖Q‖η‖Q, with Md > 0, for all θ ,η ∈ Q.

(H4) The thermal expansion tensor M = (Mi j) : Ω×R−→ R satisfies
i) Mi j = M ji ∈ L∞(Ω).

ii) ‖(M θ ,ε(v))‖H ≤Mm‖θ‖Q‖v‖V , with Mm > 0, for all θ ∈ Q,v ∈V .
(H5) The influence of the displacement field tensor R = (Ri j) : Ω×R−→ R satisfies

i) Ri j = R ji ∈ L∞(Ω).
ii) ‖(Rε(v),η)‖H ≤Me‖v‖V‖η‖Q‖, with Me > 0, for all η ∈ Q,v ∈V .

(H6) i) The forces, the traction and the thermal flux satisfy

f0 ∈ L2(0,T ;L2(Ω)d), fN ∈ L2(0,T ;L2(ΓN)
d) and q0 ∈ L2(0,T ;L2(Ω));

ii) the gap function, the thermal potential, and the initial data satisfy

g≥ 0, g ∈ L∞(ΓC), and θF ∈ L2(0,T ;L2(ΓC)), u0,v0 ∈V,θ0 ∈ L2(Ω);

iii) the functional jd is proper, convex, and lower semi-continuous on V .
(H7) The normal compliance function pν and the friction bound pτ satisfy the following

hypothesis for r = ν ,τ
i) pr : ΓC×R−→ R+;

ii) x−→ pr(x,u) is measurable on ΓC, for all u ∈ R;
iii) x−→ pr(x,u) = 0 for u≤ 0, a.e. x ∈ ΓC;
iv) there exists Lr > 0 such that |pr(x,u)− pr(x,v)| ≤ Lr|u− v|, for all u,v ∈ R+, a.e.

x ∈ ΓC.
(H8)

ma < (Lν +Lτ)c2
1, and md > Mkcc

2
2. (2.12)

For the sake of simplification, let us assume that

a : V ×V −→ R, a(u,v) := (F ε(u),ε(v))H ,

b : V ×V −→ R, b(u,v) := (A ε(u),ε(v))H ,

d : Q×Q−→ R, d(θ ,η) := (K ∇θ ,∇η)H ,

m : Q×V −→ R, m(θ ,v) := (M θ ,ε(v))H ,

e : V ×Q−→ R, e(u,η) := (Rε(v),η)L2(Ω).
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According to this notation and through a standard derivation, we have the following variational
formulation in terms of displacement field and temperature.

Problem (PV) : Find a displacement field u : Ω× (0,T ) −→ Rd and a temperature field
θ : Ω× (0,T )−→ R such that for all v ∈V , η ∈ Q and a.e. t ∈ (0,T )

(ü(t),v− u̇(t))H +b(u̇(t),v− u̇(t))+a(u(t),v− u̇(t))−m(θ(t),v− u̇(t)) (2.13)

+ jd(u(t),v)− jd(u(t), u̇(t))≥ ( f (t),v− u̇(t))V ∗×V ,

(θ̇(t),η)L2(Ω)+d(θ(t),η)− e(u̇(t),η)+ jc(θ(t),η) = (qc(t),η)Q∗×Q, (2.14)

u(0) = u0, u̇(0) = v0, θ(0) = θ0.

3. AN EXISTENCE AND UNIQUENESS RESULT

In this section, we present, and we demonstrate an existence and uniqueness result.

Theorem 3.1. Assume that (H1)-(H8) and condition (2.12) hold. Then, there exists a unique
solution (u,θ) to Problem (PV) which satisfies the following regularity conditions

u ∈ L2(0,T ;V ), u̇ ∈ L2(0,T ;V ∗), θ ∈ L2(0,T ;Q).

The proof of this result is carried out in several steps and based on Banach fixed point theo-
rem. First, let ζ ∈ L2(0,T ;V ∗) and ξ ∈ L2(0,T ;Q∗) given by(

ζ (t),v
)

V ∗×V = m
(

θξ (t),v
)
, ∀v ∈V,

(
ξ (t),η

)
Q∗×Q =−e

(
u̇ζ (t),η

)
, ∀η ∈ Q.

Applying Riesz’ representation theorem, we define the elements(
fζ (t),v

)
V ∗×V

=
(

f (t),v
)

V ∗×V −
(
ζ (t),v

)
V ∗×V ,(

qξ (t),η
)

Q∗×Q
=
(
qc(t),η

)
Q∗×Q−

(
ξ (t),η

)
Q∗×Q ,

for all v ∈V , η ∈ Q and a.e. t ∈ (0,T ).

Next, we consider the following intermediates problems.
Problem (PD): Find a displacement field uζ : (0,T ) −→ V such that for all v ∈ V and a.e.

t ∈ (0,T ) (
üζ (t),v− u̇ζ (t)

)
H
+b
(

u̇ζ (t),v− u̇ζ (t)
)
+a
(

uζ (t),v− u̇ζ (t)
)

(3.1)

jd
(

uζ (t),v
)
− jd

(
uζ (t), u̇ζ (t)

)
≥
(

fζ (t),v− u̇ζ (t)
)

V ∗×V
,

uζ (0) = u0, u̇ζ (0) = v0.

Problem (PT): Find a temperature field θξ : (0,T ) −→ Q such that for all η ∈ Q and a.e.
t ∈ (0,T ) (

θ̇ξ (t),η
)

L2(Ω)
+d
(

θξ (t),η
)
+ jc

(
θξ (t),η

)
=
(

qξ (t),η
)

Q∗×Q
,

θξ (0) = θ0.

In the second step, we present the existence and uniqueness result of the intermediates problems.
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Lemma 3.1. For all v ∈ V , Problem (PD) has a unique solution uζ which satisfies uζ ∈
L2(0,T ;V ) and u̇ζ ∈ L2(0,T ;V ∗).

The proof is based on similar arguments to those used in [8, Theorem 5.15].

Lemma 3.2. For all η ∈ Q, Problem (PT) has a unique solution θξ satisfies θξ ∈ L2(0,T ;Q).

The proof of this result is presented in [5, Lemma 3.3] using the Galerkin method.
In the last step, we define the operator

Λ(ζ ,ξ )(t) :=
(
Λ1(ζ ,ξ )(t),Λ2(ζ ,ξ )(t)

)
∈V ∗×Q∗,

given by (
Λ1(ζ ,ξ )(t),v

)
V ∗×V = m

(
θξ (t),v

)
,(

Λ2(ζ ,ξ )(t),η
)

Q∗×Q =−e
(

u̇ζ (t),η
)
.

We have the following lemma.

Lemma 3.3. The operator Λ is continuous and has a unique fixed point (ζ ∗,ξ ∗)∈ L2(0,T ;V ∗×
Q∗).

Proof. Let (ζ ,ξ ) ∈ L2(0,T ;V ×L2(Ω)) and t1, t2 ∈ [0,T ]. By assumption (H2) and (H5), we
have ∥∥Λ1(ζ ,ξ )(t1)−Λ2(ζ ,ξ )(t2)

∥∥
V ∗×Q∗ ≤Mm

∥∥∥θξ (t1)−θξ (t2)
∥∥∥

Q
, (3.2)∥∥Λ2(ζ ,ξ )(t1)−Λ2(ζ ,ξ )(t2)

∥∥
V ∗×Q∗ ≤Me

∥∥∥u̇ζ (t1)− u̇ζ (t2)
∥∥∥

V
. (3.3)

Taking account the regularities of θξ and u̇ξ , we deduce that Λ is continuous.
Now, let (ζ1,ξ1),(ζ2,ξ2) ∈ L2(0,T ;V ∗×Q∗). For t ∈ [0,T ], similar to (3.2)-(3.3), we obtain∥∥Λ(ζ1,ξ1)(t)−Λ(ζ2,ξ2)(t)

∥∥
V ∗×Q∗ ≤ c

(∥∥∥u̇ζ1
(t)− u̇ζ2

(t)
∥∥∥

V
+
∥∥∥θξ1

(t)−θξ2
(t)
∥∥∥

Q

)
. (3.4)

Using (3.1), we obtain that for a.e. t ∈ (0,T )(
üζ1

(t)− üζ2
(t), u̇ζ1

(t)− u̇ζ2
(t)
)

H
+b
(

u̇ζ1
(t)− u̇ζ2

(t), u̇ζ1
(t)− u̇ζ2

(t)
)

+a
(

uζ1
(t)−uζ2

(t), u̇ζ1
(t)− u̇ζ2

(t)
)
+
(

ζ1(t)−ζ2(t), u̇ζ1
(t)− u̇ζ2

(t)
)

+ jd
(

uζ1
(t), u̇ζ1

(t)
)
− jd

(
uζ1

(t), u̇ζ2
(t)
)
− jd

(
uζ2

(t), u̇ζ1
(t)
)
+ jd

(
uζ2

(t), u̇ζ2
(t)
)
≤ 0.

(3.5)

From the hypothesis on the operator jd , we have∣∣∣ jd (uζ1
(t), u̇ζ1

(t)
)
− jd

(
uζ1

(t), u̇ζ2
(t)
)
− jd

(
uζ2

(t), u̇ζ1
(t)
)
+ jd

(
uζ2

(t), u̇ζ2
(t)
)∣∣∣

≤ c2
1(Lν +Lτ)

∥∥∥uζ1
(t)−uζ2

(t)
∥∥∥

V

∥∥∥u̇ζ1
(t)− u̇ζ2

(t)
∥∥∥

V
,

(3.6)
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for a.e. t ∈ (0,T ). Integrating inequality (3.5) over [0,T ] and coupling (3.6), (H1), it follows
that for a.e. t ∈ (0,T )

1
2

∥∥∥u̇ζ1
(t)− u̇ζ2

(t)
∥∥∥2

V
+mb

∫ t

0

∥∥∥u̇ζ1
(s)− u̇ζ2

(s)
∥∥∥2

V
ds

≤−
∫ t

0

(
ζ1(s)−ζ2(s), u̇ζ1

(s)− u̇ζ2
(s)
)

V ∗×V
ds

+(Ma + c2
1(Lν +Lτ))

∫ t

0

∥∥∥uζ1
(s)−uζ2

(s)
∥∥∥

V

∥∥∥u̇ζ1
(s)− u̇ζ2

(s)
∥∥∥

V
ds.

We recall that, for i = 1,2, we have uζi(t) =
∫ t

0
u̇ζi(s)ds+u0. Thus∥∥∥uζ1

(t)−uζ2
(t)
∥∥∥

V
≤ c

∫ t

0

∥∥∥u̇ζ1
(s)− u̇ζ2

(s)
∥∥∥

V
ds.

Combining the two last relations with the young’s inequality, ab ≤ εa2 +
1

4ε
b2, ε > 0, and

Gornwall’s inequality, we deduce that∥∥∥u̇ζ1
(t)− u̇ζ2

(t)
∥∥∥

V
≤ c
∥∥ζ1(t)−ζ2(t)

∥∥
V ∗ . (3.7)

By using the same idea, we get that for a.e. t ∈ (0,T )(
θ̇ξ1

(t)− θ̇ξ2
(t),θξ1

(t)−θξ2
(t)
)

L2(Ω)
+d
(

θξ1
(t)−θξ2

(t),θξ1
(t)−θξ2

(t)
)

+
(

ξ1(t)−ξ2(t),θξ1
(t)−θξ2

(t)
)

Q∗×Q

+ jc
(

θξ1
(t),θξ1

(t)−θξ2
(t)
)
− jc

(
θξ2

(t),θξ1
(t)−θξ2

(t)
)
= 0.

By (2.12) and (H7), we conclude∣∣∣ jc(θξ1
(t),θξ1

(t)−θξ2
(t)
)
− jc

(
θξ2

(t),θξ1
(t)−θξ2

(t)
)∣∣∣≤ kcc2

2

∥∥∥θξ1
(t)−θξ2

(t)
∥∥∥2

Q
.

Using condition (2.12), we find that there exists a positive constant c such that∥∥∥θξ1
(t)−θξ2

(t)
∥∥∥

Q
≤ c
∥∥ξ1(t)−ξ2(t)

∥∥
Q∗ . (3.8)

Now, combining (3.4), (3.7), and (3.8), we find∥∥Λ(ζ1,ξ1)−Λ(ζ2,ξ2)
∥∥

L2(0,T ;V ∗×Q∗) ≤ c
∥∥(ζ1,ξ1)− (ζ2,ξ2)

∥∥
L2(0,T ;V ∗×Q∗) .

Reiterating this inequality n times leads to∥∥Λ
n(ζ1,ξ1)−Λ

n(ζ2,ξ2)
∥∥

L2(0,T ;V ∗×Q∗) ≤
(cT )n

n!

∥∥(ζ1,ξ1)− (ζ2,ξ2)
∥∥

L2(0,T ;V ∗×Q∗) ,

which implies that, for n sufficiently large, operator Λ is a contraction in L2(0,T ;V ∗×Q∗).
Therefore, there exists a unique fixed point (ζ ∗,ξ ∗) of Λ. �

Now, we have all ingredients to prove Theorem 3.1
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Proof of Theorem 3.1.
Existence: Let

(
ζ ∗,ξ ∗

)
∈ L2 (0,T ;V ∗×Q∗) be the fixed point of the operator Λ and let u∗

ζ ∗ ,
θ ∗

ξ ∗ be the solutions of Problem (PD) and Problem (PT), respectively. For (ζ ,ξ ) = (ζ ∗,ξ ∗),

by the definition of Λ, we find that
(

uζ ∗,θξ ∗

)
is a solution to Problem (PV).

Uniqueness: The uniqueness results from the uniqueness of the fixed point of Λ. �

4. FULLY DISCRETE SCHEME AND ERROR ESTIMATE

In this section, we present a fully discrete scheme for the variational formulated in Problem
(PV), and we establish a result on error estimate. Let

{
T h
}

be a regular family of triangular

finite element partition of Ω which are compatible with the boundary decomposition Γ = ΓD∪
ΓN ∪ΓC, where h > 0 denotes a spatial discretization parameter. Let V h and Qh be a finite
dimensional subspace of V and Q respectively given by

V h =

{
vh ∈

[
C(Ω)

]d
; vh
|Tr ∈

[
P1(Tr)

]d ∀Tr ∈T h; vh = 0 on ΓD

}
⊂V,

Qh =
{

η
h ∈C(Ω); η

h
|Tr ∈ P1(Tr) ∀Tr ∈T h; η

h = 0 on ΓD∪ΓN

}
⊂ Q.

For a positive integer N, we define a uniform partition of [0,T ] given by 0 = t0 < t1 < ... < tN =
T , and the time step size kn = tn− tn−1, and let k = maxn{kn} is the maximal step size. For a

time continuous function u = u(t), we write un = u(tn) and δun =
un−un−1

k
for n = 1, ...,N.

Also, we introduce the velocity field
{

whk
n

}N

n=0
which is related with the displacement field

with the following relations

whk
n = δuhk

n and uhk
n = uh

0 +
n

∑
j=1

k jwhk
j .

Using the backward Euler scheme, the fully discrete approximation of Problem (PV) is the
following.

Problem (PF) : Find a displacement field
{

uhk
n

}N

n=0
⊂V h and a temperature field

{
θ hk

n

}N

n=0
⊂

Qh for all vh ∈V h and ηh ∈ Qh such that(
δwhk

n ,vh−whk
n

)
H
+b
(

whk
n ,vh−whk

n

)
+a
(

uhk
n ,vh−whk

n

)
−m

(
θ

hk
n−1,v

h−whk
n

)
+ jd

(
uhk

n ,vh
)
− jd

(
uhk

n ,whk
n

)
≥
(

fn,vh−whk
n

)
V ∗×V

,
(4.1)

(
δθ

hk
n ,ηh

)
L2(Ω)

+d
(

θ
hk
n ,ηh

)
− e
(

whk
n−1,η

h
)
+ jc

(
θ

hk
n ,ηh

)
=
(

qcn ,η
h
)

Q∗×Q
, (4.2)

and
uhk

0 = uh
0, whk

0 = wh
0, θ

hk
0 = θ

h
0 ,

where uh
0 ∈V h, wh

0 ∈V h, and θ h
0 ∈ Qh are respectively approximates of u0, v0, and θ0.

Under the assumptions of Theorem 3.1, and following the same arguments, used in previous
section, there exists a unique solution of Problem (PF). Next, we recall the following discrete
Gornwall’s inequality [17, Lemma 4.1].
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Lemma 4.1. Let T > 0 be given. For a positive integer N, define k = T/N. Assume that
{gn}N

n=1 and {en}N
n=1 are two sequences of nonnegative numbers satisfying, for all n = 1, ...,N,

en ≤ cgn + c∑
n
j=1 ke j for a positive constant c independent of N or k. Then, there exists a

positive constant c, independent of N or k, such that

max
1≤n≤N

en ≤ c max
1≤n≤N

gn.

Now we state a result on error estimation.

Lemma 4.2. Let (u,θ) and
(

uhk
n ,θ hk

n

)
be solutions to Problem (PV) and Problem (PF), respec-

tively. Assume (H1)-(H8) and (2.12). Then the following bound holds for all
{

vn
j

}N

j=1
⊂V h and{

ηn
j

}N

j=1
⊂ Qh

∥∥∥wn−whk
n

∥∥∥2

H
+
∥∥∥θn−θ

hk
n

∥∥∥2

L2(Ω)
+ ck

n

∑
j=1

(∥∥∥w j−whk
j

∥∥∥2

V
+
∥∥∥θ j−θ

hk
j

∥∥∥2

Q

)
≤ c
{∥∥∥w0−whk

0

∥∥∥2

H
+
∥∥∥u0−uhk

0

∥∥∥2

V
+
∥∥∥θ0−θ

hk
0

∥∥∥2

L2(Ω)
+
∥∥∥θ0−θ

hk
0

∥∥∥2

Q

}
+ c
{∥∥∥w1− vh

1

∥∥∥2

H
+
∥∥∥θ1−η

h
1

∥∥∥2

L2(Ω)

}
+ c
{∥∥∥wn− vh

n

∥∥∥2

H
+
∥∥∥θn−η

h
n

∥∥∥2

L2(Ω)

}
+ ck2 ‖θ‖2

H1(0,T ;Q)+ ck2 ‖u‖2
H2(0,T ;V )+ ckR

(
w j,vh

j

)
+ ck

n

∑
j=1

(∥∥ẇ j−δw j
∥∥2

H +
∥∥∥w j− vh

j

∥∥∥2

V
+
∥∥∥θ̇ j−δθ j

∥∥∥2

L2(Ω)
+
∥∥∥θ j−η

h
j

∥∥∥2

Q

)

+
1
k

n−1

∑
j=1

(∥∥∥(w j− vn
j

)
−
(

w j+1− vh
j+1

)∥∥∥2

H
+
∥∥∥(θ j−η

n
j

)
−
(

θ j+1−η
h
j+1

)∥∥∥2

L2(Ω)

)
,

(4.3)

where

R
(

wn,vh
)
=
(

δwn,vh−wn

)
H
+b
(

wn,vh−wn

)
+a
(

un,vh−wn

)
−m

(
θn,vh−wn

)
+ jd

(
un,vh

)
− jd (un,wn)−

(
fn,vh−wn

)
V ∗×V

,

Proof. Using inequality (4.1), we have

−
(

δwhk
n ,wn−whk

n

)
H
+b
(
−whk

n ,wn−whk
n

)
≤ a

(
uhk

n ,wn−whk
n

)
−m

(
θ

hk
n−1,wn−whk

n

)
−
(

δwhk
n ,wn− vh

)
H
−b
(

whk
n ,wn− vh

)
−a
(

uhk
n ,wn− vh

)
−m

(
θ

hk
n−1,v

h−wn

)
+ jd

(
uhk

n ,vh
)
− jd

(
uhk

n ,whk
n

)
−
(

fn,vh−whk
n

)
V ∗×V

.

Taking v = whk
n in (2.13) at time t = tn, we obtain(

ẇn,wn−whk
n

)
H
+b
(

wn,wn−whk
n

)
≤ a

(
un,whk

n −wn

)
−m

(
θn,whk

n −wn

)
+ jd

(
un,whk

n

)
− jd (un,wn)−

(
fn,whk

n −wn

)
V ∗×V

.
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Adding the inequality above yields(
ẇn−δwhk

n ,wn−whk
n

)
H
+b
(

wn−whk
n ,wn−whk

n

)
≤ a

(
un−uhk

n ,whk
n −wn

)
−m

(
θn−θ

hk
n−1,w

hk
n −wn

)
−
(

δwhk
n ,wn− vn

)
H

−b
(

whk
n ,wn− vn

)
−a
(

uhk
n ,wn− vn

)
+m

(
θ

hk
n−1,wn− vn

)
+ jd

(
uhk

n ,vh
)
− jd

(
uhk

n ,whk
n

)
−
(

fn,vh−wn

)
V ∗×V

+ jd
(

un,whk
n

)
− jd (un,wn) .

(4.4)

Using the relation(
ẇn−δwhk

n ,wn−whk
n

)
H
=
(

δwn−δwhk
n ,wn−whk

n

)
H
+
(

ẇn−δwn,wn− vh
)

H

+
(

ẇn−δwhk
n ,vh−whk

n

)
H
,

(4.5)

we deduce that(
δwn−δwhk

n ,wn−whk
n

)
H
+b
(

wn−whk
n ,wn−whk

n

)
≤
(

δwn−δwhk
n ,wn− vh

)
H
+
(

δwn− ẇn,vh−whk
n

)
H
+a
(

un−uhk
n ,whk

n −wn

)
−m

(
θn−θ

hk
n−1,w

hk
n −wn

)
+b
(

wn−whk
n ,wn− vh

)
+a
(

un−uhk
n ,wn− vh

)
−m

(
θn−θ

hk
n−1,wn− vh

)
+R

(
wn,vh

)
+R1,

(4.6)

where

R1 = jd
(

un,whk
n

)
− jd

(
un,vh

)
+ jd

(
uhk

n ,vh
)
− jd

(
uhk

n ,whk
n

)
. (4.7)

Using the formula 2(x−y,x)H = ‖x−y‖2
H +‖x‖2

H−‖y‖2
H for x=wn−whk

n and b=wn−1−whk
n−1,

we have (
δwn−δwhk

n ,wn−whk
n

)
H
≥ 1

2k

(∥∥∥wn−whk
n

∥∥∥2

H
−
∥∥∥wn−1−whk

n−1

∥∥∥2

H

)
. (4.8)

By the lipschitz continuity of b and the continuity of a, b and m, we have

b
(

wn−whk
n ,wn−whk

n

)
≥ mb

∥∥∥wn−whk
n

∥∥∥2

V
,

b
(

wn−whk
n ,wn− vh

)
≤Mb

∥∥∥wn−whk
n

∥∥∥
V

∥∥∥wn− vh
∥∥∥

V
,

a
(

un−uhk
n ,whk

n − vh
)
≤Ma

∥∥∥un−uhk
n

∥∥∥
V

∥∥∥whk
n − vh

∥∥∥
V
,

a
(

un−uhk
n ,whk

n −wn

)
≤Ma

∥∥∥un−uhk
n

∥∥∥
V

∥∥∥wn−whk
n

∥∥∥
V
,

m
(

θn−θ
hk
n−1,wn− vh

)
≤Mm

∥∥∥θn−θ
hk
n−1

∥∥∥
Q

∥∥∥wn− vh
∥∥∥

V
,

m
(

θn−θ
hk
n−1,w

hk
n −wn

)
≤Mm

∥∥∥θn−θ
hk
n−1

∥∥∥
Q

∥∥∥whk
n −wn

∥∥∥
V
.

(4.9)

Taking into account (H8), we find that

|R1| ≤
√

meas(ΓC)c2
1(Lν +Lτ)

∥∥∥un−uhk
n

∥∥∥
V

∥∥∥whk
n − vh

∥∥∥
V
. (4.10)
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Using
∥∥∥whk

n − vh
∥∥∥

V
≤
∥∥∥whk

n −wn

∥∥∥
V
+
∥∥∥wn− vh

∥∥∥
V
, (4.4)-(4.10) yield∥∥∥wn−whk

n

∥∥∥2

H
−
∥∥∥wn−1−whk

n−1

∥∥∥2

H
+ ck

∥∥∥wn−whk
n

∥∥∥2

V

≤ ck
{∥∥∥un−uhk

n

∥∥∥2

V
+
∥∥∥θn−θ

hk
n−1

∥∥∥2

Q
+
∥∥∥wn− vh

∥∥∥
V

}
+ ck

{
‖ẇn−δwn‖2

H +
∥∥∥wn− vh

∥∥∥2

H
+R

(
wn,vh

)}
+2k

(
δwn−δwhk

n ,wn− vh
)

H
.

Now, we replace n by j and sum over j from 1 to n to obtain∥∥∥wn−whk
n

∥∥∥2

H
+ ck

n

∑
j=1

∥∥∥w j−whk
j

∥∥∥2

V

≤ ck
n

∑
j=1

{∥∥∥u j−uhk
j

∥∥∥2

V
+
∥∥∥w j− vh

j

∥∥∥2

V
+
∥∥ẇ j−δw j

∥∥2
H +

∥∥∥w j− vh
j

∥∥∥2

H

+
∥∥∥θ j−θ

hk
j−1

∥∥∥2

Q
+R

(
w j,vh

j

)}
+ ck

n

∑
j=1

(
δw j−δwhk

j ,w j− vh
j

)
H
+
∥∥∥w0−whk

0

∥∥∥2

H
.

On the other hand, we have

k
n

∑
j=1

(
δw j−δwhk

j ,w j− vh
j

)
H
=

n

∑
j=1

((
w j−whk

j

)
−
(

w j−1−whk
j−1

)
,w j− vh

j

)
H

+
(

wn−whk
n ,wn− vh

j

)
H
−
(

w0−whk
0 ,w1− vh

1

)
H

+
n−1

∑
j=1

(
w j−whk

j ,w j− vh
j −
(

w j+1− vh
j+1

))
H

≤ c
{∥∥∥wn−whk

n

∥∥∥2

H
+
∥∥∥wn− vh

n

∥∥∥2

H
+
∥∥∥w0−wh

0

∥∥∥2

H
+
∥∥∥w1− vh

1

∥∥∥2

H

}
+4

n−1

∑
j=1

k
∥∥∥w j−whk

j

∥∥∥2

H
+

n−1

∑
j=1

1
k

∥∥∥w j− vh
j −
(

w j+1− vh
j+1

)∥∥∥2

H
.

Recall the following classical inequality∥∥∥u j−uhk
j

∥∥∥
V
≤
∥∥∥u0−uh

0

∥∥∥
V
+

j

∑
l=1

k
∥∥∥wl−whk

l

∥∥∥
V
+ I1,

where I1 =
∥∥∥∫ t j

0 w(s)ds−∑
j
l=1 kwl

∥∥∥
V
≤ k‖u‖H2(0,T ;V ). Then

∥∥∥u j−uhk
j

∥∥∥2

V
≤ c

{∥∥∥u0−uh
0

∥∥∥2

V
+ j

j

∑
l=1

k2
∥∥∥wl−whk

l

∥∥∥2

V
+ k2‖u‖H2(0,T ;V )

}
.

In view of j ≤ n≤ N and Nk = T , we deduce that

n

∑
j=1

k
∥∥∥u j−uhk

j

∥∥∥2

V
≤ cT

(∥∥∥u0−uh
0

∥∥∥2

V
+ k2‖u‖H2(0,T ;V )

)
+T

n

∑
j=1

k
j

∑
l=1

∥∥∥wl−whk
l

∥∥∥2

V
. (4.11)
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It follows that∥∥∥wn−whk
n

∥∥∥2

H
+ ck

n

∑
j=1

∥∥∥w j−whk
j

∥∥∥2

V
≤ ck

∥∥∥θn−θ
hk
n−1

∥∥∥2

Q
+ ck2 ‖u‖2

H2(0,T ;V )

+ c
{∥∥∥w0−whk

0

∥∥∥2

H
+
∥∥∥u0−uhk

0

∥∥∥2

V
+
∥∥∥w1− vh

1

∥∥∥2

H
+
∥∥∥wn− vh

n

∥∥∥2

H

}
+ ck

n

∑
j=1

(∥∥ẇ j−δw j
∥∥2

V +
∥∥∥w j− vh

j

∥∥∥2

V
+
∥∥∥θ j−θ

hk
j−1

∥∥∥2

Q
+R

(
w j,vh

j

))

+
1
k

n−1

∑
j=1

∥∥∥w j− vh
j −
(

w j+1− vh
j+1

)∥∥∥2

H
.

(4.12)

Taking η = ηh ∈ Qh at time t = tn in (2.14), we arrive at(
θ̇n,η

h
)

L2(Ω)
+d
(

θn,η
h
)
− e
(

wn,η
h
)
+ jc

(
θn,η

h
)
=
(

qcn,η
h
)
.

Combing (2.14) with (4.2), we have(
θ̇n−δθ

hk
n ,ηh

)
L2(Ω)

+d
(

θn−θ
hk
n ,ηh

)
− e
(

wn−whk
n−1,η

h
)
+ jc

(
θn,η

h
)

− jc
(

θ
hk
n ,ηh

)
= 0.

(4.13)

Substituting ηh by ηh−θ hk
n into (4.13), we obtain(

θ̇n−δθ
hk
n ,ηh−θ

hk
n

)
L2(Ω)

+d
(

θn−θ
hk
n ,ηh−θ

hk
n

)
− e
(

wn−whk
n−1,η

h−θ
hk
n

)
+ jc

(
θn,η

h−θ
hk
n

)
− jc

(
θ

hk
n ,ηh−θ

hk
n

)
= 0.

Using(
θ̇n−δθ

hk
n ,ηh−θ

hk
n

)
L2(Ω)

=
(

δθn−δθ
hk
n ,ηh−θn

)
L2(Ω)

+
(

δθn−δθ
hk
n ,θn−θ

hk
n

)
L2(Ω)

+
(

θ̇ −δθn,η
h−θ

hk
n

)
L2(Ω)

,

and

d
(

θn−θ
hk
n ,ηh−θ

hk
n

)
= d

(
θn−θ

hk
n ,ηh−θn

)
+d
(

θn−θ
hk
n ,θ h−θ

hk
n

)
,

we deduce that (
δθn−δθ

hk
n ,θn−θ

hk
n

)
L2(Ω)

+d
(

θn−θ
hk
n ,θ h−θ

hk
n

)
=
(

θ̇ −δθn,θ
hk
n −η

h
)

L2(Ω)
+
(

δθn−δθ
hk
n ,θn−η

h
)

L2(Ω)

−d
(

θn−θ
hk
n ,ηh−θn

)
+ e
(

wn−whk
n−1,η

h−θn

)
+Rc.

(4.14)

where
Rc = jc

(
θ

hk
n ,ηh−θ

hk
n

)
− jc

(
θn,η

h−θ
hk
n

)
.

Using (H7), we have
|Rc| ≤ kcc2

2

∥∥∥θn−θ
hk
n

∥∥∥
Q

∥∥∥η
h−θ

hk
n

∥∥∥
Q
.
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From the following inequalities

(
δθn−δθ

hk
n ,θn−θ

hk
n

)
L2(Ω)

≥ 1
2k

(∥∥∥θn−θ
hk
n

∥∥∥2

L2(Ω)
−
∥∥∥θn−1−θ

hk
n−1

∥∥∥2

L2(Ω)

)

and ∥∥∥η
h−θ

hk
n

∥∥∥
Q
≤
∥∥∥η

h−θn

∥∥∥
Q
+
∥∥∥θn−θ

hk
n

∥∥∥
Q
,

and (H1), (H3), and (H5), we find that there exist a positive constant c such that

∥∥∥θn−θ
hk
n

∥∥∥2

L2(Ω)
−
∥∥∥θn−1−θ

hk
n−1

∥∥∥2

L2(Ω)
+ ck

∥∥∥θn−θ
hk
n

∥∥∥2

Q

≤ ck
{∥∥∥θ̇n−δθn

∥∥∥2

L2(Ω)
+
∥∥∥θn−η

h
∥∥∥2

Q
+
∥∥∥wn−whk

n−1

∥∥∥2

V

}
+ ck

(
δθn−δθ

hk
n ,θn−η

h
)

L2(Ω)
.

Replacing n by j and summing this inequality over j from 1 to n, we obtain

∥∥∥θn−θ
hk
n

∥∥∥2

L2(Ω)
+ ck

n

∑
j=1

∥∥∥θ j−θ
hk
j

∥∥∥2

Q

≤
∥∥∥θ0−θ

hk
0

∥∥∥2

L2(Ω)
+ ck

n

∑
j=1

(∥∥∥θ̇ j−δθ j

∥∥∥2

L2(Ω)
+
∥∥∥θ j−η

h
j

∥∥∥2

Q

)
+ ck

n

∑
j=1

∥∥∥w j−whk
j−1

∥∥∥2

V
+ ck

n

∑
j=1

(
δθ j−δθ

hk
j ,θ j−η

h
j

)
L2(Ω)

.

(4.15)

Moreover, we have

k
n

∑
j=1

(
δθ j−δθ

hk
j ,θ j−η

h
j

)
L2(Ω)

=
n

∑
j=1

((
θ j−θ j−1

)
−
(

θ
hk
j −θ

hk
j−1

)
,θ j−η

h
j

)
L2(Ω)

=
n

∑
j=1

(
θ j−θ

hk
j ,θ j−η

h
j

)
L2(Ω)

+
n

∑
j=1

(
θ j−1−θ

hk
j−1,θ j−η

h
j

)
L2(Ω)

=
n

∑
j=1

(
θ j−θ

hk
j ,
(

θ j−η
h
j

)
−
(

θ j+1−η
h
j+1

))
L2(Ω)

+
(

θn−θ
hk
n ,θn−η

h
n

)
L2(Ω)

−
(

θ0−θ
hk
0 ,θ1−η

h
1

)
L2(Ω)

.

(4.16)
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Then,

k
n

∑
j=1

(
δθ j−δθ

hk
j ,θ j−η

h
j

)
L2(Ω)

≤ c
{∥∥∥θn−θ

hk
n

∥∥∥2

L2(Ω)
+
∥∥∥θn−η

h
n

∥∥∥2

L2(Ω)
+
∥∥∥θ0−θ

h
0

∥∥∥2

L2(Ω)
+
∥∥∥θ1−η

h
1

∥∥∥2

L2(Ω)

}
+

n−1

∑
j=1

∥∥∥θ j−θ
hk
j

∥∥∥
L2(Ω)

∥∥∥(θ j−η
h
j

)
−
(

θ j+1−η
h
j+1

)∥∥∥
L2(Ω)

≤ c
{∥∥∥θn−θ

hk
n

∥∥∥2

L2(Ω)
+
∥∥∥θn−η

h
n

∥∥∥2

L2(Ω)
+
∥∥∥θ0−θ

h
0

∥∥∥2

L2(Ω)
+
∥∥∥θ1−η

h
1

∥∥∥2

L2(Ω)

}
+ k

n−1

∑
j=1

∥∥∥θ j−θ
hk
j

∥∥∥2

L2(Ω)
+

1
k

n−1

∑
j=1

∥∥∥(θ j−η
h
j

)
−
(

θ j+1−η
h
j+1

)∥∥∥2

L2(Ω)
,

which together with (4.15) concludes∥∥∥θn−θ
hk
n

∥∥∥2

L2(Ω)
+ ck

n

∑
j=1

∥∥∥θ j−θ
hk
j

∥∥∥2

Q

≤ c
{∥∥∥θ0−θ

hk
0

∥∥∥2

L2(Ω)
+
∥∥∥θ1−η

h
1

∥∥∥2

L2(Ω)
+
∥∥∥θn−η

h
n

∥∥∥2

L2(Ω)

}
+ ck

n

∑
j=1

(∥∥∥w j−whk
j−1

∥∥∥2

V
+
∥∥∥θ̇ j−δθ j

∥∥∥2

L2(Ω)
+
∥∥∥θ j−η

h
j

∥∥∥2

Q

)

+ k
n−1

∑
j=1

∥∥∥θ j−θ
hk
j

∥∥∥2

L2(Ω)
+

1
k

n

∑
j=1

∥∥∥(θ j−η
h
j

)
−
(

θ j+1−η
h
j+1

)∥∥∥2

L2(Ω)
.

(4.17)

Similarly, one has

n

∑
j=1

k
∥∥∥θ j−θ

hk
j−1

∥∥∥2

Q
≤ cT

(∥∥∥θ0−θ
h
0

∥∥∥2

Q
+ k2‖θ‖H1(0,T ;Q)

)
+T

n−1

∑
j=1

k
j

∑
l=1

∥∥∥δθl−δθ
hk
l

∥∥∥2

Q
. (4.18)

Finally, combining (4.12), (4.17), and (4.18), we conclude (4.3) immediately. �

The main result of this section is given in the following theorem.

Theorem 4.1. Under the assumptions stated in Theorem 3.1 and the regularity conditions

u ∈C1
(

0,T ;H2
(

Ω;Rd
))
∩H3 (0,T ;H) , u̇|ΓC ∈C

(
0,T ;H2

(
ΓC,Rd

))
and

θ ∈C
(

0,T ;H2(Ω)
)
∩H2

(
0,T ;L2(Ω)

)
, θ̇ ∈ L2

(
0,T ;H1(Ω)

)
,

the following order error estimate holds

max
1≤n≤N

{∥∥∥wn−whk
n

∥∥∥
H
+
∥∥∥un−uhk

n

∥∥∥
V
+
∥∥∥θn−θ

hk
n

∥∥∥
L2(Ω)

}
≤ c(h+ k). (4.19)
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Proof. Applying the discrete Gronwall inequality 4.1, we conclude that

max
1≤n
{en} ≤ c

{∥∥∥w0−whk
0

∥∥∥2

H
+
∥∥∥u0−uhk

0

∥∥∥2

V
+
∥∥∥θ0−θ

hk
0

∥∥∥2

L2(Ω)

}
+ ck2 ‖θ‖2

H1(0,T ;Q)+ ck2 ‖u‖2
H2(0,T ;V )+ cmax

1≤n
{gn} ,

(4.20)

where

en =
∥∥∥wn−whk

n

∥∥∥2

H
+
∥∥∥θn−θ

hk
n

∥∥∥2

L2(Ω)
+ ck

n

∑
j=1

(∥∥∥w j−whk
j

∥∥∥2

V
+
∥∥∥θ j−θ

hk
j

∥∥∥2

Q

)
(4.21)

and

gn = inf
vh

j∈V h

ηh
j∈Qh

k
n

∑
j=1

(∥∥ẇ j−δw j
∥∥2

H +
∥∥∥w j− vh

j

∥∥∥2

V

)

+
n

∑
j=1

(∥∥∥θ̇ j−δθ j

∥∥∥2

L2(Ω)
+
∥∥∥θ j−η

h
j

∥∥∥2

Q
+R

(
w j,vh

j

))

+
1
k

n−1

∑
j=1

(∥∥∥(w j− vn
j

)
−
(

w j+1− vh
j+1

)∥∥∥2

H
+
∥∥∥(θ j−η

n
j

)
−
(

θ j+1−η
h
j+1

)∥∥∥2

L2(Ω)

)
+
∥∥∥w1− vh

1

∥∥∥2

H
+
∥∥∥θ1−η

h
1

∥∥∥2

L2(Ω)
+
∥∥∥wn− vh

n

∥∥∥2

H
+
∥∥∥θn−η

h
n

∥∥∥2

L2(Ω)

}
.

(4.22)

Let vh
j ∈ V h and ηh

j ∈ Qh be the finite element interpolate of u j and θ j, respectively. Note that
[6, 7]

max
1≤n≤N

∥∥∥wn− vh
n

∥∥∥
V
≤ ch‖w‖C(0,T ;H2(Ω)d) , max

1≤n≤N

∥∥∥θn−η
h
n

∥∥∥
Q
≤ ch‖θ‖C(0,T ;H2(Ω)) , (4.23)

∥∥∥w0−wh
0

∥∥∥
V
≤ ch‖w0‖H2(Ω,Rd) ,

∥∥∥u0−uh
0

∥∥∥
H
≤ ch‖u0‖H1(Ω,Rd) ,

∥∥∥θ0−θ
h
0

∥∥∥
L2(Ω)

≤ ch‖θ0‖L2(Ω) ,

(4.24)
and

k
n

∑
j=1

(∥∥ẇ j−δw j
∥∥

H +
∥∥∥θ̇ j−δθ j

∥∥∥
L2(Ω)

)
≤ ck2 ‖u‖H2(0,T ;L2(Ω)) + ck2 ‖θ‖2

H2(0,T ;L2(Ω) ,

1
k

n−1

∑
j=1

(∥∥∥(w j− vn
j

)
−
(

w j+1− vh
j+1

)∥∥∥2

H
+
∥∥∥(θ j−η

n
j

)
−
(

θ j+1−η
h
j+1

)∥∥∥2

L2(Ω)

)
≤ ch2 ‖u‖2

H2(0,T ;V )+ ch2 ‖θ‖H2(0,T ;Q) .

(4.25)

Following the proof line in [7, 19], we obtain∣∣∣R(w j,vh
j

)∣∣∣≤ c
∥∥∥wn− vh

n

∥∥∥
L2(ΓC)d

≤ ch2‖wn‖C(0,T ;H2(Ω)d). (4.26)

Finally, combing the previous estimates (4.21) and (4.23)-(4.26), we deduce (4.19) immediately.
�
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5. NUMERICAL SIMULATIONS

This section provides computer simulation results on the contact Problem (PF), including
numerical evidence of the theoretical error estimates obtained in the previous section for the
discrete approximation of the variational problem. The solution of Problem (PF) is based on
numerical methods described in [1, 14].

The physical setting used for Problem (PF) is depicted in Figure 1. In this case, the body
Ω = (0,1)× (0,1) ⊂ R2 is clamped on ΓD = [0,1]×{1}. Traction f 1

N and f 2
N are prescribed

on the lateral parts Γ1
N , Γ2

N respectively (i.e., ΓN := Γ1
N ∪Γ2

N). The body is in contact with a
thermally conductive foundation on its lower boundary ΓC = [0,1]×{0}.

The material response is governed by a linear viscoelastic constitutive law in which the elas-
ticity tensor F and the viscosity tensor A are given by

(F τ)i j =
Eχ

1−χ2 (τ11 + τ22)δi j +
E

1+χ
τi j, 1≤ i, j ≤ 2, τ ∈ S2,

(A τ)i j = µ1(τ11 + τ22)δi j +µ2τi j, 1≤ i, j ≤ 2, τ ∈ S2,

where E is the Young’s modulus, χ is the Poisson’s ratio of the material, δi j denotes the Kro-
necker symbol (δi j = 1 if i = j and δi j = 0 if i 6= j), and µ1 and µ2 are viscosity constants.

The functions pν and pτ in frictional contact conditions (2.8) and (2.9) are given by pν(r) =
cνr+ and pτ = µτ pν , where cν represents large positive constant and µτ represents the friction
coefficient.

For computation, we use the following data (IS unity):

E = 2, χ = 0.1, µ1 = 10, µ2 = 10, Mi j = Ki j = Ri j = 1, 1≤ i, j ≤ 2,

f0 = (0,−1), q0 = 1, f 1
N = (1.4,0.4), f 2

N = (−0.8,0.4), cν = 104, µτ = 0.2, g = 0,

kc = 1, T = 1, u0 = 0, v0 = 0, θ0 = 0.

Our interest in this example is to study the influence of the thermal conductivity of the foun-

 f f

ΓC

    Γ       D

Γ Γ 
2

N N

N N1

Thermal contact

 deformable bodyΩ
 1  2

FIGURE 1. Physical setting.

dation on the contact process. Thus, in Figure 2, we show the deformed configurations at
final time, and in Figures 4 and 3, the corresponding norm of the temperature and stress fields,
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FIGURE 2. Deformed configuration for θF = 0 (left) and θF = 10 (right).

through the body for two different values of the temperatures of the foundation. These Figures
show that, when the temperature of the foundation is more important then the deformations,
the norm of the stress and the temperature are larger. To see the convergence behaviour of

FIGURE 3. Temperature field for θF = 0 (left) and θF = 10 (right).

FIGURE 4. Von Mises stress norm for θF = 0 (left) and θF = 10 (right).

the fully discrete scheme, we compute a sequence of numerical solutions based on uniform
partitions of the time interval [0,T ], and uniform triangulations of the body. Then, we provide
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the estimated error values for several discretization parameters h and k. Here, the sides of the
square are divided into 1/h equal parts and the time interval [0,T ] is divided into 1/k time steps.
We start with h = 1/16 and k = 1/16 which are successively halved. The numerical solution
corresponding to h = 1/256 and k = 1/256 has been considered as the ”exact” solution in order
to compute the numerical errors given by

Ehk = max
1≤n≤N

{∥∥∥wn−whk
n

∥∥∥
H
+
∥∥∥un−uhk

n

∥∥∥
V
+
∥∥∥θn−θ

hk
n

∥∥∥
L2(Ω)

}
.

The linear asymptotic convergence behaviour obtained in (4.19) is almost observed (see Figure
5).

0.025 0.05 0.10.1

10
−2

10
−1

5.0x10
−3

5.0x10
−2

1.5x10
−1

FIGURE 5. Estimated errors.
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