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Abstract. The focus of this study is a dynamic frictional contact model involving a viscoelastic body
with thermal effects and a conductive foundation. Coulomb’s law describes the frictional behavior, while
a normal compliance model simulates the contact. We derive a variational formulation for the problem
and establish the existence of a unique weak solution by using the Banach fixed point theorem. To solve
the problem, we propose a fully discrete scheme that combines the finite element method for spatial
approximation with the Euler scheme for the time discretization. Error estimates for the solutions are
derived, and linear convergence is achieved under suitable regularity assumptions. Finally, numerical
simulations are presented to demonstrate the performance of the proposed method.
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1. INTRODUCTION

Contact problems arise in numerous applications across mechanics, physics, and engineer-
ing. Examples from the automotive industry include the contact between brake pads and rotors
or between pistons and cylinders. Thermal effects in contact processes influence the composi-
tion and stiffness of contacting surfaces, while also inducing thermal stresses in the contacting
bodies (see [16]). Conversely, temperature can significantly affect the elastic response of ma-
terials. The literature contains a variety of works that study and develop thermomechanical
frictional problems, such as those in [9, 10, 11, 16, 19] and the references therein. These works
rigorously constructed mathematical models of contact with thermal effects and established the
unique weak solvability of the models using variational and hemivariational inequality tech-
niques.

*Corresponding author.
E-mail address: ouaanabi @gmail.com (A. Ouaanabi).
Received 22 December 2024; Accepted 19 July 2025; Published online 17 January 2026.
(©2026 Applied Set-Valued Analysis and Optimization

147



148 M. BOUALLALA, E. H. ESSOUFI, A. OUAANABI, Y. OUAFIK

In [4], Chau, Goeleven, and Oujja analyzed a class of dynamic thermal contact problems for
viscoelastic materials involving the normal compliance condition and friction. They proposed
a numerical scheme for approximating solution fields and performed corresponding numerical
computations. Other works in the literature, such as [2, 12, 13, 15, 18], presented numerical
solutions to frictional contact problems that account for thermal effects. Bouallala and Essouf
[3] addressed a dynamic contact problem between a thermo-viscoelastic body and a conductive
foundation under normal compliance and Coulomb’s friction. Building on this work, we study
the same problem and prove the existence-uniqueness of a weak solution by employing dynamic
nonlinear quasi-variational inequalities, nonlinear parabolic variational equalities, and the fixed
point method.

To address the problem numerically, we present a discrete formulation by using the finite
element method for spatial discretization and a backward Euler scheme for time discretization.
We also demonstrate the convergence of the numerical solution. This study faced significant
challenges due to the nonlinearity of the boundary conditions and the dynamic nature of the
problem. A key novelty of this work is the inclusion of numerical simulations that analyze
various problem parameters. Notably, our results are consistent with those found in [4] for a
non-clamped body. However, unlike [4], this work assumes Dirichlet boundary conditions on
part of the body’s surface. Furthermore, our model includes a heat exchange condition in which
the heat transfer coefficient is assumed to be constant along the contact boundary.

The rest of the paper is structured as follows. The model of the dynamic process of the
thermo-viscoelastic body is presented in Section 2, together with its variational formulation.
In Section 3, we state and prove our main existence and uniqueness result, Theorem 3.1. The
main result concerning the error estimate for fully discrete numerical scheme is presented in
Section 4. Finally, in Section 5, we present numerical simulations for a two-dimensional test
problem to illustrate the theoretical error estimate and the evolution of the displacement and the
temperature fields.

2. PROBLEM STATEMENT AND WEAK FORMULATION

In this paper, we denote by S?, (d = 2,3), the space of second order symmetric tensor on
R¢ and by ”-” and || - || the inner product and the Euclidean norm on the space R and S¢,
respectively, that is, for all u, v € R4 and for all 0, TE sS4,

u-v=uy;, |[v||=+vv-v, 0-1=0y17j, |T]| =VT T

Also, we denote by ¢ € [0, T] and x € Q the time and spatial variables, respectively, where T > 0.

We consider a body made of a thermo-viscoelastic material that occupies the domain Q C
R? with a smooth boundary I = dQ. The boundary is divided into three disjoint measurable
parts: I'p, I'y, and I'c, such that meas(I'p) > 0. Additionally, v = {Vv;} represents the unit
outward normal vector to the boundary. The body is subjected to body forces of density fy
and a volumetric heat source of constant intensity go in €. It is clamped on I'p, where the
displacement field vanishes. Surface traction forces of density fy act on I'y. The temperature
is assumed to vanish on I'p UT'y). The body may come into frictional contact with a thermally
conductive foundation, whose temperature is maintained at 6r. The normal gap between I'c
and the foundation is denoted by g.
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For the displacement field u : Q x (0,7) — R and the stress tensor ¢ : Q x (0,7) —
S9, the symbols uy, Gy, ur, and o; represent their normal and tangential components on the
boundary, respectively, and are defined as follows:

Uy =u-V, Ur=u—uyv,
oy =(0V)-v, OT=0V—0yV.

We denote by g = (g;) : Q x (0,7) — R the heat flux vector, 6 : Q x (0,7) — R the temper-
ature and by 8( ) the linearized strain tensor given by &(u) = (&;(u)), &;(u) = 3 (uij+u;;),

where u; j = *. Here and below Div(c) = o; ;,j and div(q) = g;; denote the divergence oper-

8x

ator for tensor and vector valued function, respectively.

The classical model for a dynamic contact problem with Coulomb’s friction in thermo-
viscoelasticity is as follows.

e Problem (P) : Find a displacement field u : Q x (0,7) — R and a temperature field
0 :Qx(0,7) — R such that, forall 7 € (0,7),

o(t)=e(ut))+ Fe(u(t))—0(t).# in Q, (2.1)
q(t)=—=2VO(t) in Q, (2.2)
pii(t) — Div o(t) = fo(t) in Q, (2.3)
6(1) + div q(t) — Ze(u(t)) = qo(t) in Q, 2.4)
u(t)=0 on I'p, (2.5)
o(t)v = fy(t) on Ty, (2.6)
0(t) =0 on TpUTy, 2.7)
—oy(u(t)—g) = py(uy(t)—g), on I'¢, (2.8)
loe(0)[| < pe(uv(r) —g), '
(1) £0 > 04(t) = —pelin(n) - g) 2 [ T >
q(t)-v =ke(6(t) — 6r) on Te, (2.10)
1(0) = uo, i(0) =vo, 6(0) = 6y in Q. 2.11)

Equations (2.1) and (2.2) represent the thermo-viscoelastic constitutive law, where .# = (.%; jkl),
A = (Hjju), M = (M), and F = (A;;) are, respectively, the elastic tensor, the viscosity ten-
sor, the thermal expansion tensor, and the thermal conductivity tensor. Equation (2.3) describes
the equation of motion with a mass density p = 1. Equation (2.4) represents Fourier’s law of
heat conduction, where the function Z = (%) captures the influence of the displacement field.

In addition, (2.5)—(2.7) define the displacement and thermal boundary conditions. The nor-
mal compliance contact condition is specified in (2.8), where py is a prescribed function. When
pv > 0, the term u, — g represents the penetration of the surface of the body into the founda-
tion. Relation (2.9) represents Coulomb’s law of friction, where p: is a prescribed non-negative
function, known as the friction bound. Relation (2.10) describes a thermal contact condition,



150 M. BOUALLALA, E. H. ESSOUFI, A. OUAANABI, Y. OUAFIK

where k. > 0 is the coefficient of heat exchange and O is the temperature of the foundation.
Finally, the initial conditions are specified in Equation (2.11).

The variational formulation of Problem (P) requires some additional notations and prelimi-
naries. First, we define the following spaces:

H= {u — () : u € L2(9>}, H = {o —(0)): Gij=0ji € LZ(Q)},
H) — {u e 12 (Q;Rd> : e(u) € %ﬂ}
These are real Hilbert spaces endowed with the following inner products:
(u,v)Hz/uividx, \V/M,VGH, (G,T)!;f:/ Gl'jfl'jdx, VG,T€%7
Q Q

(,v)e, = (u,v)r + (€(u), €(v)) s

and the associated norms: || - ||z, || - ||z, and || - || 2.
For the mechanical and thermal unknowns, we introduce the following spaces:

V={veH:v=0onIp}, 0={neH :n=0onTpUly},

endowed with the inner products and norms given by:

(w,v)y = (e(u),eW))or, IVIlv =V (v, (0,1)0=(VO, V), [nllo=1/(n,1)o-
The following Korn and Friedrichs-Poincaré inequalities hold
leW)lle = cilvllay, forallv eV, [[Vn|[2q) = ¢pllnllo, foralln € Q,
where ¢ and ¢, are two positive constants depend on  and I'p. By the Sobolev trace theorem,

IVl e < callllvs forallve V. [0l < callnlo, foralin € 0.

where c¢; and ¢; are two positive constants depend on Q, I'p and I'c. We denote by V* the dual
space of V and by identifying H with its own dual, and we have V C H = H* C V*. We denote
(+,-)v+xv the duality pairing between V* and V. Next, we consider the following mappings

(fiv)vexy 1:/f0~de+/ fn-vda,
Q I'y
(C]mn)Q*xQ3:/QCI0ndx7
jd(M,V) ::/ Pv(”v_g)vvda+/ Pr(ur_g)HVera,
I'c I'c

jc(evrl) ::/ kc(e — QF)nda.

I'c
We now introduce assumptions regarding the data in the study of Problem (P):
(H1) The viscosity operator &7 = a7 jj; : Q X S¢ — S satisfies
i) There exists n;, > 0 such that for all £,& € S? and a.e. x € Q
(o (x.&1) — o (x,82)) - (&1 — &) = mp|| & — &l

ii) There exists M;, > 0 such that for all £;,&, € S9 and a.e. x € Q
| (x,&1) — o (x, &) || < Mp| &1 = &l.
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iii) The mapping x — <7 (x, &) is measurable on Q, for all £ € S,
iv) &7 (x,0) =0a.e. x € Q.
(H2) The elasticity operator .7 = .F;jx; : Q X S¢ — S satisfies
i) There exists m, > 0 such that for all £,& € S? and a.e. x € Q

(Z(x,&) - F(x,&)). (& - &) >ma|& — &>
ii) There exists M, > 0 such that for all &,& € S? and a.e. x € Q
|-7 (x,81) = F (x,&) || < Mul|&1 — &

iii) The mapping x — .7 (x, &) is measurable on Q, for all £ € S,
iv) Z(x,0) =0ae. x € Q.
(H3) The thermal conductivity tensor %" = (%;;) : Q x RY — RY satisfies
1) %fj = Q%/j,’ < Lw(Q).
i) j(x)&E; > my||E|]%, withmy >0, forall & € RY, x € Q.
i) [[(£VO,Vn)|ln < Mq|6][olnlle, with M, >0, forall 6,n € Q.
(H4) The thermal expansion tensor .#Z = (; j) : QxR — R satisfies
i) Mij= M c L”(Q).
ii) [|(26,e(v))|lr < Mnl6]ollv|lv, withM,, >0, forall 6 € Q,vEV.
(H5) The influence of the displacement field tensor % = (%;;) : Q x R — R satisfies
1) %,‘j = %ﬁ S Lw(Q).
i) [[(Ze(v),n)|lu <M.|v|lvInlloll, withM, >0, foralln € Q,v € V.
(H6) 1) The forces, the traction and the thermal flux satisfy

foe L2(0,T:LX(Q)Y), fy € L*(0,T:L*(T'y)?) and qo € L*(0,T:L*(Q));
i1) the gap function, the thermal potential, and the initial data satisfy
>0, g€ L™(I¢), and 6 € L*(0,T;L*(T¢)), uo,vo € V, 0 € L*(Q);

iii) the functional j, is proper, convex, and lower semi-continuous on V.
(H7) The normal compliance function p, and the friction bound p; satisfy the following
hypothesis for r = v, T
1) prilexR—Ry;
ii) x — p,(x,u) is measurable on I'¢, for all u € R;
iii) x — p,(x,u) =0foru <0,ae. x€I;
iv) there exists L, > 0 such that |p,(x,u) — p,(x,v)| < L.Ju—v|, for all u,v € R, a.e.
xelc.
(H8)
my < (Ly +L¢)ci, and mg > My c3. (2.12)
For the sake of simplification, let us assume that
a:VxV—R, a(uyv) =(Feu),eVv))p,
b:VxV—R, buyv) =(Feu)eVv)),p,
d:QXQHRa d(97n) = (ﬂveavn)l-h
m:OxV—R, m(0,v) =
e:Vx0—R, e(n) = (ZeV),n)0q):
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According to this notation and through a standard derivation, we have the following variational
formulation in terms of displacement field and temperature.

Problem (PV) : Find a displacement field u : Q x (0,7) — R and a temperature field
0:Qx(0,7) — RsuchthatforallveV,n e Qandae.rec(0,7)

(ii(t),v—u(t))g +b(u(t),v—u(t)) +a(u(t),v—u(t)) —m(0(t),v—u(t)) (2.13)
+ja(u(t),v) = ja(u(t), u(t)) = (f(t),v—ilt))v+xv,

(6(1),m) 1) +d(0(1),n) —e(i(t),n) +jc(6(r),n) = (qe(1), Mo =@, (2.14)

u(0) = ug, u(0) = vy, 6(0) = 6.

3. AN EXISTENCE AND UNIQUENESS RESULT

In this section, we present, and we demonstrate an existence and uniqueness result.

Theorem 3.1. Assume that (HI)-(HS8) and condition (2.12) hold. Then, there exists a unique
solution (u, 0) to Problem (PV) which satisfies the following regularity conditions

ueL*(0,T;V), e L*(0,T;V*), 6 € L*(0,T;Q).

The proof of this result is carried out in several steps and based on Banach fixed point theo-
rem. First, let { € L?(0,T;V*) and & € L?(0,T;Q*) given by

(EW)V)yey =m (8(0.7), eV, (£(0).0) e o= e (i), ¥ € 0.
Applying Riesz’ representation theorem, we define the elements
(f‘:(t)"})v*xv = (f(t)7v)v*><v - (C(t)’v)v*x\/’
(5m) .o = (@) Mg~ (6@ Mg

forallveV,ne Qandae.r€(0,7).

Next, we consider the following intermediates problems.
Problem (PD): Find a displacement field u¢ : (0,T7) — V such that for all v € V and a.e.

€ (0,T)

(e () v—iic(®)) +b (ig(t).v—iic(r)) +a ( v—ug()) (3.1)
o) 0.8c0) = 0340
MC(O):MO, uc( ) = vo.

Problem (PT): Find a temperature field 6 : (0,7) — Q such that for all n € Q and a.e.
€ (0,7)

(éw),n)y(g) +d (0:00.0) +ic (00).1) = (9 0m) .
0:(0) = 6.

In the second step, we present the existence and uniqueness result of the intermediates problems.
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Lemma 3.1. For all v € V, Problem (PD) has a unique solution ug which satisfies u; €
L*(0,T;V) and iy € L*(0,T;V*).

The proof is based on similar arguments to those used in [8, Theorem 5.15].
Lemma 3.2. For all N € Q, Problem (PT) has a unique solution 6 satisfies 6z € L*(0,T;Q).

The proof of this result is presented in [5, Lemma 3.3] using the Galerkin method.
In the last step, we define the operator

A E)(1) = (M(E.E)(0),Aa(E.E)(1)) €V x 0,
given by
(A(E.E)(09)yry =m (8:0).v).
(£, E)(1)) g = —e (1c(0),m).
We have the following lemma.

Lemma 3.3. The operator A is continuous and has a unique fixed point ({*,E*) € L*(0,T;V* x
Q).

Proof. Let (£,&) € L*(0,T;V x L*(Q)) and t1,t, € [0,T]. By assumption (H2) and (H5), we
have

[AL(G.€)(01) — Aa(§.E) ()]
1A2(8,8)(11) = Aa($,8) (02)]

Taking account the regularities of 6 and ¢, we deduce that A is continuous.
Now, let (£1,&1), (&2, &) € L2(0,T;V* x Q*). Fort € [0,T], similar to (3.2)-(3.3), we obtain

vexor SMmHﬂg(tl)—Gg(tz)HQ, (32)

<M.

VExQ* tig (1) —b'lg(tz)HV- (3.3)

IA(G1E) (1) — A&, &) (1)

v S€ (Hugl (1) =i, 1)+ 0 () - 9§2(f)HQ> G4
Using (3.1), we obtain that for a.e. t € (0,T)
(i, () =g, (6, (1) =i, (1)) +b (g (1) =t o), (1) — g, (1))
a (g, (1) = ugy (1), g, (1) = gy (1)) + (61 (0) = Gal0), g, (1) — gy (1)) (3.5)
o ja (g, (00,11, 1)) = (g, (1)1, (0)) = Jua (1 1),y () + fa (1, 1),y (1)) <0,
From the hypothesis on the operator j;, we have
L (g, (0, (1)) = Ja (g, (0)stigy (6)) = i (1 1)ty () + r (g, (1)1, (6 ) |

(3.6)
< ALy +Lo)||ug, (1) — gy (1)

Y

Vv

i 0 =i, 0)
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for a.e. t € (0,T). Integrating inequality (3.5) over [0,7] and coupling (3.6), (H1), it follows
that for a.e. r € (0,7T)

L. . 2 d
5 |e @ = ag, @) +ms /0

<= [ (66 =Gy (0 —ig (), ds

2
‘ds

i ) — g, 5,

t
0 V*xV

Mo+ AL+ 1) [

g, (5) — g, 9)|| |, (5) — g, )| s

t
We recall that, for i = 1,2, we have ug () = / i, (s)ds + uo. Thus
0

t

0 —%(:)HV < c/o i, (5) —b‘tgz(s)Hvds.

1
Combining the two last relations with the young’s inequality, ab < £a* + Ebz’ € >0, and
Gornwall’s inequality, we deduce that

llé’l(t)—b'tcz(t)HV <@y -0, 3.7)
By using the same idea, we get that for a.e. r € (0,7)
(82, (1) — 65,(1),0, (1) — 6, (t))LZ(Q) +d (8, (1) — 85,(1), 65, (1) — 6, (1))
—&(1),6: (1) — 6
(60 -&0.0,()-050))
+ e (66, (6),05,(1) = 05,(1) ) = i (85,(1). 6, (1) — 65, (1)) = 0.
By (2.12) and (H7), we conclude
je (eél (1), 0, (1) — O, (t)) je (952 (1), 06, (1) — O, (z)) ‘ < ke? HG& (1) — 5, (1) HQ.
Using condition (2.12), we find that there exists a positive constant ¢ such that
|65, - 6.0 <cll& ) - &) - (3.8)

Now, combining (3.4), (3.7), and (3.8), we find
HA(Cl > gl) - A(C27 52) HLz(O,T;V*XQ*) <c || (Cl 5 51) - (CZ) 52) HLZ(O,T;V*XQ*) .

Reiterating this inequality n times leads to

(cT)"
n!

IA"(61,€1) = A&, &) | 20 v o) <

H(C“g]) - (Cz’éz)”Lz(O,T;V*xQ*) s

which implies that, for n sufficiently large, operator A is a contraction in L*>(0,T;V* x Q*).
Therefore, there exists a unique fixed point (§*,£*) of A. O

Now, we have all ingredients to prove Theorem 3.1
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Proof of Theorem 3.1.
Existence: Let ({*,£*) € L?(0,T;V* x Q*) be the fixed point of the operator A and let U

6;. be the solutions of Problem (PD) and Problem (PT), respectively. For (8,&) = (&*,&%),

by the definition of A, we find that (u¢., 8. ) is a solution to Problem (PV).
Uniqueness: The uniqueness results from the uniqueness of the fixed point of A. 0

4. FULLY DISCRETE SCHEME AND ERROR ESTIMATE
In this section, we present a fully discrete scheme for the variational formulated in Problem
(PV), and we establish a result on error estimate. Let {9 h} be a regular family of triangular

finite element partition of Q which are compatible with the boundary decomposition I' = I'p U
'y UT¢, where & > 0 denotes a spatial discretization parameter. Let V" and Q" be a finite
dimensional subspace of V and Q respectively given by

—.1d ip
V= {vh € [C(Q)] Vi, € e [Pi(Tr)]* vTre 7"V =0on FD} v,

0" = {n e C(Q): nfly, e BI(Tr) VTre T _OOnFDurN} co.
For a positive integer N, we define a uniform partition of [0,7] givenby 0 =19 <t} < ... <ty =
T, and the time step size k, =1, — 1,1, and let k = max,{k,} is the maximal step size. For a

. . . . Uy — Up—1
time continuous function u = u(t), we write u, = u(t,) and du, = ———— forn=1,...,N.

N
Also, we introduce the velocity field {wﬁk} o which is related with the displacement field
n=

with the following relations
n
= 8u™* and U =ul+ Z kjw?k.
j=1

Using the backward Euler scheme, the fully discrete approximation of Problem (PV) is the
following.

N
Problem (PF) : Find a displacement field {uﬁk} 0
n—=
Q" for all v € V" and n" € Q" such that

<5whk vh—whk> +b< ik vh—w >+a<uhk h wn>
= (O i) e () =g (o) = (= lt)
)

(3601") g, e (B85 ") —e (i) e (O5") = (gerr) o 42)

N
C V" and a temperature field {9,}["} o C
n—=

4.1)

and
hk _ ho hk h
Uy = Ugpy, Wy _Wo, 9 90,
where ug cVvh, wg € Vh and 05‘ € Q" are respectively approximates of u, vo, and 6.
Under the assumptions of Theorem 3.1, and following the same arguments, used in previous

section, there exists a unique solution of Problem (PF). Next, we recall the following discrete
Gornwall’s inequality [17, Lemma 4.1].
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Lemma 4.1. Let T > 0 be given. For a positive integer N, define k = T /N. Assume that
{gn}\_, and {e,}_, are two sequences of nonnegative numbers satisfying, for alln = 1,...,N,
en < cgn+cY” i1 kej for a positive constant c independent of N or k. Then, there exists a
positive constant c, independent of N or k, such that

max e, < ¢ max gj.

1<n<N 1<n<N
Now we state a result on error estimation.

Lemma4.2. Let (u,0) and (uﬁk , 9,?") be solutions to Problem (PV) and Problem (PF), respec-

N
tively. Assume (HI1)-(H8) and (2.12). Then the following bound holds for all {v?} - C V" and

j=1
N
n h
{nj}j—lCQ
2 2 n 2 2
hk hk hk
o= L (o)
S R PR Ty G L R TR )
- H 12(@) 0
2 2 2 2
h h h h
_ 0, — o —
+C{HW1 o, e —n L2<Q>}+C{ Ty M L2<9>} 4.3)
+ k21013 (0,70 + K Nl ) + kR (3,0
2
+ckz(uw, i+ s =i+ o0, +H"f‘”5’HQ)
1 ' & h 5 2
3 ([ R | v (O R CER N

where
R (wn,vh> = <5wn,vh —wn>H +b (wn,vh — ) +a (un, h —wn)
h h . h
—m<9n,v )+Jd (un, >_]d(un;wn)_ (fn,v _Wn> :
VExV
Proof. Using inequality (4.1), we have
— (5whk Wy, — whk> +b ( wﬁk,wn — whk>
<a ( Bk vy, — Zk) —m (Gﬁl,wn — wzk) — <5wzk,wn — vh)H b (Wzk,wn vh>
o) () ) ) ()
VExV
Taking v = ka in (2.13) at time ¢ = t,;, we obtain
(Wn,wn — WZk>H +b (wn,wn — w2k>

S a (un’whk Wn> <9n,th > +]d (um hk) - .]d (unawn) - <fl’l)wl}’ltk - n> VExV ’
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Adding the inequality above yields
(Wn—5wﬁk,wn—wﬁk>H+b (wn wik W wﬁk>
<a (u,, — qu,whk —wn> —-m <9n — Gﬁl, hk_ Wn> - (5w2k7wn — v”)
" (4.4)
(o) () (0 ) () i ()
- (fnavh - Wn>V*>< + Jd (”m hk) — ja (U, Wn).

Using the relation

(wn—Swn Wi — Zk> (5wn—5wn Wy — ) +< — OWp, Wy — vh>
H H B 45)
+(wn—5whk h wn)
H
we deduce that
<5wn—5wﬁk,wn—wzk>ﬂ+b(wn wn JWp — wk>
<5wn—5wn ,wn—vh> + <6wn W,V —w k) a( hk,whk—wn>
" 1 (4.6)
—m<9n—9,ffl, hk—wn>+b<wn wn,wn W) 4 a( —un ,wn—vh>
—m<9 -0 kl,wn—v >+R<wn,vh> +Ry,
where
Ri = jua (s Wi) = (") + i (") = i (i) @7
Using the formula 2(x—y,x)g = |[x—y||% +|1x]|3 — |[y||7 forx = w, —w* and b= w,_ —w!* |,
we have
2
<5wn—5wﬁk,wn—wzk> > — % (Hwn wﬁk _HW" | —w IHH)' (4.8)
By the lipschitz continuity of b and the continuity of a, b and m, we have
b( — Wik Wy — Z") Zmwan—WZk :
b (wn =l =) < o= [ =]
a(un ’) <M, un—un HW” —v H
v v (4.9)
a(un ><M U, — Zk ‘wn—wzk ,
1% 1%
m(Qn—thl,wn—v ) <M, n—@,ﬁ‘fIH Hwn—vhH ,
0 1%
(60141 ) < M [0 = 61|l =
Taking into account (H8), we find that
IRi| < \/meas(T¢)c3(Ly +Ly) ||[u, — u'™® Hwﬁk—vh o (4.10)
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Using ngk | < =]+ [[wa =] @4-410) yield
2 2
(w k[ \w,l,l_wf;élH ok
H
e
\%

h

+ck{|]wn—5wnH12q Wy —V

Now, we replace n by j and sum over j from 1 to n to obtain
2 < hk
o =+ X o 3|
j=1

n 2 2 2
< Ck; {Huj—u?kHv—}— HWJ'—V?HV-F HWj—5Wj||?_I+ HWj_V}}HH

2
Wy — wﬁk

Vv

JFHQJ_QJ}'Zf HQ+R(W17 >}+Ckz<5w] SW?k,wj—v’}> +Hw0_ thH

On the other hand, we have
- hk h
ow; — 5w v~) =
Z’( J 1) H
hk h hk h
+ (wn wy ,w,l—v]>H— (W()—WO ,wl—vl)H
= hk h h
+Z (wj—wj yWj—Vj— <Wj+] —vj+1)>
J=1 H
Sc{ Wy —

n—1 " 2 n—ll P f 2
st B ()|
j=1 = "

Recall the following classical inequality

hk2

h
n Wn ="V,

h 2
H

2 h 2
o] o=
H H

J
i ) L W i Mt
where I} = ”f(;jw(s)ds—xlj:lklev < klull g2(0,7:v)- Then

2
uj—uth <c{
.] V—

In view of j <n < N and Nk =T, we deduce that

2 J

h N 2 Wk

up — Up VJFJZ’C HWI wi H +k HMHHZOTV)}
=1

n o) ’ " j
$ o=, = (=t} #1etinr) <7 1L -t
J=1 A

—l—R (wn, vh> } +2k (5wn — 5wzk,wn — vh> .
H H

4.11)
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It follows that

6, — 0",

hk 2 2
Wn — Wh +ck ||”||H2(0,T;V)

2 n el
-l-ckZ”wj—wj H <
H = 1%

[\

2
e ot o o o

- 2 h || h (+12)
+ckZ1 (Hw,-—aijV+“wj—vj“v+"6j—9j1 )Q+R(wj,vj>)
.

lnil h h 2
Bt ()

k= J J H

Taking n = n" € Q" at time r =, in (2.14), we arrive at

(én,nh)Lz(Q) +d (Gn,nh) —e (wn,nh) + je <9n,nh) - (qcn,nh) :

Combing (2.14) with (4.2), we have
<9n - aer?k?nh)Lz(Q) +d <9n - elilka 77h> —e€ (Wn _WZk—lvnh) + Je (9n777h>

(4.13)
—Je(Orn") =
Substituting n” by n* — /% into (4.13), we obtain
(én _ 5ok gt - ef;")Lz(Q) +d (en _ gk 9,?") e <w,, —whk g 0,?")
e (8" = 01%) o (0"~ 6%) = 0.
Using
(9" —56,"n" - e’ilk)Lz(Q) - <59” —56,"n" - 9”)L2(Q) i <56” —56,",6, eﬁk)Lz(Q)
+ (9 — 861" - 9:k>L2(Q) ’
and
d <9n — o " — o) =d (en — 00" —0,) +d (en — ok, 0" — 6"},
we deduce that
(aen 56" g, — 9,11">L2( +d (9 _ gk gh ehk)
_ (9—59n,9,i”‘—nh)L2(Q) (69 _ 50 g nh>L2(Q (4.14)

~d (8, =0/ ,n" = 6,) +e (wa—wi . —en)+Rc
where
Re=je (010" = 61%) — jc (601" 61 ).
Using (H7), we have

6, — 0% |In"— ok

[Re| < ket

QHn 0
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From the following inequalities

hk
en—l - en—l

(56, 56/%.6, efk)Lz(Q) > 2_1k (\

2
L2(9)>

Q) ‘
and

Y

h_ ghk 6, — O/

S Lt
L=t -a,

kK ’

and (H1), (H3), and (HS), we find that there exist a positive constant ¢ such that

2 2 2
hk hk hk
‘9,,—9,1 P LZ(Q)+ck‘9n—9n ‘Q
. 2 2 2
gck{‘ 6 = 56, LZ(Q)JF’ en_nhHQ+ ‘ W”_Wzk‘le}jLCk <59”_59’?k’6”_nh>ﬁ(9)'

Replacing n by j and summing this inequality over j from 1 to n, we obtain

2 n 2
’ 6, — O/ ‘L2(9)+ckj_zl (ej—ejl"HQ
<[a-at g <k (ool +lo-nl}) s
< 0 |l 2 P j i 2@ i~ M7l (4.15)
. S
+ckZ1 ‘wj—w?kluv—l—ckal (69j—69;lk,9j—n;’>Lz(Q).
= ~

Moreover, we have

.
I
—_

Il
1=
VR
—~
2D
il
)
|
N
X
=
|
2
| &=
N~
)
=
~
~_
PN
)

.
I
—_

(4.16)

Il
~.
=

/N
\CD
X
R
&QD
=
~ >

——

P

S

_|_
~.

1=

/~
&QD

|

\CD
| &
éb
=
~>

N——

PN

)

.
Il

I
1=
D N
2D
R
a
VS
2
|
=
o ~
N—
/N
2
s
=
~
s
N—
N——
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Then
n
kY (66;,—80% 6, —n"
;( / 7o nf>2(g)
<c ‘e—ehk +le, =il +H90—9h2 +H91—nh2
= o e I M e Oll2(q) iz
n—1
. ghk "y (0., —n"
+j_1H9J % 2(Q) (9J 77]) <61+1 71,+1) 2(Q)
<c ‘e _o|P tlle,— | +H9°_9hH2 +H91—nh ’
= noo L2<sz> R V2T Oll2(q) Mz
1” | 2
hk h
+kZH6 —9; 2(Q H( )_<9j+1_nf+1) 2(Q)’
which together with (4.15) concludes
2 n 2
k )e-—e’?kH
‘ ‘LZ(Q)+C ]; 7 g
2 2
<cd 6, — 6 ’9 _q) ‘ h
C{H 0 2(9)Jr F M 2 Ml 12q)
, ) ) (4.17)
S (TR W R e R Y
1 & 2
_ phk 1 _n) _ (o,
+kZH6 9 L2(Q)+kz‘<ef nf) (91“ nf“) 2(Q)

J=

Similarly, one has

ZkHe—eh’qH <cT(H90—60H +k ]|9HH10TQ>+TZI<ZH591 56! H L (4.18)

Finally, combining (4.12), (4.17), and (4.18), we conclude (4.3) immediately. L]
The main result of this section is given in the following theorem.

Theorem 4.1. Under the assumptions stated in Theorem 3.1 and the regularity conditions
ueC! (O,T;H2 (Q;Rd>) NH3(0,T;H), iyr, € C <0, T H> (rc,Rd))
and
pec <0,T;H2(Q)> NH? <0,T;L2(Q)> L Oel? (0,T;H1(9)> ,
the following order error estimate holds

max ‘ ik
1<n<N

H Vv

LZ(Q)} <c(h+k). (4.19)
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Proof. Applying the discrete Gronwall inequality 4.1, we conclude that

max{en}<C{HWO— ng +H” _”ng +H9°_ ;(m} (4.20)

1<
2 2
+ck? ||9HH1(0,T;Q)+Ck H”HHZ(o.,T;v)‘f’Cf{lg({gn};

where
2 2 n 2 2
hk hk hk hk
] +]le. e \Mck;(uw‘,_wj [+ oer)  @an

and
A (ij—6w1}|H+Hw]—vJH )

n]eQ”

y o, 50| o,— | +r h
+Z‘ H I ’HLZ(Q)JFH ’_njHQJr (W]’Vj) (4.22)

2
L2(9)>

B (o)~ =) = o 7) ()

h

2
" L2<9>}'

Letv! € V*and jh € Q" be the finite element interpolate of u j and 0}, respectively. Note that

[6,7]

2

2
h h
_ 0, —
£ R PR R

<ch HQHC(O,T;HZ(Q)) ,  (4.23)

en_nr}zl 0

h
max_ (W, —vy|| < Ch||w||C(O,T;H2(Q)d)7 12133)(1\/

1<n<N

)SChHQOHLZ(Q)

. <ch HMOHHI(Q,]Rd) ’ HGO N eézHLZ Q
(4.24)

o — ul)

h
o=t < chllwollae e

and
n
. A 2
)y (ij—évijH+ Hej—ée,-HLz(g)) < R llull o razia) + R 101320 7200

2 (4.25)
(@)

1= 2
1 (1) om0~ (00
<ch H“”HZ(O,T;V) +ch? ||9HH2(0,T;Q) .
Following the proof line in [7, 19], we obtain
h h 2
‘R (w,-,vj) ‘ < c( 0 e < Il (o ey (4.26)

Finally, combing the previous estimates (4.21) and (4.23)-(4.26), we deduce (4.19) immediately.
O
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5. NUMERICAL SIMULATIONS

This section provides computer simulation results on the contact Problem (PF), including
numerical evidence of the theoretical error estimates obtained in the previous section for the
discrete approximation of the variational problem. The solution of Problem (PF) is based on
numerical methods described in [1, 14].

The physical setting used for Problem (PF) is depicted in Figure 1. In this case, the body
Q =(0,1) x (0,1) C R? is clamped on I'p = [0,1] x {1}. Traction fy and f5 are prescribed
on the lateral parts F}V, szv respectively (i.e., I'y :=T le U FJZ\,). The body is in contact with a
thermally conductive foundation on its lower boundary I'c = [0, 1] x {0}.

The material response is governed by a linear viscoelastic constitutive law in which the elas-
ticity tensor .# and the viscosity tensor <7 are given by

(gr)ij:llj—;ccz(ﬁ]—f—fzz)&j—f—%fij, 1§i,j§2, TGSZ,
(27 T)ij = w1 (T + 72)6;j + U Tij, 1<i,j<2, 1€$?

where E is the Young’s modulus, y is the Poisson’s ratio of the material, J; ; denotes the Kro-
necker symbol (§;; = 1 if i = j and §;; = 0 if i # j), and y; and , are viscosity constants.
The functions py and p. in frictional contact conditions (2.8) and (2.9) are given by py(r) =
cyry+ and pr = U py, where ¢y represents large positive constant and u; represents the friction
coefficient.
For computation, we use the following data (IS unity):

E:2,%:0.1,‘LLIZIO,‘LQ:lO,%ij:%j:%U:L 1§i,j§2,
fo=1(0,—-1),q0=1, fﬁ,: (1.4,0.4),f]%,: (—0.8,0.4), ¢y = 1()4, Ur =02 g=0,
kczl, TZl, u():(),V():O, 90:().

Our interest in this example is to study the influence of the thermal conductivity of the foun-

AV VAR VAR VA V4

el o N
IS
Q deformable body
le/ . . \ sz
[ L
e ™~
el e ™~~~

FIGURE 1. Physical setting.

dation on the contact process. Thus, in Figure 2, we show the deformed configurations at
final time, and in Figures 4 and 3, the corresponding norm of the temperature and stress fields,
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FIGURE 2. Deformed configuration for O = 0 (left) and 6 = 10 (right).

through the body for two different values of the temperatures of the foundation. These Figures
show that, when the temperature of the foundation is more important then the deformations,
the norm of the stress and the temperature are larger. To see the convergence behaviour of

FIGURE 3. Temperature field for O = 0 (left) and 6 = 10 (right).

—

FIGURE 4. Von Mises stress norm for 8y = 0 (left) and 68 = 10 (right).

the fully discrete scheme, we compute a sequence of numerical solutions based on uniform
partitions of the time interval [0, 7], and uniform triangulations of the body. Then, we provide
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the estimated error values for several discretization parameters s and k. Here, the sides of the
square are divided into 1/h equal parts and the time interval [0, T] is divided into 1/k time steps.
We start with 7 = 1/16 and k = 1/16 which are successively halved. The numerical solution
corresponding to 4 = 1/256 and k = 1,/256 has been considered as the “exact” solution in order
to compute the numerical errors given by

] J

H [2(Q)

E™ = max { ’
1<n<N

The linear asymptotic convergence behaviour obtained in (4.19) is almost observed (see Figure

5).

Un — uzk n

*]
Vv

—1
1.5x10

10 .

—2
5.0x10

Ehk

10 ]

—3 ]
5.0x10 T

v v v
0.025 0.05 0.1
h + k

FIGURE 5. Estimated errors.
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