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Abstract. In this paper, we develop a composition rule for the Pareto approximate subdifferential of
the convex set-valued mapping F +G ◦H, where F, G, and H are convex set-valued mappings with G
being nondecreasing. Necessary optimality conditions for constrained convex set-valued optimization
problems are considered as an application.
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1. INTRODUCTION

In recent years, optimization problems involving set-valued mappings have garnered inten-
sive interest from researchers due to their broad applications across fields such as optimal
control, differential inclusions, and economics (see, e.g., [1, 2, 7, 8]). The concept of subd-
ifferentials plays a crucial role in analyzing optimality conditions for set-valued optimization
problems. Various types of subdifferentials have been defined in the literature, and calculus
rules have been developed under specific qualification conditions. These rules facilitated the
establishment of necessary and sufficient optimality conditions for various types of solutions to
set-valued optimization problems (see [1, 2, 4, 7, 10] and the references therein). Recently, the
authors [3] explored several properties and calculus rules for weakly and properly Pareto ap-
proximate subdifferentials, including an exact sum rule with applications to general constrained
convex optimization problems.

This paper aims to introduce a composition rule for approximate Pareto subdifferentials (both
weak and proper). Specifically, we focus on the case where a set-valued mapping is combined
with another composite mapping. By applying this new composition rule, we establish the ex-
istence of approximate Lagrange multipliers for general convex set-valued optimization prob-
lems.

The structure of the paper is as follows. Section 2 provides essential definitions, notations,
and preliminary concepts related to the set-valued mappings. Section 3 presents the compo-
sition rule for approximate Pareto subdifferentials. In Section 4, the last section, this rule is
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applied to derive approximate efficient optimality conditions for constrained convex set-valued
optimization problems.

2. PRELIMINARIES

In this paper, let X , Y , and Z denote real separated topological vector spaces, with X∗, Y ∗, and
Y ∗ representing their respective topological duals. These duals are paired by the duality pairing
〈. , .〉. The origins of X , Y , and Z are denoted by 0X , 0Y , and 0Z , respectively. For simplicity,
0 is used to refer to 0X , 0Y , and 0Z when no confusion is possible. We also consider a pointed
closed convex cone Y+ ⊂ Y (and similarly, Z+ ⊂ Z) which defines partial preorders on Y (and
Z)

y1 ≤Y+ y2, i f y2− y1 ∈ Y+ (resp., z1 ≤Z+ z2, i f z2− z1 ∈ Z+),

y1 �Y+ y2, i f y2− y1 ∈ Y+\{0Y} (resp., z1 �Z+ z2, i f z2− z1 ∈ Z\{0Z}),
y1 <Y+ y2, i f y2− y1 ∈ int Y+ (resp., z1 <Z+ z2, i f z2− z1 ∈ int Z+),

where y1,y2 ∈Y (resp., z1,z2 ∈ Z) and intY+ (resp., intZ+) stands for the topological interior of
Y+ (resp., of Z). Given two nonempty subsets A, B⊂ Y and α ∈ R, we write A+B := {a+b :
(a,b) ∈ A×B} and αA := {αa : a ∈ A}. If B is the empty set, then A+ /0 = /0+A = /0 and
α /0 = /0. Let F be a set-valued mapping from X into Y , i.e. F(x) is a subset of Y for each x ∈ X .
The domain, graph, and image of F are defined respectively by

domF := {x ∈ X : F(x) 6= /0},
grF := {(x,y) ∈ X×Y : y ∈ F(x)},
ImF :=

⋃
x∈X

F(x).

If we define the set-valued mapping F +A from X into Y by (F +A)(x) := F(x)+A for any
x ∈ X , then the set

epiF := gr(F +Y+) = {(x,y) ∈ X×Y : y ∈ F(x)+Y+}

is called the epigraph of F .
The positive polar cone and the strict positive polar cone of Y+ are denoted by Y ∗+ and Y s∗

+ ,
respectively, i.e.,

Y ∗+ := {y∗ ∈ Y ∗ : 〈y∗,y〉 ≥ 0, ∀y ∈ Y+},
Y s∗
+ := {y∗ ∈ Y ∗ : 〈y∗,y〉> 0, ∀y ∈ Y+\{0Y}}.

Let G : Y ⇒ Z. The composite set-valued mapping G◦F : X ⇒ Z is defined by

(G◦F)(x) :=


G(F(x)) =

⊔
y∈F(x)

G(y), if x ∈ domF,

/0, otherwise.

We have dom(G◦F) = F−1(domG)∩domF , where

F−1(domG) := {x ∈ X : F(x)∩domG 6= /0}.
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Recall that the set-valued mapping G : Y ⇒ Z is said to be (Y+,Z+)-nondecreasing on subset
A ⊆ Y if, G(y2) ⊆ G(y1)+Z+ for all (y1,y2) ∈ A×A satisfying y1 ≤Y+ y2. If G is (Y+,Z+)-
nondecreasing on ImF+Y+, Z+-convex and F is Y+-convex, then G◦F is Z+-convex (see [10]).
The set-valued indicator mapping Rv

S : X ⇒ Y is defined for the nonempty subset S⊆ X by

Rv
S(x) :=

{
{0Y}, if x ∈ S,
/0, elsewhere.

Definition 2.1. [5] The set-valued mapping F is said to be

(i) Y+-convex if its epigraph is a convex subset of X×Y .
(ii) Proper if its effective domain domF 6= /0.

(iii) Connected at x0 ∈ X if there exists a continuous mapping h : X → Y such that h(v) ∈
F(v) for all v in some neighborhood of x0.

In what follows, we recall two concepts of lower semicontinuity adapted to set-valued map-
pings, namely respectively, Y+-epi-closedness and star Y+-epi-closedness.

Definition 2.2. [3] Let F : X ⇒ Y be a set-valued mapping.

(i) F is said to be Y+-epi-closed if its epigraph is closed in the product topology on X×Y .
(ii) F is said to be star Y+-epi-closed if, for any y∗ ∈ Y ∗+, the real set-valued mapping y∗ ◦F

is R+-epi-closed.

Now, we consider the following vector set-valued optimization problem

(PS)

{
Min F(x),
x ∈ S,

where S is a nonempty subset of X and F : X ⇒ Y is a given set-valued mapping. There are
several types of ε-solutions for (PS): a pair (x̄, ȳ) ∈ (S×Y )∩grF is said to be

(a) strongly efficient solution of (PS) if F(x)⊆ ȳ− ε +Y+, ∀x ∈ S,
(b) Pareto or efficient solution of (PS) if F(x)⊆ ȳ− ε +(Y\−Y+), ∀x ∈ S,
(c) weak Pareto or weakly efficient solution of (PS) if F(x)⊆ ȳ−ε +Y\− intY+, ∀x ∈ S,
(d) proper Pareto or (Henig) properly efficient solution of (PS) if there exists Ŷ+ ∈ C (Y+)

such that F(x)⊆ ȳ− ε +(Y\− Ŷ+)∪ (Ŷ+∩−Ŷ+), ∀x ∈ S, where

C (Y+) := {Ŷ+ ⊂ Y : Ŷ+ is a proper convex cone such that Y+\{0Y} ⊆ intŶ+}.

The ε-efficient set, strongly, properly, and weakly ε-efficient sets for (PS) are denoted, re-
spectively, by Kε,e(F(S),Y+), Kε,s(F(S),Y+), Kε,p(F(S),Y+) and Kε,w(F(S),Y+). To unify the
presentation, we denote by Kε,σ (F(S),Y+) the set of ε-σ -efficient pairs depending on the choice
of σ ∈ {s,e,w, p}.

Remark 2.1. The vector ε must belong to some set in order to have consistent approximate
notions. One can see easily that Kε,σ (F(S),Y+) 6= /0 =⇒ ε ∈ Dσ , where

Dσ :=


Y+, if σ = s ,

Y\− intY+, if σ = w,
Y\(−Y+\l(Y+)), if σ = p.
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We can easily see that

Kε,w(F(S),Y+) = Kε,e(F(S), intY+∪{0})

and
Kε,p(F(S),Y+) =

⋃
Ŷ+∈C (Y+)

Kε,e(F(S),Ŷ+).

Moreover, Kε,p(F(S),Y+)⊆ Kε,e(F(S),Y+)⊆ Kε,w(F(S),Y+). For ε1, ε2 ∈Y , σ ∈ {s, p,w}, we
have ε1 ≤Y+ ε2 =⇒ Kε1,σ (F(S),Y+) ⊆ Kε2,σ (F(S),Y+). The concept of the approximate sub-
differential in the Pareto sense is crucial for addressing vector set-valued optimization prob-
lems. By defining various approximate efficient sets, we can introduce the notion of the ε-σ -
subdifferential for set-valued mappings.

Definition 2.3. [3] Let F : X ⇒ Y be a Y+-convex set-valued mapping and (x̄, ȳ) ∈ grF . The
ε-σ -subdifferential of F at (x̄, ȳ) with σ ∈ {s, p,e,w} is defined as

∂
σ
ε F(x̄, ȳ) := {T ∈ L(X ,Y ) : (x̄, ȳ−T (x̄)) ∈ Kε,σ ((F−T )(X),Y+)},

where L(X ,Y ) is the set of all continuous linear operators from X into Y.

This definition is substantiated by the relevance of the following immediate property.

(x̄, ȳ) ∈ Kε,σ (F(X),Y+) ⇐⇒ 0 ∈ ∂
σ
ε F(x̄, ȳ). (2.1)

Remark 2.2. These notions of approximate subdifferentials can be explicitly expressed as fol-
lows:

∂
s
ε F(x̄, ȳ) := {T ∈ L(X ,Y ) : ∀x ∈ X ,∀y ∈ F(x), T (x− x̄)≤Y+ y− ȳ+ ε},

∂
e
ε F(x̄, ȳ) := {T ∈ L(X ,Y ) : @x ∈ X , ∃y ∈ F(x), y− ȳ+ ε �Y+ T (x− x̄)},

∂
w
ε F(x̄, ȳ) := {T ∈ L(X ,Y ) : @x ∈ X , ∃y ∈ F(x), y− ȳ+ ε <Y+ T (x− x̄)},

∂
p
ε F(x̄, ȳ) := {T ∈ L(X ,Y ) : ∃Ŷ+ ∈ C (Y+) such that, @x ∈ X , ∃y ∈ F(x)

y− ȳ+ ε �Ŷ+ T (x− x̄)}.

By convention, we take ∂ σ
ε F(x̄, ȳ)= /0 if (x̄, ȳ) /∈ grF and we say that F is ε-σ -subdifferentiable

at (x̄, ȳ) with σ ∈ {s,e, p,w} and ε ∈ Y if ∂ σ
ε F(x̄, ȳ) 6= /0. For the case Y = R, all these approxi-

mate subdifferentials coincide with the following approximate subdifferential

∂εF(x̄, ȳ) := {x∗ ∈ X∗ : 〈x∗,x− x̄〉 ≤ y− ȳ+ ε, ∀(x,y) ∈ grF}.

For ε = 0Y , we have ∂ σ
0Y

F(x̄, ȳ) = ∂ σ F(x̄, ȳ), where ∂ σ F(x̄, ȳ) stands for the exact Pareto σ -
subdifferential (see [5, 9]).

The following theorem describes how the ε−σ -subdifferential, with ε ∈Dσ and σ ∈{s, p,w},
can be characterized via a scalarization technique involving scalar set-valued mappings.

Theorem 2.1. [3] Let F : X ⇒ Y be a set-valued mapping, (x̄, ȳ) ∈ grF and ε ∈ Dσ . Then, for
σ = s,

∂
s
ε F(x̄, ȳ)⊆

⋂
y∗∈Y ∗+\{0}

{T ∈ L(X ,Y ) : y∗ ◦T ∈ ∂〈y∗,ε〉(y
∗ ◦F)(x̄,〈y∗, ȳ〉)},
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with equality if Y is locally convex and Y+ is closed. For σ ∈ {w, p},

∂
σ
ε F(x̄, ȳ)⊇

⋃
y∗∈Y ∗σ+

{T ∈ L(X ,Y ) : y∗ ◦T ∈ ∂〈y∗,ε〉(y
∗ ◦F)(x̄,〈y∗, ȳ〉)},

with equality if F is Y+-convex and the cone Y+ is pointed for σ = p, where

Y ∗σ+ :=

{
Y ∗+\{0}, if σ = w,
Y s∗
+ , if σ = p.

Proposition 2.1. [3] Let θ : X ⇒ Y be the set-valued mapping defined by θ(x) := {0Y} for all
x ∈ X and σ ∈ {p,w} with Y+ being pointed as σ = p. Then ∂ σ

ε θ(x,0Y ) = ϑσ (X ,Y ) for all
ε ∈Dσ , where ϑσ (X ,Y ) := {T ∈ L(X ,Y ) : ∃y∗ ∈Y ∗σ+ , y∗ ◦T = 0} is the set of σ -zerolike linear
continuous operators.

Definition 2.4. [3] Let F : X ⇒ Y be a set-valued mapping, (x̄, ȳ) ∈ grF and η ∈ R+. The map
F is said to be
I regular η-subdifferentiable at (x̄, ȳ) if

∂η(y∗ ◦F)(x̄,〈y∗, ȳ〉) =
⋃

ε∈ηY+
〈y∗,ε〉=η

y∗ ◦∂
s
ε F(x̄, ȳ), ∀y∗ ∈ Y ∗+.

I σ -regular η-subdifferentiable at (x̄, ȳ) with σ ∈ {w, p} if

∂η(y∗ ◦F)(x̄,〈y∗, ȳ〉) =
⋃

ε∈ηY+
〈y∗,ε〉=η

y∗ ◦∂
s
ε F(x̄, ȳ), ∀y∗ ∈ Y ∗σ+ ,

where y∗ ◦∂ s
ε F(x̄, ȳ) := {y∗ ◦T : T ∈ ∂ s

ε F(x̄, ȳ)}.

Now, we recall the exact formula for the Pareto (properly or weakly) ε-subdifferential of
the sum of two cone-convex vector set-valued mappings taking values in a partially preordered
topological linear space.

Theorem 2.2. [3] Let F, G : X ⇒Y be Y+-convex set-valued mappings and σ ∈ {w, p} with Y+
being pointed as σ = p. Then, for any (x̄, ū) ∈ grF and (x̄, v̄) ∈ grG,

∂
σ
ε (F +G)(x̄, ū+ v̄)⊇

⋃
ε1∈Dσ , ε2∈Y ε

+
ε1+ε2=ε

∂
σ
ε1

F(x̄, ū)+∂
s
ε2

G(x̄, v̄), ∀ε ∈ Dσ .

Assume now that G is σ -regular η-subdifferentiable at (x̄, v̄) for all η ≥ 0 , and one of the
following qualification condition is satisfied

(MR)1

{
X is a Hausdorff locally convex space,

F or G is connected at some point of domF ∩domG.

(AB)1

{
X is a Banach space and F, G are star Y+-epi-closed,
R+[domF−domG] is a closed vector subspace of X .

Then,
∂

σ
ε (F +G)(x̄, ū+ v̄) =

⋃
ε1∈Dσ , ε2∈Y ε

+
ε1+ε2=ε

∂
σ
ε1

F(x̄, ū)+∂
s
ε2

G(x̄, v̄), ∀ε ∈ Dσ ,
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where Y 0Y
+ = {0Y} and Y ε

+ = Y+, if ε 6= 0Y .

3. COMPOSITION

In this section, we provide some results related to the σ -subdifferential calculus for the com-
position of two set-valued mappings. Our approach to determining the Pareto subdifferen-
tial of the composed set-valued mapping involves transforming it into the Pareto subdifferen-
tial of the sum of two set-valued mappings. We work with the following definitions: For all
(x,z) ∈ X ×Z and (A,B) ∈ L(X ,Y )×L(Z,Y ), and y∗ ∈ Y ∗+, one has (A,B)(x,z) = A(x)+B(z)
and y∗ ◦ (A,B) = (y∗ ◦A,y∗ ◦B). Consider the following set valued maps F̃ , H̃ : X ×Z ⇒ Y ,
F̃(x,z) = F(x)+Rv

epiG(x,z), H̃(x,z) = H(z), where F : X⇒Y , G : X⇒ Z, H : Z⇒Y are three
set valued maps.

Remark 3.1. Note that domF̃ = (domF×Z)∩epiG, domH̃ = X×domH, and grH̃ = X×grH.

The next lemma is necessary in the sequel.

Lemma 3.1. Let x̄ ∈ domF ∩dom(H ◦G), z̄ ∈ G(x̄), ȳ1 ∈ F(x̄), and ȳ2 ∈ H(z̄) (σ ∈ {p,w}).
(i) If H is (Z+,Y+)-nondecreasing on ImG+Z+, then

A ∈ ∂
σ
ε (F +H ◦G)(x̄, ȳ1 + ȳ2) ⇔ (A,0) ∈ ∂

σ
ε (F̃ + H̃)((x̄, z̄), ȳ1 + ȳ2), ∀ε ∈ Dσ .

(ii) ∂ s
ε H̃((x̄, z̄), ȳ2) = {0}×∂ s

ε H(z̄, ȳ2), ∀ε ∈ Ds.
(iii) If H is σ -regular η-subdifferentiable at (z̄, ȳ2) for all η ≥ 0, then H̃ is σ -regular η-

subdifferentiable at ((x̄, z̄), ȳ2) for all η ≥ 0.
(iv) If W = R+[G(domF ∩domG)+Z+−domH] is a closed vector subspace of Z, then

X×W = R+[domF̃−domH̃] is a closed vector subspace of X×Z.

Proof. (i) For σ = w, let A ∈ ∂ w
ε (F +H ◦G)(x̄, ȳ1 + ȳ2). For all x in X , we have

F(x)+(H ◦G)(x)− ȳ1− ȳ2−A(x− x̄)+ ε ⊂ Y\− intY+.

For all (x,z) in X×Z, we have

F(x)+RepiG(x,z)+(H ◦G)(x)− ȳ1− ȳ2−A(x− x̄)+ ε ⊂ Y\− intY+,

which implies that, for all (x,z) ∈ epiG,

F̃(x,z)+(H ◦G)(x)− ȳ1− ȳ2−A(x− x̄)+ ε ⊂ Y\− intY+. (3.1)

On the other hand, as H is (Z+,Y+)-nondecreasing on ImG+Z+, for (x,z) ∈ epiG,
we see that H(z)⊂ (H ◦G)(x)+Y+. From (3.1), we see that

F̃(x,z)+H(z)− ȳ1− ȳ2−A(x− x̄)+ ε

⊂ F̃(x,z)+(H ◦G)(x)+Y+− ȳ1− ȳ2−A(x− x̄)+ ε

⊂ Y\− intY++Y+.

By using the fact that Y\− intY++Y+ ⊂ Y\− intY+, we deduce that, for all (x,z) ∈
X×Z,

F̃(x,z)+ H̃(x,z)− ȳ1− ȳ2−A(x− x̄)+ ε ⊂ Y\− intY+.

Thus (A,0) ∈ ∂ σ
ε (F̃ + H̃)((x̄, z̄), ȳ1 + ȳ2). Similarly, we prove the reverse implication.

The case σ = p is obtained similarly.
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(ii) Let (A,B) ∈ ∂ s
ε H̃((x̄, z̄), ȳ2). Then, for all ((x,z),y) ∈ grH̃ = X×grH,

A(x− x̄)+B(z− z̄)≤Y+ y− ȳ2 + ε. (3.2)

By taking z = z̄ and y = ȳ2 in (3.2), it follows that, for all x ∈ X , n ∈ N∗,

−ε

n
≤Y+ A(x)≤Y+

ε

n
.

As Y+ is closed and with n↗+∞, we obtain that, for all x∈X , A(x)∈Y+∩−Y+= {0Y}.
Consequently A = 0, which means that ∂ sH̃((x̄, z̄), ȳ2)⊆ {0}×∂ sH(z̄, ȳ2).

For the reverse inclusion, let B ∈ ∂ s
ε H(z̄, ȳ2). Then, for all (z,y) ∈ grH, B(z− z̄)≤Y+

y− ȳ2 + ε. As grH̃ = X×grH, we deduce that {0}×∂ s
ε H(z̄, ȳ2)⊆ ∂ sH̃ε((x̄, z̄), ȳ2).

(iii) Suppose that H is σ -regular η-subdifferentiable at (z̄, ȳ2) for all η ≥ 0, and let y∗ ∈Y ∗σ+ .
By (ii), we have

∂η(y∗ ◦ H̃)((x̄, z̄),〈y∗, ȳ2〉) = {0}×∂η(y∗ ◦H)(z̄,〈y∗, ȳ2〉).

Thus

(0,B) ∈ ∂η(y∗ ◦ H̃)((x̄, z̄),〈y∗, ȳ2〉) ⇔ B ∈ ∂η(y∗ ◦H)(z̄,〈y∗, ȳ2〉)
⇔ B ∈

⋃
ε∈ηY+
〈y∗,ε〉=η

y∗ ◦∂
s
ε H(z̄, ȳ2).

Hence, there exist ε ∈ ηY+ and T ∈ ∂ s
ε H(z̄, ȳ2) with 〈y∗,ε〉 = η such that B = y∗ ◦

T . Since ∂ s
ε H̃((x̄, z̄), ȳ2) = {0}× ∂ s

ε H(z̄, ȳ2), we can write (0,B) = y∗ ◦ (0,T ) ∈ y∗ ◦
∂ s

ε H̃((x̄, z̄), ȳ2). Therefore, we obtain

∂η(y∗ ◦ H̃)((x̄, z̄),〈y∗, ȳ2〉) =
⋃

ε∈ηY+
〈y∗,ε〉=η

y∗ ◦∂
s
ε H̃((x̄, z̄), ȳ2), ∀y∗ ∈ Y ∗σ+ ,

which means that H̃ is σ -regular η-subdifferentiable at ((x̄, z̄), ȳ2) for all η ≥ 0.
On other hand, it is easy to conclude the proof of (iv) by following [10]. Then the

proof of lemma is complete.
�

Let us consider the following conditions.

(MR)2


X , Z are locally convex spaces,
F , H are Y+-convex and G is Z+-convex,
∃a ∈ domF ∩domG such that H is connected at some point b ∈ G(a).

(AB)2


X , Z are Banach spaces,
F , H are Y+-convex, star Y+-epi-closed.
G is Z+-convex and Z+-epi-closed,
W = R+[G(domF ∩domG)−domH] is a closed vector subspace of X .

Lemma 3.2. [6]
(i) If condition (MR)2 holds, then F̃2 is connected at (a,b) ∈ dom F̃1.

(ii) If condition (AB)2 holds, then X ×W = R+[dom F̃1− dom F̃2] is a closed vector sub-
space of X×Z and F̃1, F̃2 are star Y+-epi-closed.
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Theorem 3.1. Let F : X⇒Y , G : X⇒ Z, and H : Z⇒Y be three set-valued mappings such that
F,H are Y+-convex, star epi-closed, and G is Z+-convex, epi-closed, (x̄, ȳ1) ∈ grF, (x̄, z̄) ∈ grG,
(z̄, ȳ2) ∈ H(z̄). Then, for all ε ∈ Dσ ,

∂
σ
ε (F +H ◦G)(x, ȳ1 + ȳ2)⊇

⋃
ε1∈Dσ ,ε2∈εY+

ε1+ε2=ε

{∂ σ
ε1
(F +A◦G)(x, ȳ1 +A(z̄))| A ∈ ∂

s
ε2

H(z̄, ȳ2)}

Assume that H is (Z+,Y+)-nondecreasing on ImG+Z+, and σ -regular η-subdifferentiable at
(z̄, ȳ2) for all η ≥ 0, Suppose that condition (MR)2 or (AB)2 holds. Then,

∂
σ

ε
(F +H ◦G)(x, ȳ1 + ȳ2) =

⋃
ε1∈Dσ ,ε2∈εY+

ε1+ε2=ε

{∂ σ
ε1
(F +A◦G)(x, ȳ1 +A(z̄))| A ∈ ∂

s
ε2

H(z̄, ȳ2)}.

Proof. Let us prove the first inclusion for σ = w. Let ε, ε1 ∈ Dσ and ε2 ∈ εY+ with ε1 + ε2 = ε

and B ∈ ∂ w
ε1
(F +A◦G)(x̄, ȳ1 +A(z̄)) for some A ∈ ∂ s

ε2
H(z̄, ȳ2). We proceed by contradiction: if

B /∈ ∂ w
ε (F +H ◦G)(x, ȳ1 + ȳ2), then there exist x0 ∈ (domF ∩ (dom(H ◦G))), y0 ∈ F(x0), and

z0 ∈ (H ◦G)(x0) such that

y0 + z0− ȳ1− ȳ2−B(x0− x̄)+ ε ∈ −intY+. (3.3)

Note that A ∈ ∂ s
ε2

H(z̄, ȳ2) implies

ȳ2− z0 +A(z0)−A(z̄)− ε2 ∈ −Y+. (3.4)

Adding (3.3) and (3.4) and using the fact that −Y+− intY+ ⊆−intY+, we obtain

y0− ȳ1 +A(z0)−A(z̄)−B(x0− x̄)+ ε1 ∈ −intY+.

This leads to a contradiction with B ∈ ∂ w
ε1
(F +A◦G)(x̄, ȳ1 +A(z̄)). The case σ = p is similarly

obtained. For the reverse inclusion, let B∈ ∂ σ
ε (F +H ◦G)(x, ȳ1+ ȳ2) and F̃ , H̃ be the set valued

mappings defined above. By Lemma 3.1 (i), we have that (B,0) ∈ ∂ σ
ε (F̃ + H̃)((x̄, z̄), ȳ1 + ȳ2).

We can easily see that F̃ and H̃ are Y+-convex and star epi-closed. Thus, by Theorem 2.2 and
Lemma 3.1 (iii), there exist (T,A) ∈ L(X ,Y )×L(Z,Y ), ε1 ∈Dw, ε2 ∈ εY+, and ε1+ε2 = ε such
that

(B−T,−A) ∈ ∂
σ
ε1

F̃((x̄, z̄), ȳ1) and (T,A) ∈ ∂
s
ε2

H̃((x̄, z̄), ȳ2).

On other hand, by Lemma 3.1 ((ii) and (iv)), we obtain T = 0, A∈ ∂ s
ε2

H(z̄, ȳ2), and (B,−A)∈
∂ σ

ε1
F̃((x̄, z̄), ȳ1). Note that, for σ = w, (B,−A) ∈ ∂ w

ε1
F̃((x̄, z̄), ȳ1) is equivalent to

F(x)− ȳ1−B(x− x̄)+A(z− z̄)+ ε1 ⊂ Y\− intY+, (x,z) ∈ X×Z∩ epiG.

Hence, for all x ∈ X , we have

(F +A◦G)(x)− (ȳ1 +A(z̄))−B(x− x̄)+ ε1 ⊂ Y\− intY+.

Therefore, B ∈ ∂ w
ε1
(F +A◦G)(x̄, ȳ1 +A(z̄)). Case σ = p can be obtained similarly. �

By taking F(x) = {0Y} for any x ∈ X , we obtain the following corollary.
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Corollary 3.1. Let G : X ⇒ Z and H : Z ⇒ Y be two set-valued mappings, and let z̄ ∈ G(x̄)
and ȳ ∈ H(z̄). Assume that H is (Z+,Y+)-nondecreasing on ImG + Z+ and σ -regular η-
subdifferentiable at (z̄, ȳ) for all η ≤ 0. Suppose that one of the following conditions holds

(MR)3


X, Z are locally convex spaces,
G is Z+-convex and H is Y+-convex,
H is connected at some point of ImG.

(AB)3


X, Z are Banach spaces,
H is Y+-convex, star Y+-epi-closed,
G is Z+-convex and Z+-epi-closed,
R+[G(domG)−domH] is a closed vector subspace of X .

Then, for all ε ∈ Dσ ,

∂
σ
ε (H ◦G)(x, ȳ) =

⋃
ε1∈Dσ ,ε2∈εY+

ε1+ε2=ε

{∂ σ
ε1
(A◦G)(x,A(z̄))|A ∈ ∂

s
ε2

H(z̄, ȳ)}

4. APPLICATIONS TO CONSTRAINED SVOPS

In this section, we provide the approximate σ -efficient optimality conditions in terms of
the Lagrange–Kuhn–Tucker (operator) multiplier for the following general convex set valued
mathematical programming problem

(PS)


Minimize F(x),
G(x)∩−Z+ 6= /0,
x ∈C,

where F : X ⇒ Y and G : X ⇒ Z are two set-valued mappings, Z is a real locally convex topo-
logical vector space, Z+ is a closed convex pointed cone with nonempty topological interior and
C be a nonempty closed convex set of X . For establishing the σ -efficient optimality conditions
of this problem, we need the following lemmas.

Lemma 4.1. [10] The indicator set-valued mapping Rv
−Z+

is (Z+,Y+)-nondecreasing on Z.

Lemma 4.2. [3]

(i) For a convex and closed subset S, Rv
S is proper, Y+-convex and epi-closed. Furthermore,

for all x∈ S, ε ≥ 0, ∂ s
ε Rv

S(x̄,0)=Nv
ε (x̄,S), where Nv

ε (x̄,S)= {T ∈ L(X ,Y ) : ∀x∈ S, T (x−
x̄)≤Y+ ε} is the ε-normal vectors at x̄ ∈ S. In particular,

∂
s
ε Rv
−Z+

(z̄,0) = {A ∈ L+(Z,Y ) : −ε ≤Y+ A(z̄)≤Y+ 0}.

(ii) If int(S) 6= /0, then Rv
S is connected on int(S).

(iii) Rv
S is σ -regular η-subdifferentiable on S×{0Y} for all η ≥ 0, (σ ∈ {p,w}).

Theorem 4.1. Let F : X⇒Y and G : X⇒ Z be two set-valued mappings and (x̄, ȳ) ∈ grF with
x̄ ∈C and G(x̄)∩ (−Z+) 6= /0, and let ε ∈Dσ and σ ∈ {w, p}. If one of the following conditions
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holds

(MR)4


X, Z are locally convex vector spaces,
F is Y+-convex and G is Z+-convex,
int(−Z+)∩G(C∩domF ∩domG) 6= /0.

(AB)4


X, Z are Banach spaces,
F is Y+-convex and star Y+-epi-closed,
G is Z+-convex and epi-closed ,
R+[G(domF ∩C∩domG)+Z+] is a closed vector subspace of Z,

then (x̄, ȳ) is an ε-σ -efficient solution to problem (PS) if and only if, for any z̄ ∈ G(x̄)∩−Z+,
there exist ε1 ∈ Dσ , ε2 ∈ εY+ and A ∈ {A ∈ L+(Z,Y ) : ε2 ≤Y+ A(z̄) ≤Y+ 0Y} such that 0 ∈
∂ σ

ε1
(F +Rv

C +A◦G)(x̄, ȳ+A(z̄)).

Proof. The feasible set associated to problem (PS) is given by S = {x ∈ X : G(x)∩−Z+ 6=
/0}∩C, and it is easy to check that Rv

S =Rv
C+Rv

−Z+
◦G. Hence problem (PS) becomes equivalent

to the unconstrained set-valued minimization problem{
Minimize (F+Rv

C +Rv
−Z+
◦G)(x),

x ∈ X .

We can see easily that Kε,σ (F(S),Y+) = Kσ ((F +Rv
C +Rv

−Z+
◦G)(X),Y+). From relation (2.1),

we can write

(x̄, ȳ) ∈ Kε,σ (F(S),Y+)⇐⇒ 0 ∈ ∂
σ
ε (F +Rv

C +Rv
−Z+
◦G)(x̄, ȳ).

Observe that epi(F +Rv
C) = epiF ∩ (C×Y ), which asserts that the convexity of the set-valued

mapping F +Rv
C follows from the convexity of the epigraph of F and the convexity of C. Also,

we note that, for any y∗ ∈ Y ∗+,

epi(y∗ ◦ (F +Rv
C)) = epi(y∗ ◦F + y∗ ◦Rv

C) = epi(y∗ ◦F)∩ (C×R).

Thus the star Y+-epi-closedness of mapping F +Rv
C comes from the star Y+-epi-closedness of

F and the closedness of subset C.
Note that the conditions (x̄, ȳ) ∈ grF with x̄ ∈ C and G(x̄)∩ (−Z+) 6= /0 could be written

equivalently as (x̄, ȳ)∈ gr(F +Rv
C), (x̄, z̄)∈ grG and (z̄,0Y )∈ grRv

−Z+
for any z̄∈G(x̄)∩(−Z+).

According to Lemma 4.2, set-valued mappings F +Rv
C, G and Rv

−Z+
satisfy all the assump-

tions of Theorem 3.1 and thus we obtain (x̄, ȳ) ∈ Kε,σ (F(S),Y+), if and only if there exist
ε1 ∈ Dσ , ε2 ∈ εY+, and A ∈ ∂ s

ε2
Rv
−Z+

(z̄,0Y ) = {A ∈ L+(Z,Y ) : ε2 ≤Y+ A(z̄) ≤Y+ 0Y} such that
0 ∈ ∂ σ

ε1
(F +Rv

C +A◦G)(x̄, ȳ+A(z̄)). The proof of theorem is complete. �
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