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Abstract. In this paper, we are concerned with a strong vectorial nonlinear bilevel programming problem
whose upper and lower levels are vectorial. For such a problem, we give a conjugate duality approach
based on Scalarization, regularization, and conjugate duality. We show that any accumulation point of the
sequence of scalarized-regularized solutions solves the bilevel programming problem. Via this duality
approach, we establish necessary optimality conditions for the scalarized-regularized problem. We also
provide necessary and sufficient optimality conditions for a class of properly efficient solutions of the
bilevel programming problem.
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1. INTRODUCTION
In this paper, we are concerned with the following vector bilevel minimization problem

(S) vV— Ecrg)l(l F(xay)a
yeM (x)

where . (x) is the set of properly efficient solutions of the vector minimization problem
Z(x)  v—minf(x,y),
yeyY

where F : RP x R? — RF, f:RP xR?— R™, k>2, m>2,are convex functions, X and Y are
two nonempty, compact, and convex subsets of R” and RY, respectively, and v — min” stands
for vector minimization.

Problem (S) is called a multiobjective strong bilevel programming problem or multiobjective
strong Stackelberg problem. It corresponds to a two-player game in which a leader plays against
a follower. The leader, having all information about the follower, announces first a strategy
x € X to minimize his objective vector function F. Then, the follower reacts optimally by
selecting a strategy y(x) € Y, to minimize his objective vector function f. It is assumed that the
game is cooperative.
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A multiobjective bilevel programming problem is a bilevel problem which one or both lev-
els are vectorial. Bilevel optimization problems with multiple objectives in both levels were
investigated seldom in the literature. Let us summarize some interesting results. In [15], Yin
emphasized the importance of formulating the transportation decision-making problems as a
multiobjective bilevel model and then proposed a solution algorithm by using genetic algo-
rithms. Note that Yin’s algorithm was efficient to search simultaneously the pareto optimal
solutions. In [9], Eichfelder showed that the set of feasible points of the upper level problem
can be expressed completely as the solution set of a multiobjective optimization problem. This
problem was solved based on a scalarization approach. Eichfelder presented an algorithm for
the first time in the case of bicriteria optimization problems on both levels and for a one dimen-
tional upper level variable.

In [8], Dempe and Frank considered a linear bilevel programming problem with multival-
ued objective functions in both upper and lower levels. Using vector optimization theory, the
multiobjective problem was suitably reformulated into a parametric bilevel programming prob-
lem. Then, a respective solution algorithm was presented and illustrated via an example. Even
though multiobjective bilevel optimization problems where both levels are vectorial have not
yet received a broad attention in the literature, real-world decision-making processes always
have several social concern and thus multiple objectives need to be achieved simultaneously.
For illustration of such a class of bilevel problems, let us give the following practical example
[9]. Consider a city bus transportation system financed by the public authorities. They have two
objectives to achieve; The first one is the reduction of the money losses, and the second one is to
bring as many people as possible to use the buses instead of their own cars in order to reduce the
overall traffic. The public authorities can decide about the bus ticket price but with taking into
account the customers in their usage of the buses. The customers may have several objectives
like minimizing their transportation time and costs. Therefore, the transportation system can be
modeled as a bilevel multiobjective optimization problem where the first level includes the ob-
jectives and the constraints of the public authorities and the lower level includes the objectives
and the constraints of the public.

The aim of this paper is to provide necessary and sufficient optimality conditions for (S), the
multiobjective bilevel problem via the Fenchel-Lagrange duality approach. This duality was
first introduced for convex programming problems in [14], and afterwards extended to some
generalized convex programming problems (see, e.g., [5, 7]). In [1], the authors presented a
Fenchel-Lagrange duality approach using conjugacy for a semivectorial bilevel problem where
the upper and lower levels are vectorial and scalar respectively and for a one upper and lower
level variable. In [3], a Fenchel-Lagrange duality approach and optimality conditions were
given for a class of semivectorial bilevel problem where the upper level is vectorial and the
lower level is scalar. In this paper, we extend this duality approach via scalarization to the
multiobjective case where the corresponding upper and lower levels are both vectorial. The
approach considered is based on the use of four operations: Scalarization, regularization, de-
composition, and a conjugate duality. In the first step, we scalarize problem (S) into problem
(§*),A € intR”. In order to establish strong duality, we need the so-called Slater condition.
Unfortunately, due to the constraint y € .# (x), problem (S) and its scalarized one in the sense
of Geoffrion ([10]) do not satisfy this condition. In order to avoid this situation, we start by
regularizing problem (Sk) into (Sé) and the regularization is based on the use of &-properly
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efficient solutions of problem (Sk). As a main result, we show that any accumulation point
of a sequence of solutions of the scalarized-regularized problem (Sé) solves (S). Next, we
decompose the scalarized-regularized problem (Sé) according to the second variable. This de-
composition is obtained via the link that exists between the €—properly efficient solutions of
the lower level problem /¢ (x) and the set of u " e—solutions of the scalarized problem ZH (x).
In order to start our procedure of dualization, we consider in a second time a decomposition of
problem (Sé u) into a family of scalar convex minimization problems (Sﬁﬁ),)? € R”. The key of

this decomposition is that (Sé u) can be viewed as a minimization problem of a convex scalar
objective function under d.c. constraints. Note that the technique used to obtain such a decom-
position is inspired from the work of Martinez-Legaz and Volle ([12]). Then, based on the study
given in [6], we give the Fenchel-Lagrange dual to every subproblem (Séi) Using the decom-
position, we define a duality for problem (Sé) which we call the extended Fenchel-Lagrange
duality. Under appropriate assumptions, we show that strong extended Fenchel-Lagrange dual-
ity holds for (Sé) Based on the obtained results, we provide necessary optimality conditions
for the scalarized-regularized problem (Sé) Via this duality and some stability results related
to the regularization, we give necessary optimality conditions for the class of properly efficient
solutions of (S) which are accumulation points of a sequence of scalarized-regularized solu-
tions. Finally, sufficient optimality conditions are given for problem (S) without resorting to
duality. Note that this duality approach extends the one given in [2] from the scalar case to the
multiobjective one, where both levels are vectorials.

The paper is organized as follows. We start the second section by some results related to con-
vex analysis. Then, we recall some definitions and results concerning multiobjective optimiza-
tion. After that we give some preliminary results concerning the scalarized problem associated
to the lower level problem. In Section 3, we present the link that exist between the scalarized-
regularized problem and the original bilevel problem that are needed in what follows. In Section
4, we present our duality approach and provide necessary and sufficient optimality conditions
for the scalarized-regularized problem. In Section 5, we provide necessary and sufficient op-
timality conditions for the original multiobjective bilevel programming problem (). Finally,
Section 6 ends this paper.

2. PRELIMINARIES

In this section, we first recall some results related to convex analysis. Then, we remind
some definitions and results concerning multiobjective optimization. We close this section by
providing some preliminary results concerning the scalarized problem associated to the lower
level problem.

2.1. Background of convex analysis. Let A be a nonempty subset of R”. We denote by y, the
indicator function of set A, i.e., W4 (x) =0if x € A, and Wy (x) = +o0 otherwise. In what follows,
set R" is equipped with the usual topology and the following conventions in R = RU {#eo} will
be adopted

o
8
|
o™
8
I
T
8
|
T
3

)= (o) 4 (—o0) = oo

) 0 ) = +oo, OC(—l—oo) = —o0 for o € R*.
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Definition 2.1. Let 4 : R* — R be a function. The conjugate function of 4 relative to set A
is denoted by 4} and defined on R" by i} (p) = sup,c{(p,x) — h(x)}, where (.,.) denotes
the inner product for two vectors in R". If A = R", then we have the usual Legendre-Fenchel
conjugate function of 4, simply denoted by A*.

Definition 2.2. The effective domain of & denoted by dom# is the set defined by domh = {x €
R" / h(x) < +eo}. We say that & is proper if h(x) > —oo, for all x € R", and dom# is nonempty.

Definition 2.3. Let 4 : R” — RU{+eo} be a proper convex function and ¥ € domA. The subd-
ifferential in the sense of convex analysis of & at ¥ denoted by dh(X) is the set defined by

dh(x) = {x" € R" / h(x) > h(X)+ (x*,x—X) VxeR"}.
An element x* € dg(X) is called a subgradient of 4 at x.
Remark 2.1. i) x* € dh(X) <= (x*, %) = h(X) + h* (x¥).
ii) h(x)+h*(x*) > (x*,x) for all x,x* € R", called the Fenchel inequality.

Definition 2.4. let C be a nonempty convex subset of R” and ¥ € C. The normal cone .4¢(X) to
C at ¥ in the sense of convex analysis is defined by .A¢(X) = {x* € R" : (x*,x—X) <0, Vx € C}.

Theorem 2.1. [13] Let h: R" — RU {400} be a proper, convex, and lower semicontinuous
function, and let C be a nonempty and compact subset of int(domh). Then, U,cc dh(x) is com-
pact.

Theorem 2.2. [4] Let hy,hy : R* — RU{+eo} be a proper convex functions. Assume that there
exists xo € domhy such that hy is continuous at xo. Then, for every x € R", d(hy + hy)(x) =

ohy (X) + 8h2(x).

2.2. Background of multiobjective optimization. Let us recall some definitions and results
concerning multiobjective optimization. Consider the following vector minimization problem

("@) v_irelg;g(x)v

where g = (g1,...,g¢) | : RP — R* is a function and <7 is a nonempty subset of R?.

Definition 2.5. [10] An element X € <7 is called an efficient solution to problem (£2) if g(x) <
g(x), for x € o7, g(x) = g(x). An efficient solution is also called a pareto-efficient solution.

Throughout the paper, we adopt the following definition of properly efficient solution in the
sense of Geoffrion .

Definition 2.6. [10] An element X € 7 is called a properly efficient solution to problem (2) if
it is efficient and if there exists a positive real number M such that, for each i € {1,...,k} and
x € o satisfying g;(x) < gi(%), there exists j € {1,...,k} such that
i) 8(%) < g,(x)
iy S0 =8l .
gj(x) —g;(%)

For A = (A1,...,Ax) " € intRX , we consider the following scalar minimization problem

k
(24) 22}; Aigi(x)
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associated to the vector minimization problem (2).

Theorem 2.3. [10] Let A; > 0(i = 1,...,k) be fixed. If X is optimal solution to (2;), then X is
properly efficient solution to (2).

Theorem 2.4. [10] Let </ be a convex set, and let g; be convex on <f. Then X is properly
efficient of (2) if and only if there exists A = (Ar,...,A) " € intRX with Y5 | A = 1 such that @
solves the scalarized problem (2;), i.e., Argmin2 = J, cinRE Argmin2; .

Definition 2.7. ([10, 11]) Let & = (&1,....&)" € Rﬁ . A point X € ¢/ is said to be an e-efficient
(or pareto e-efficient) solution to problem (2) if, for x € &7 such that g(x) < g(¥) — €, g(x) =

g(x)—e.

Definition 2.8. [11] Let € = (&1,...,&) " € R . A point ¥ € &7 is said to be an &-properly
efficient solution to problem (2) if it is e-efficient and there exists a positive real number M
such that, foreach i € {1,...,k} and x € .o satisfying g;(x) < g;(X) — &, there exists j € {1,...,k}
such that
D) gj(¥) —¢& < gj(x)
i 8- -&
8j(x) —gj(¥) + ¢

The following result gives a characterization of e-proper efficiency via scalarization.

Theorem 2.5. [11] Let € = (g1,....&) " € R’i . Assume that the set </ and the function g are
convex. Let X € of . Then, X is an €-properly efficient solution to problem (2) if and only if
, there exists A = (A1,..., M) € intR’; with Zle Ai = 1 such that % is a A" €-solution of the
scalar minimization problem (2y) i.e., Y | Ligi(®) < Y5 | Ligi(x) + Y5, Lie; Vx e .

2.3. Scalarization of the lower level problem & (x). In this section, we present the scalarized
problem associated to the lower level problem. Then, we establish some results which are
needed for our further investigation.

For a fixed g = (Uy,..., i) " € intR” , we consider the following scalarized problem of

P (x)
PH(x) ryrg}rllj_ztl wifi(x,y).
Define f, (x,y) = Yy 1jifj(x,y) on R? X RY. Set vy (x) = infyey fu(x,y) and
A @) = {y e/ fulxy) < v}

the infimal value and the set of solutions of the scalar problem 2 (x) respectively.

Remark 2.2. 1) f“ is continuous since f;, j = 1,...,m, are continuous as finite convex
functions.
ii) Since Y is compact and fAﬂ is continuous, then &#(x), the scalarized problem, admits
at least one solution. Hence v, (x) € R for all x € X.

Proposition 2.1. Let x € X. Then, y is a properly efficient solution to & (x) if and only if
there exists Wy = (Wx 1,2y lom) € int(R™) such that ¥ is a solution to the scalarized
minimization problem 2" (x) and .# (x) = Lecint(®m) MM (x).
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Proof. Following Theorem 2.4, we can conclude the result immediately. U

Proposition 2.2. Let € € int(R"!) and x € X. Then, y is an €-properly efficient solution to & (x)
if and only if there exists [y = (L1, 2y s ham) | € int(RY) such that § is a ! €— solution to
the scalarized minimization problem "(x) and 4 *(x) = weint(®n) 7, Z 7, (x) with 4 (x)

being the set of €-properly efficient solutions of & (x) and ,//A/Zi 7.(x) being the set of u, e-
solutions of *x(x), i.e., ///ﬁi?g(x) = {y €Y/ fu, (x,y) < vy, (x)+ /,L,;rs} :
Proof. It immediately follows from Theorem 2.5. 0J

3. THE SCALARIZED-REGULARIZED PROBLEM

As mentioned in the introduction, we need the Slater constraint qualification condition for
the application of the Fenchel-Lagrange duality in our study. Since (S) does not satisfy this
condition, we first proceed to its scalarization and then its regularization. This scalarization-
regularization method uses e-properly efficient solutions of lower level problem Z2(x). As
a main result, we show that any accumulation point of a sequence of scalarized-regularized
solutions of problem (Sén) Aeint(RE ) g, cint(®?) is a properly efficient solution of (S).

Foragiven A = (Aj,.., A" € int(RK ), we consider the following scalarized problem of (S)

k
(s min Y AF(xY),
ye (x) =1

Let A € int(RX )and € € int(R™). We consider the following regularized problem of )

k
(S} min Y A:Fi(x,y).
X S
yeM* (x)

In what follows, for &, \, Of., we denote the problem (Sén) by (S}). The following theorem
establishes that any accumulation point of a sequence of solutions of the scalarized-regularized
problem (%) solves ().

Theorem 3.1. Let €, \, O, A € int(RX ) and (X,,,3,)n be a sequence of solutions of scalarized-
regularized problem (S*), n € N. Let (X,5) be an accumulation point of the sequence (%,,5,).
Then (X,y) is a properly efficient solution to (S).

Proof. Feasibility. Obviously, we have X € X. Let us show that y € .Z (X), i.e., y is a properly

efficient solution to & ().
Efficiency: Let y € Y such that

fz(x7Y)§fz(x7)7)7 VlE{l,,m}:I (31)
Let us show that, for all i € 1, fj(x,y) = fi(X,y). Note that (%,,y,) is a solution to (Sf}n),n eN
Then, y, € M (xn). Then, y, is an g,-efficient solution to #(x,). We distinguish the following
cases:

1) Assume that there exists ng € .4 such that fi(%,,y) < fi(%,,9,) — €. foralln € A ,n >
ng,i € I. For n € 4, since y, is an g,—efficient solution to Z(X,), then f;(X,,y) =
fi(Xn,9n) — €, i € 1. Passing to the limit as n — +o0,n € 4", we obtain f;(X,y) = fi(X,y).

ns
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2) Assume that there exists an infinite subset .4 C .4 such that f;(%,,y) > fi(%0, V) — €}
for all n € 4", Then, passing to the limit as n — +oo, we obtain f;(%,y) > fi(%,y).
Using (3.1), we obtain f;(X,y) = fi(%,¥). By means of the two cases and the fact that i
is arbitrary in I, we deduce that f(X,7) = f(%,y).

Proper efficiency: Now, let us show that y is a properly efficient solution to & (x). Assume the
contrary. Let M > 0 be arbitrary. Then, there exist y* € Y and i € I such that

fi(%,y") < fi(%,9) (3.2)

and
Jil%,9) = fi(x,y")
fi(%,y*) — fi(%,9)

for all j € I\ {i}. verifying f;(%.5) < f;(£.y"). Set I(3) = {j € I\ {i} / fi(£.5) < f;(%.y")}.
Since 1 is finite, then we easily deduce the following property:

>M (3.3)

(.Z) There exists n3 € .4 such that, for alln > n3,n € A,
l) ﬁ(xmy ) <fl<xn7)_)n) _gin’

if) f](xn,yn) el <f](xn,y*) VjeI(y)
)

fi( xna)’n fl(x,”y )—¢€
Fi(Eny*) fj(x,,7yn)+g" > M, V] € I( )

1ii

Indeed, assume by contradiction that there exists an infinite subset .4~ " C A such that, Vn €
N
a) fi(¥n,y*) 2 fi(¥n,¥n) — &', or,
b) 3j € I(¥) such that f](xn,yn) €} > fj(Xn,y"), or

Ji(FnsPn) = fi(Tn,y") — &'
c¢) 3j € I() such that TG ) F G o) T €] <M.

We distinguish the following cases:

1) If a) is satisfied, then we obtain f;(X,y*) > fi(%,¥) by passing to the limit as n — 0.
This inequality contradicts (3.2).
2) If b) is satisfied, then we obtain f;(X,y) > f;(¥,y") by passing to the limit as n — +oo.
This contradicts the fact that j € I(y).
3) If ¢) is satisfied, then we obtain
fi(xvy) _fi(f,y*)
fixy*) = fi(&,3)
by passing to the limit as n — +oo. This inequality contradicts (3.3).
Then, we obtain a contradiction. Set I, = {j € I\ {i} / fj(Xn,5n) — €] < fi(Xn,y"), Vn >
nz, n € A4 }. Let us show that the third assertion in (.£’) is also true for all j € I,,. Let j € I,,.
We distinguish the following cases.
1) If j € I(y), then there is nothing to prove. Note that iii) is satisfied for all j € I(¥).

2) If j ¢ 1(7), then f;(X,¥) > fj(%,y*). We distinguish the following subcases:
2.1) Assume that f;(X,y) > fj(%,y*). Hence, there exists ng € .4 such that

Li(Fns ) — €} > fi(Xn,y"), Vn > n4, ne N, (3.4)

Set ns = max{ng,n3}. Then, for all n > ns,n € A", we get a contradiction between
(3.4) and the fact that j € I,,.

3j € I(y) such that <M
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2.2) Assume that f;(X,y) = fj(X,y*). Assume that there exists an infinite subset .4~ '
{n € A4 /n>n3} such that

fj(fn;y*) _fj<xn7}_}n) =+ 8}'1
We have hm"ﬁj;/" fj(fnay*) _fj()zm)_’n) +87 :f](xay*) —f](f,)_/) =0. Slncefl(xvy*) <
ﬁ(xnaYn) fi(fnvy*)fgin — loo : L :

fi(%,y), then hmz;«m TG o) T — +oo, which leads to a contradiction in
(3.5) (oo < M).

In summary, we have the following property:

(%) For arbitrary M > 0, there exists y* € R? and i € I such that
i)y ey,
”) .fl(xl’uy ) <fl(xn7)_7n) - ?1,
)

fl xnv)’n f,(xn,y )
fj X”,y fj('xl’l7yn)+€n > M VJ 6 Il’l3

<M,Vne.N . (3.5)

iii

Therefore, the property (%) gives a contradiction with the fact that y, € M (%).
Optimality. Let us show that (X,y) is a properly efficient solution of (S). For this, let us show

that there exists A € int(RX ) such that (%,) is a solution to (S’i) (see Theorem 2.3). We have
that (%,,¥,) is a solution to scalarized regularized problem (S}), i.e.,

AF(xy) V(xy) € X x M5 (x). (3.6)

M»
M»

)LF<xmyn) S

1 1

On the other hand, we have . (x) C M (x). Hence, from (3.6) we obtain Y5, 4;F(%,,5,) <
Y& AiFi(x,y), ¥(x,y) € X x .# (x). Using the continuity of the function Y'*_; A;F; and passing
to the limit as n — oo, we obtain Y5 | LF;(%,5) < Y& | AiF;(x,y) for all (x,y) € X x . (x).
Then, 31 = A € int(RX ) such that (,7) is a solution to (S*). Therefore, (,7) is a properly
efficient solution to (). O

4. OPTIMALITY CONDITIONS FOR THE SCALARIZED-REGULARIZED PROBLEM

In this section, we give a duality approach and provide optimality conditions for scalarized-
regularized problem (Sé). This duality approach is achieved in three steps. We first decompose
problem (S?) according to the second variable into a family of subproblems (S(’s1 ) peint(®)-
Then, due to the lack of convexity of <S§,u)’ we give a decomposition of them by a family of

convex minimization problems (S?ﬁ),f € R?. Next, we define an extended duality for problem
(§}) via the Fenchel-Lagrange duality applied to every subproblem (Sé“ﬁ) , X €RP,
For A € int(RX), (¢, ) € (int(R"))?, we consider the following problem
k
(S ) min Y AFi(x,).

xeX Sl
yedrs ()

Theorem 4.1. Let A € int(RX ) and (&, 1) € (int(R™))2. Then, (Sé,u) has at least one solution.
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Proof. The result follows from the continuity of F; i = 1,...,k and the compactness of X and
M 5 T.(x) CY. O

From Proposition 2.2, the problem (Sé) can be written in the following form

k
(S2) min Y AiFi(x,y).
ve U At ('
ueimRﬁ noe
Then,
k
infS; = inf{ Y AF(xy): xeX, ye |J ¥ (x)p= inf infSE,.
i=1 peint(Bn) H peint(r?)

Hence, we obtain a decomposition of (Sé) according to the second variable into a family of
scalar subproblems (Séu),), € int(RY), (g, 1) € int(R7)?.

4.1. A formulation of problem (Sé ”) by conjugacy. In this subsection, based on the study
given by Martinez-Legaz and Volle [12], we give a formulation of problem (Sgl u) that uses the
conjugate of the functions involved. For € € int(Rﬁ) and u € int(R7), we define on R” x R?
hﬁs(x,y) =0 and hg’g(x,y) = vy (x)+ ' €. We have

k

s i LE(x,y).
( s,u) (x,yr{lel;(le I_Zi (x,y)

Juley)Svu()+uTe
Then, this problem can be written in the following form

k
(S§7u> min Z)LiFi(x?y%
i=1

(ty)ERPxRY
Yx xy (x,y) _hliﬁg (x7y) <0
fH (xay)ihlig()@y)go

which under the data is a minimization problem of a convex function under d.c. constraints. For
A € int(RY), (e, 1) € int(R7)?, let ,%’é u denote the feasible set of problem (Sé s i€

B, = {(x,y) € R X RY /Wy (x,5) = hy o (x,) <0, fuu(x,3) =y (x,y) < 0}-

Then, from [12, Lemma 2.1], we obtain
#,= U {<x,y> ERP X RY / B o(x",3") + Yy (1,7)

(x* y*)eRP xRY
(r*,2%)eRP xRY
(u* v¥)eRP xRY
(0%~ W oy () <0
1 o (1% ,2%) (1% %) <0

) — ) < 08 (1,2 Fley) — ) — () < o}.
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For ¥ € R?, A € int(RX), (g, 1) € (int(R™))2, set
Ax 7 Pk~ ~
Bhn = {(03) €X XY/ F(x,3)+ (% 0p0) - (F) <u"e }.

Proposition 4.1. Let (g,11) € (int(R™))?,A € int(RX). Then 93{}# = U %’éi
xERP

Proof. The proof is obvious, and it is omitted here. U

4.2. Duality for the decomposed problem (Sgﬁ) For ¥ € R?, (g,u) € (intR™)?, and A €
intR’jr, consider the following problem

k
A .
() min Y AF(x),
('x>y)eﬁ8,;f i=1
and the following constraint qualification o -
(CQ)é,fl There exists (xgﬁ,ygﬁ) € X x Y such that f (xéﬁ,yéﬁ) + f3 (X, Ope) — (%, xéﬁ) <u'e.

Remark 4.1. 1) Forx € R?, (g,1) € (int(R™))?, and A € int(RX ), (Séif) is a convex min-
imization problem. N
2) The qualification condition (C Q)gﬁ says that the Slater condition is satisfied by the

problem (Sﬁﬁ) Thanks to our regularization, we can assume the possible satisfaction
of the qualification constraint.

From Proposition 4.1, problem (Sé’ y) can be written in the following form

k
(Se,0) min Y AiFi(x,). (4.1)
(x7y)e UP%E/.)lrlzl
xeR

Then,

k ~
infS?, =inf{ Y AiFi(xy): (vy) € | @i
i=1

XeRP

k ~
— inf inf { Y LiFi(x,) : (x,y) € By } — inf infS}7.
i=1

xeRpP xeRP

The formulation of (SéL u) in (4.1) gives a decomposition of problem (SéL u) to a family of convex

minimization subproblems (Sé“ﬁ) ,x € RP. We define the following function

80.6(x,y) = f(x,y) + f (¥, 0ps) — (F,x) — " e.
Let g = (Wxxy,80¢) - Then, the first step to define a new duality for problem (S%) is to
consider the following dual for every problem (Séﬁ), called Fenchel-Lagrange dual ([14])

k *
/\A{,"'
(%,ff)( w T (Z%E) (p1.02) — (B ge)"(—p1,—p2)
P1,P2)EREX i—1
B=(Bo-B1)R2 l
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Let us give an explicit expression of the objective function of problem (.@é 5) We have

(BTse)"(~pr=p2) = sup <<:§;) , <y) > ~ (B ge)(x.)
x,y)ERP xRY
= ( )SIHJQP . < (:;) ; (i) > — (Bowx xy + B18o.e) (%, )
x,y)ERP xRY

For (x,y) € R? x RY, we have BoWx «y (x,y) = Wxxy(x,y). Then

(B'ge)*(—p1,—p2) :( )S?RP . <<:1€;> ; (i) > — (W xy + B1go.e) (x,y)
x,y)€RP xRY

= (Bgo.e)xxy(=P1,—p2).

Then, problem (9’I 1) and the following problem

k *
AF
(Z¢y)  sup —( X AF ) (p1,p2) — (Bgo.e)xxy(—p1,—p2) ¢
(P1~P§)?RRPXR‘] i=1
R

have the same supremum. Next, in our investigation, we use the above problem which can be
developed by simple calculus based on conjugate functions to the following problem

(-@&5) sup { (ZAF> (p1,p2)+

(p1,p2) ERP xRY

BER+
. — Bx o A
<x,y§2§w<< P ) (y>>+ WfY(vaRq)—uTe+f<x,y>>}.

k
Because of () ri(domF;) # 0, we have from [6] that
i=1

k k
(ZAF> (P1,P2) inf{Z(lF (P1i, D2i) Z

i=1 i=1 i

M”
"Bl
||
1
N
——

I
—_

and the dual is )
(-@éﬁ) sup { — Y (MF) (i, Pai)+

(P1.92)ERP xRY i=1
BeR
(P17:P2i)ERP xRY

ko~

Y1 P1i=P1
k= .

Yi_| P2i=h2

(x.y)hel)f(xY < <p~1];2B3CV> ’ (i) > +ﬁ(]?)>’k(3cv70Rq) —uTs—l—f(x,y))}.
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Because of (4;F)" (P1i, pai) = Ai F*(pll pz,) i=1,...,k, we can make the substitution Pii _

l?t Ai

P2i . ~ .. - ~
pliaT'l = po, i=1,....,k and p| = Z?Llpl,, pr = Z?Lipz,u Then, omitting p; and p,, we
i i=1 i—=1
obtain

k
e
(Z¢3) sup { — Y MF(pui, p2i)+
(P1is p21>6R:XRq i=1

BeR,

) Z{L Aip1i — Bx x e o -
(x,y§2§xy{<< zlflezipz,- ),<y)>+ﬁ(fy( ,Opa) — 1t 8)+Bf£ ,y)}}.

Then, we have the following result concerning weak duality between (SéL ; ) and (.@éL ‘f)
Proposition 4.2. Letx € R?, (g, 1) € (int(R7))?, and A € int(RX.). Then, sup(.@& 5) < inf(Sé,’ﬁ).

Proof. The result uses the fact that sup(.@ ~) sup(.@’l’kv) and the known result of weak
Fenchel-Lagrange duality between (SiL ), and (.@éL n) ([14]). O

The following theorem establishes strong duality between (Sﬁjf) and ( .@& 5) for a given x €

RP, & €intR” , u € intR7 and A € intRX..

Theorem 4.2. Let x < RP, e € intR", u € lntRT, and A € lm‘Rk Assume that the constraint
qualification (C Q) is satisfied. Then (Sé ) and (.@é i1) are in strong Fenchel-Lagrange du-
ality.

Proof. The result follows from [6, Theorem 3.3] immediately. O

We have the following necessary optimality conditions for problem (Séif), xeR? e €intR?,
1 € intR™ and A € int(RE).
Theorem 4.3. Letx € R?, € € intR'} , 1 € zntRT, and A € int(RX). Assume that the constraint
qualification (CQ)8 u is satisfied. Let (xéﬁ, Ve M) be a solution of problem (57L ). Then, there

exists a solution (pi¢,pre,Be) of the dual (@l’ ) with Be € RY, p1e = (pfy,....p%,) € R X
RP x ... xRP, pre = (p5y,-..,p5) € RI xR x ... x RY, such that the following optimality
conditions are satisfied.
Ax Ax A3y .
1) F*(ph;pz,) +F(x£ ﬁa)’e u) <p1,;x£,ﬁ> + <p§iayg,;> i=1,..k,
AX AX AX
i) Be(f (xe,ﬁaYS,ﬁ)+fy(x Ora) — (X, xe,y) .uTg) =0,

; i Aip—Bex) (x . B
" (o) << Yy Aip5; ><y> > FPef(xy) ¢ =
Aipi; — Bex x“: AE AR
< < Zzzl Aip3; ) ’ ()’au) > Pef (e ve)

Proof. The desired result direclty follows from [6, Theorem 3.4]. O

Remark 4.2. In term of subdifferential and normal cones, properties 1) and 1ii) in Theorem 4.3
are respectively equivalent to
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£
1 (Ky) € IR (xtm i) Vie{1,..,k},

Pai

k
Pex— Y Aip; . AE AF
2) k1=1 ea(Bgf)(xglﬁ,yg”)+</16(><Y(x8ﬁ7y87ﬁ)'

- Y Aip5;
=1
For & € intR™ and A € intR% | we use 7 = {(u,x) € intR™ x RP/infS* = inf St } .

Remark 4.3. For every € € intR” and A € intRX ﬂgl is nonempty. In fact, let (x¢,ye) be a

solution to problem (S2). Since, ye € ME (x¢) and A % (xe) =U, cintrr M 5 7¢(%¢), then there

exists U x, € intR such that y, € ,/Z/;ﬂ " (xe). Hence, (xe,ye) is a feasible point of (St ),

€
£.xg IJVE Xe

i.e., (xg,ye) € 172

E,Ue x¢*
On the other hand, %} texe = Userr @;ﬁw‘g. Hence, there exists 36% pe, € R? such that

(xg,ye) € %’8 uj f ¢ Therefore (x¢,ye) solves the problem

A5 . k
(Sepiens™®) min Y AiFi(x,y).
(1) e Fppetese =1

b

It follows that Y | 4;F;(xe,ve) = infS} = 1nng uz #ete Hence, (Me x Xe p, W E I

4.3. Optimality conditions for the scalarized-regularized problem. The following theorem
gives necessary optimality conditions for problem (Sé)

Theorem 4.4. Let € € intR". Assume that the following constraint qualification is satisfied
(CQ)e VX ERP, 1 € iR, 3(xh 1, Ve ) EX XY, st fxk 1,y 1) + 5 (R, 0re) — (Foxb ) < e

Let A € infRX. and (xg,ye) be a solution to problem (S}) . Then, there exists X+ € R and

A
((ph., Phe),BL) solves (@ﬁ[jg) with B} € R, such that the optimality conditions i) — iii) of
Theorem 4.3 are satisfied.

Proof. Let A € intRX and ¢ € int(R"). We have (xg,ye), a solution to (S*). From Remark 4.3,
there exist ¥+ € R” and u} € intR” such that (x¢,y.) solves problem

sh n Y AF
(8779 min AZ iFi(x,y).

€1
‘ (vy)es’ " i=
“e

By using the qualification constraint (C Q) for 56% and ,us’l, we deduce that there exists

,\.ﬁ’ ~ ~
C B ) € X x ¥ such that f(ckt i) + f (3% .0ne) — (%2550 ) < 1. Then the

&g 7“8
A X x8

constraint qualification (CQ)¢ ¢ of Theorem 4.3 is satisfied by (SiL Zs ). Via this theorem, there

IE
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A
exists ((p%e,pﬁg),ﬁé ) € R? xR? x R solution of the dual (.@l’xi) such that the following
optimality conditions are satisﬁed 7
)., & ),78 '}Zé 2’38 ;Clé
1) F*(pll 7p21 )+F( S’uéuy ) <p1j 7x£7“§>+<p2i ’ye,ué> 1= 17' ak7
l o, A T
2) B (F02 )+ 5 h0m0) — Gl -t e ) =0

: Y5 Aiplit = BERE\ [« A7
3 f X ! ! 9 —|— y =
) m ( 7y)€X><Y < ( 25(21 )ulpgl,s y ﬁ&' f('x y)

2’7 i, € ~
Zi‘(:l AiPlie - e/lxét e ue X w
k e N ! +B£ ( Ve 2)-
Zi:l ;LiPZi y'e e, He

e
O
Because of the lack of convexity of problem (Sé), we cannot apply the Fenchel-Lagrange

duality to it. However, an extended Fenchel-Lagrange duality for (Sﬁf) can be defined in the
following sense.

Definition 4.1. Let ¢ € int(R”"). Define the extented Fenchel-Lagrange duality for (S%) relative
to the redecomposition by the family of subproblems {(Sﬁﬁg),ﬁg eR’ ue € intRﬁ} in the
following sense:
1) We say that weak extended Fenchel-Lagrange duality holds for (S2) if there exists X €
R? and pe € intR s.t. 1nf(S’l) > sup(s@éL is)s ie., there exists weak Fenchel-Lagrange
duality between (%) and (.@ ¢) for some X € R?, ue € intR’
2) We say that strong extended Fenchel Lagrange duality holds for (S’l) if there exists
Xe € R?, ue € intRY s.t. 1nf(Sl) = sup(.@8 ue) 1.e., there exists strong Fenchel-Lagrange
duality between (Sé) and (.@éI u°) for some X € R, e € intR.

Remark 4.4. The extended Fenchel-Lagrange duality was first defined by Aboussoror, Adly
and Saissi in [2] in order to lead to strong duality between the regularized problem and its
decomposed one.

Let € € int(R"). The following theorem gives sufficient optimality conditions for the scalarized-
regularized problem and show that strong extended Fenchel-Lagrange duality holds for (Sgl ),A €

int(RK).

Theorem 4.5. Let € € intR", A € int(RX) and (xe,ye) be a feasible point of problem (Sl)
Assume that there exists (ul,5%) € 7} and (p’., pt,,BL) a feasible point of the dual (.@8 ,Us)
with [367L € R, that satisfies together with (xe,ye) the conditions i)-iii) in Theorem 4.3. Then,

(xe,ye) and ((p%g, p%s),ﬁg) solve (Sé) and (@é if;) respectively. Moreover, strong extended
Fenchel-Lagrange duality holds for (Sé) )

Proof. Properties ) —ii) in Theorem 4.3 corresponding to our case are written as follows

A A, .
1) F (pll 7p21 )‘f‘Fi(st’e):<P1i787x£>+<l72,‘87)’8> l:17"'7k7
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P T
2) Bg Fxe,ve) + fr (G Ope) — (7, x¢) — ul g> —0,

7Lz Ae  pAA R
3) lnfxy eXxY < ]lp 8x£>7<§>>+ﬁ§f(x7y) =
l 21
Y Al — Bt ([ A2
<< 125'6_11/1;'17%,'788 ") )’E +Be f(xe.ye).

. x/ AE _AE . Z )Llpll Xe
Z )VZE (pli7 7p2i7 ) + Z liFi(Xe,)’s) - ) Ve =0. (42)
i=1 i=1 Z)LIPZZ

From i), we have

Summing i), iii), and (4.2), we obtain

K Aphf Bt \
Y5 AiFi(xe, ye) = infinycxuy { < (ZFIZk ”I;L_pl,fgx‘g) 7 <y) > +BEf(x,y)
i—=1MP>;

X A P )}+ﬁg( 5 On) il €). (43)

2
From (4.3), the Fenchel-Lagrange duality between (S ’us ) and (@::ﬁ), we respectively have

7£ ITE

¥ A 2'7 é £
Yy AiFi(xe, ye) < SUP(Q&M) and sup(.@s :/1) 1nf(S£ #él)

ITE

2
On the other hand, since (fg,ué) € JSA, then inf S;} = 1nfS£ ’Xj. Therefore,

1”8
A

7Lx 7Lx A X
9 (S AF; < D7),
sup(9) < inf (z >y sup( %)

€

k
Yy =Bt | )
Since Zﬁ-‘zl AiFi(xg,ye) =  inf { < = ) (y) > +ﬁ§f(x7)’)

(x,y)EX XY
Y Z A’l[’zl

x/ A £ (7 T
_Zﬂ‘iFl Plleapzl )}"{‘Bg (fY(xéaoRq)_“é 8)?
i=1

we have

k
a) 1nf(Sé) = <Z llE) (x87y8)7
i=1

71’75Cvé : 11 £
b) Sup(gg M) = mf(x,y)EXxY { < ( Z pl p ﬁg > ) <§> > +ﬁéf(x,)’)—
e i=17M 2i

TR ) )+ B (756,020~ ),
¢) inf(S}) = sup(.@jﬁ).

ITE
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A
Therefore, (xg,ye) is a solution to (S}) and ((pt,, p4.), B2) is a solution to (Qj’xi). Moreover,

nu'&‘
strong extended Fenchel-Lagrange duality holds for (Sé) 0J

5. OPTIMALITY CONDITIONS FOR PROBLEM (S)

In this section, we provide necessary and sufficient optimality conditions for problem (S§).
We need the following additional assumptions:

(24) For every € € int(R'}), there exists (x¢,ye) € intX X intY such that

fi(xayg) S;Iel;fl(x&y)—f—SHVl € {Lam}

(6) 3(%,5) e R? xRes.t. Fi(%,5) < Fj(x,y), V(x,y) e X xY,Vje{l,....k}.
(#3) Iy e R s.t. fi(x,§) < filx,y), Vxe X, Vie {1,....m}.
For x € R?, we define the function f; «(.) on R? by f; (y) = fi(x,).

Remark 5.1. 1) From assumption (.777), we have fj(xe,ye) < infyey fi(xe,y) + & for all

ie{l,...m}.
Then, for all y; > 0,i=1,...,m we have Y/, l; fi(xe,ye) < infyey Y7 | Wifi(xe,y) +

u'e. Hence, y, € //ﬁlTS(xg), i.e., (xe,ye) is a feasible point of (Séﬂ).
2) Assumptions (.7%3) and (.773) imply respectively that

) (9] ¢ 0R(xy). V() € X XY, Vi€ {1k
R4

i) VxeX, Ora¢dfi(y),Vie{l,..,m}, VyeY.
Example 5.1. Let X = [0,1] and Y = [0,2], and let F;, f;,i = 1,2, 3 be the functions defined on

R x R by
Fl(X,y):X2+y, fl(x7y):x+ya
FZ(‘xvy):ya and f2(x7y):_'x+y7
F3(x,y) = 2x* 42y, f3(x,y) =2x+y.

Then, X and Y are compact convex sets and F and f are convex functions.

1
(7A) Let xe = 3 and ye = € such that 0 < € < g;,i = 1,2,3. Then, x¢ € intX and ye € intY.

Moreover, we have fi(xe,ye) < infyey fi(xe,y) + &, Vi € {1,2,3}. Then assumption
(7A) is satisfied.
2= Fl(Xa)_)) < Fl(x7y)7
(A4) Let (x,5) = (0,—2). Then, 1 —2=F(%,y) < F2(x,y), forall (x,y) € X xY. Then
—4 = F3(X=)7) < F3(x7y)7

assumption (.743) is satisfied.
fl(x7.)7) =x—2 <X+,

(A43) Let y = —2 € RY. Then, ¢ fo(x,5) = —x—2< —x+y, forall (x,y) € X xY. Then
f3(x,)7):2x—2<2x+y,

assumption (.773) is satisfied.
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5.1. Necessary optimality conditions for problem (S). The following theorem gives neces-
sary optimality conditions for the properly efficient solutions of problem (S) which are accu-
mulation points of a sequence of scalarized-regularized solutions.

Theorem 5.1. Let €, \, Of.. Let assumptions () — (3) be satisfied. Let A € int(RY)
and (x,,yn) be a feasible point of (S;}) given by assumption (J4) for €,. Assume that there
exists (Ug,,Xn) € fg’k and a feasible point (pi n,P2n,Pn) € R? xR? xR of the dual problem

o o
(9:;22 ) of (S;ln’x”gL ) that satisfy together with (x,,y,) the conditions (i)-(iii) in Theorem 4.3.

Let (X,3) be an accumulation point of the sequence (x,,yn) . Then, (X,3) is a properly efficient
solution of problem (S) and there exist ((p1,p2),B) with p1 = (P11, P1x) € R? X ... x RP,
2= (P21, pox) ERIx ... xRY, B € R, j € int(R7) and x € RP s.t.

) <§;l> € IFi(X,y), V(x,y) € X x Y, Vie {1,....k},

*

i) | Y mifi | (X0re)+ Z mifi | (%) = &%),
=1

S Y _%'Pli
i | €0 (B ) 59)
B

Proof. first of all, let us show that 8, > 0 for large n € N. Assume that there exists an infinite
subset .#"* of N such that B, =0 for all n € 4. Let n € 4", In our case, properties i) — iii)
in Theorem 4.3 are written as follows:

a) F*(PhaPQ,)‘f'F(xna)’n) <p,ili7xn>+<pgl‘7yn>7 Vl e {17“'7k}7
b) ﬁn( (xnyyn) +fy<xn70R‘1) <3Cvnaxl’l> _ur;ren) =0,

i Z tph ann X ~ B
¥ Oﬂy;g}f;x}l < ( Zz:l )szzl ) ’ <Y> > +ﬁnf(x7y) o
Z§=1 Ai < (pli ;g{iﬁ%) , (;Z) > +ﬁnf(xn,yn),

From Remark 4.2, the property (c) is written as

ﬁnx Zz‘lplz R
a(an)(xn,yn)+f/%(><Y(xn,)’n)~ (5.1)
Aip5;

IIM»
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From assumption (71), we have (x,,y,) € int(X x Y), which implies that Ax .y (xn,yn) =

k
ﬁnfn - Z Aiprlli
i=1

v € (Buf) (xn, yn). That is,
- Z /lipgi
i=1

<8Rp> . Hence property (5.1) becomes
RI

k
Brxn — Z Aipl; _
Bt (%) = Baf (xn,yn) + < = , (;C x”) > , V(x,y) €RP xRY.

ko _
n In
- Z)LiPZi
i=1
. _Zl'cfl lipn' X —Xn
Since 3, = 0, then < 1= i) > <0, (x,y) € R” x RY. Hence,
k
- Z%Prfi e
< T ,(y_y”)>§0, (x,y) €X xY.
n n
— Y Aiph;
i=1

— X ik,
0. Since A € int(RX), then A; > 0, i € {1,...,k}. Hence, p";, = 0and p4, = 0,i € {1,...,k}.

~Xi Al Ogp Kk qon Kk qon
Then, y U e M xy (xn,yn) = One .Hence, =Y Aip{;=0and —Y;  Aps =

n ORq

On the other hand, we have from (a) that (‘D”) € dF;(xn,yn), i € {1,....,k}, i.e., (0RP> €
2i

OF;(xn,yn),i € {1,...,k}. From assumption (.7%3), we have ?)Rp) ¢ dFi(xp,yn), i €{1,....,k},
RY

which gives a contradiction. Hence 3, > 0 for large n € N. i.e., dng € N, n > ng, B, > 0. Now,

let us show that the accumulation point (¥, ) is a properly efficient solution of problem (S). Let

/" be an infinite subset of N such that (x,,y,) — (¥,¥) as n — +co, n > ng. Then, Theorem 4.5

implies that (x,,y,) solves problem (S}) and ((p1,, pan), Bn) solves (-@éfﬁn)- It follows from

Theorem 3.1 that the accumulation point (X,¥) is a properly efficient solution of the original

bilevel problem (S). In order to show properties i) — iii). we set /] = A N{n €N / n>ny}.
Property i): For n € 41, we have

<p3;i> c 8E~(xn,yn) C U aFl-(x,y) Vi e {1,...,k}.

Pai (x,y)€EXXY

Since X X Y C int(domF) = R? x R? and X x Y is compact, then |J JdFj(x,y) is com-
(x,y)EXXY
pact (Theorem 2.1). Hence, there exists an infinite subset .43 of .47 such that the sequence
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(P1;, P5;i)ne.n; converges to (p1;, p2i). On the other hand, we have

n p—
Fixy) 2 F(xaya)+ ([ D4 ) (D200 ) ) Viey) e R xRS (52)
Pri Y—Yn
Passing to the limit in (5.2) as n — +o, we deduce that <§”> € JF(x,y),i€{l,....k}.
2i

Hence, property i) is satisfied.
Property ii): Let n € 45. Since f3, > 0, then (b) becomes fy (Xy,,0ra) + f (Xn,¥n) — (X, Xn) —
u, €, = 0. Hence,

f;(fnaORQ) = <fnaxn> _f(xnayn) "’;u;;ren

Xy X 2
N (XJ)SGu]lg"xY <<0Rf1> ’ <y>> f(x,y)

Therefore, for all (x,y) € R? XY

f(xvy) zf(xn,yn)+<fn,x—xn>—/.L,,Ten. (53)
Then, for all x € R?, we have infyey f(x,y) = vy, (x) > vy, (%n) + (XX — %) — L) €1, P62, X €

e, Vi, (Xn). Note &, = 1, €. Hence X, € dg, vy, (xn). Let €° € int(R"). Since €, \, 0, then

&, "\, 0", n € 5. On the other hand, we have € > 0,Vi € {1,...,k}. Then, there exists nj € .45

such that &,; < &', n > ny,n € M3,i=1,....k. Hence dg vy, (xn) C de+vy, (xXn), n > ny,n € M.

Since X, € dg, vy, (Xn) C U devy,(xn), n > ny1,n € A5 which is compact, then, there exists an
xeX

infinite subset .43 of .45 such that x,, — X, as n — oo,n € .45. On the other hand, we have
ui>0,j=1,..,mand ¥)_, u7 = 1. Hence uj € [0, 1] compact. Then, there exists 44 C .43
such that u} — ,uj, n— +oo,n € A;. From (5.3), we have Y7y (7 £;(x,y) > X7y W7 £(xn, yn) +
(Xp,x — X,) — W, €. Passing to the limit as n — 4-o0,n € .44, we obtain

Z;u]fjxy 22 f]xy xx—X), V(X,y)ERpXY.

Then,

() ())-Fooen=((&)()

j
Then, for all (x,y) € R? x

) <>> s} {(2) ) s

Hence,

That is, Property i z) is satlsﬁed
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Property iii): Let n € .4;. From property (c) and the fact that (x,,y,) € int(X x Y), we have

X, — Yk Apt A
(B"x" Li-1 llpl’) € d(Buf)(xn,yn)- That s, for all (x,y) € R? x RY,

—Xi A
~ Z lplz
A » n /3 X—X
Xy Y " : e 5.4
F3) 2 F o) + < g b (y_yn)> 5:4)
Moreover, 9 f(x,,yn) C Uy)ex <y df(x,y). Since Utey)ex xy df(x,y) is compact, then there

yk

. e - A"
exist (r,r2) € R? x R? and an infinite subset .45 of .4} such that ry, = x, — %p“ — 1] as

Yk

At . o
n— 4o, n € N5 and ry, = %p” — ry as n — +oo, n € 5. Passing to the limit in (5.4) as

n — +oo,n € N5, we have

i,ﬂ fi(x,y) > i <<2> , (§:f> > V(x,y) € RP xRY. (5.5)

Setting x = X in (5.5), we deduce that r, € d (ZI ],ujf]) (¥). Moreover, assumption (.743)

=1

implies that Ogg ¢ 0 (ZT%E)X()’/). Then r; # Ogrq. We have ||, || — ||r2]| asn — +oo,n € A5.

Since rp # Ogq, then there exists np € 45 such that ||rp,|| > 0, n > ny, n € A5. Hence, for all

Ai . _ .
n>ny,n € A5, we have f3, = W Since pf; — poi,n — +oo,n € N5, i € {1,...,k}, then

H )LlpllH
X, Al E:

Bn = - B = 1 — +oo n € Ns.
[[72n]] ||r2||
Thus
k
Zklplz Zliﬁli
~n o X_/_ i=1 _
X ﬁ” — ‘ B as n — +oo,n € 5.
Y Aiph; Y Aipai
=l =l
Bn B

Hence, passing to the limit in (5.4), we obtain, for all (x,y) € R” x R?,

- X b

n n o B x—x
B> Euneo (| p 2 (55)
B
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Then
k
Z Aip
~ i=1
X— ; m
k €9 Zﬁjfj (%,5).
Z 241721 J=1
=1
B
That is, property (iif) is satisfied. O

5.2. Sufficient optimality conditions for problem (S). In this subsection, we provide suffi-
cient optimality conditions for solving problem (S).

Theorem 5.2. Let (%,5) € X x Y. Assume that there exists ¥ € RP, i € intR" A € intRX and
((P1,2),B) 5.1 pr = (P11, Pux) € (RP), po = (P21, .., i) € (R9)", B € RY. and

(i) (p“) € OF(%,7), Vie {1,...k},

P2i
(i1) 0 0 (X1 B3 ) (1) + A7 (),
F_ Zizl_lipli
(iii) ¥ gim €d (ZTzlﬁjfj) (%, ¥),
B

(iv) (£.5) solves max(yy cx cy { Ty fif(ny) — (E.5) )
Then, (x,¥) is a properly efficient solution to problem (S).
Proof. Feasibility: Let us show that y € .#(X), i.e., y is a properly efficient solution of & (x).

Since # (%) is convex, then it is equivalent to show that there exists u € intR”} such that y solves
minycy Z’}’:l ujfi(%,y). From property (ii), we have,

I cimR” st, 0€9 Zu,f,x ¥) + A ().

Hence, y € ./ (%).
Optimality: Let us show that (¥,) is a properly efficient solution of (S).
From Theorem 2.3, we show that there exists A € intR’!" such that (¥,¥) is an optimal solution
to
A k
(s*)  min Y AF(x,y),
xeX =
yed (x)=!
ie., YX  LE(X,y) < Y5 AF(x,y) for all (x,y) € X x .#(x). Let (x,y) € X x Y such that
y € . (x). From property (i), we have

F(x,y)>F(Ey)+ < (g”) , <‘>> V(x,y) €RP xR,V € {1,...,k}.
2i y =y
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Then, forx =xandy =y, we obtain, Vi € {1,....k}, Fi(x,y) > F(%,7) + < <§1i> , (i_;> >
2i -
Likewise, property (iii) is written as
- X Aipi

m m X— =" b

Zﬁf] Z Zﬁjfj(fa)_’)'f‘ k B _ , x/_)f ,V(x/,y/)ERPxRP.

j=1 j=1 _Zi:l_)LiPZi y —X

B

Forx = x and yl =y, one has

Zle_liﬁu m - o
< _Zi‘cﬁlﬁlﬂhi ’( >> ;ﬂf] %y) - ] 1ﬁjfj(x7y)+<<ORq>’(y—y>>'

(5.6)
On the other hand, from property (ii), we have Y/ il f; (x,5) — (x,%) > YRS (x,y) — (X, x).
Hence, from (5.6) and B > 0, we see that

Y Aipi\ [x—%
((Eim)-(=3))=
) > a e 4 Dii xX—Xx
Jifiley) 2 YARED) XA 5 ) )

Hence, we see that there exists A € intR’_i such that Zﬁ-‘zl AiFi(x,y) > Zé‘:] AiF;(x,¥). Therefore,
(x,y) is a properly efficient solution to (S). O

><| ><|

which implies

M»

~.

Example 5.2. Let X — [ 2,2} and Y = [0,1] x [~1,1], and let F; and f;, i = 1,2,3 be the
functions defined on R x R? by

Fi(x,y) = =2]x| — 2y1 + 3 — 2y2, fi(x,y) =x2+y1,
Fz(x7)’):_2x—2)’1» and f2(-x7 ) Y1,
F3(x,y) = =2|x| = 2y; +1, f3(x,y) =x*+2y.

Then, X and Y are compact convex sets and F' and f are convex functions. Let us determine
a point (¥,y) € X x Y that satisfies the sufficient conditions in Theorem 5.2 Then, we are led
to verify if there exists x € R, p; = (P117p12,p13) eR3, pp = (P217p22,1923) (R?)3, poi =
(pr.p3) ER%i=1,23B R, A =(A,A0,43)" € mﬂRi,a (1, 2, 13) " € intR3. such
that the following optimality conditions are satisfied

0 <§;>eaF< 7).vie (1,23}, @0€d (L mf) () +4)

F_ Yo Aipui

B
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(¥) (%) solves max(y ) cxy { Ty Bif(x,3) — (%) }.
Forx € X and y € Y, we have
{—2}><{(—2,2y2—2)T} ifx>0,y€eY,
IF (x,y) = [—2,2]><{(—2,2y2—2)T} if x=0,y€c?,
{2}><{(—2,2y2—2)T} ifx<0,ycy,

(—2) % {(—Q,O)T if x>0,y€y,
IF;(x,y) = {2} x <52> LR (x,y) = [—2,2]><{(—2,0)T} ifx=0,yc?,
2} % {(—2,0)T} ifx<0,yeY.

If ¥ > 0, then we obtain from i) that

_ ) _ -2 - —2
([311)2 5 ,<1312>: ) ,<Ifl3>: -2 |. (5.7)
pai 2y, -2 P2 0 p23 0

Note that ii) implies that (y1,72) € .#,(X), where .#), (%) is the solution set of the problem

min (W + 13) +y1 (1 + 2 +243).
y€e[0,1]x[—1,1]

Then, .#),,(X) = {0} x [—1,1]. Hence, y; =0 and j, € [-1,1].
On the other hand, iii) implies that

BX— X kipui )
—Y*  Apl, € Bo ([ fi(%,9) + M fr(%,3) + @3 f3(%,7)) -
— Y Aip;

Bx—Aip1i —Aapra — Aspis = 2B ([ + @3)%,
Then, we obtain ¢ —A4 15%1 — /Izﬁéz — A3 pé3 = B(fi1 + o +2fi3), which together with (5.7)
_)Llp_%l - ;LZﬁ%Q - 7L313%3 = 07

yields
BX—2A1 +225 + 223 = 2B (i1 + fi3), (5.8)
20 +220 4243 = B ([ + [l +2[13), (5.9)
M(2—=2y2)p3, =0, (5.10)

Let A = (1,1,1). From (5.10), we have 2 — 2y, = 0. Thus y, = 1. Since u € int(R3}), we find
from (5.9) that
2

B= —— . 5.11
g fu+ flo + 2013 5-11)

2 - 4‘ a 2‘1

—_—X = — — —X. 5.12
i+ o +2fi3 i+ o + 213 (5.12)
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(iv) implies that (x,y) solves

max {fi1 f1(x,y) + fafo(x,y) + {3 f3(x,y) — xx}.
(x,y)EX XY

Let h(x,y) = [y f1(x,y) + o f2(x,y) + 13 f3(x,y) — xx. We need to solve the problem

max h(x,y).
( ay)GXXYl ( 7y)
We see that X x ¥; = [—3,3] x [0,1] is convex compact and h is convex. Thne the maximum
is attained at an extreme point of X x Y;. Let us calculate the images of the extreme points of
X x Y1 by h. Since y; = 0, we need to compare the values

h <_%7O> = %(.ﬂl —I—[._L3> + %)? and h <%70) = %(.al +ﬂ3) - %f
In view of ¥ > 0, we conclude that the maximum is attained at (%,y) = ( ,0). By letting
(1, fip, 13) = (1,1,1), we obtain from (5 11) that f = and we also obtain from (5.12) that
X= —2 We conclude that (%,71,7,) " = ( O DTisa properly efficient solution to (S). Letting
A= (1 1 1) we obtain x = —2,3 = p_ (p_ll,p_lz,ﬁlg,) = (—2,—2,—2), and pp =
( p227p23) ((_270)5(_270) ( 2 0))

6. CONCLUSION

Most current multiobjective bilevel problems in the literature are problems where exactly
one level is vectorial. In order to investigate the class of strong multiobjective bilevel program-
ming where both levels are vectorial, as (S), we provided necessary and sufficient optimality
conditions. These results were obtained based on four operations: regularization, scalariza-
tion, decomposition, and conjugate duality. They need to use these operations stems from
the fact that problem (S) is not convex and does not satisfy the classical slater condition.
In order to avoid this situation, we proceeded by scalarizing, then regularizing the scalar-
ized problem. As a stability result, we demonstrated that any accumulation point of a se-
quence of scalarized-regularized solutions solves the original bilevel problem (S). Then, we
decomposed (§%),4 € int(RX ) according to the second variable into a family of subproblems
(Si{ u)s 1 € int(RT) that satisfies the slater condition. However, in general, we have the same

problem with (SéL #)’ p € int(R"!) concerning the lack of convexity. We gave a decomposition

of the problem (Sg ,1) by a family of convex programming subproblems (Séﬁ),f € R?. Under a
constraint qualification, we gave its Fenchel-Lagrange dual. Thanks to the decomposition and
this duality, we defined an extended Fenchel-Lagrange duality for the scalarized-regularized
problem (Sg) Under appropriate assumptions, we demonstrated that strong extended Fenchel-
Lagrange duality holds for (Sé) and provided optimality conditions for it. Finally, we estab-
lished necessary and sufficient optimality conditions for problem (S). We here mention that our
results extend the ones given in [2] from the scalar case to the multiobjective one.
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