
Appl. Set-Valued Anal. Optim. 8 (2026), No. 2, pp. 179-203
Available online at http://asvao.biemdas.com
https://doi.org/10.23952/asvao.8.2026.2.04

OPTIMALITY CONDITIONS FOR A CLASS OF PROPERLY EFFICIENT
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Abstract. In this paper, we are concerned with a strong vectorial nonlinear bilevel programming problem
whose upper and lower levels are vectorial. For such a problem, we give a conjugate duality approach
based on Scalarization, regularization, and conjugate duality. We show that any accumulation point of the
sequence of scalarized-regularized solutions solves the bilevel programming problem. Via this duality
approach, we establish necessary optimality conditions for the scalarized-regularized problem. We also
provide necessary and sufficient optimality conditions for a class of properly efficient solutions of the
bilevel programming problem.
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1. INTRODUCTION

In this paper, we are concerned with the following vector bilevel minimization problem

(S) v− min
x∈X

y∈M (x)

F(x,y),

where M (x) is the set of properly efficient solutions of the vector minimization problem

P(x) v−min
y∈Y

f (x,y),

where F : Rp×Rq→ Rk, f : Rp×Rq→ Rm, k ≥ 2, m≥ 2, are convex functions, X and Y are
two nonempty, compact, and convex subsets of Rp and Rq, respectively, and ”v−min” stands
for vector minimization.

Problem (S) is called a multiobjective strong bilevel programming problem or multiobjective
strong Stackelberg problem. It corresponds to a two-player game in which a leader plays against
a follower. The leader, having all information about the follower, announces first a strategy
x ∈ X to minimize his objective vector function F . Then, the follower reacts optimally by
selecting a strategy y(x) ∈ Y , to minimize his objective vector function f . It is assumed that the
game is cooperative.
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A multiobjective bilevel programming problem is a bilevel problem which one or both lev-
els are vectorial. Bilevel optimization problems with multiple objectives in both levels were
investigated seldom in the literature. Let us summarize some interesting results. In [15], Yin
emphasized the importance of formulating the transportation decision-making problems as a
multiobjective bilevel model and then proposed a solution algorithm by using genetic algo-
rithms. Note that Yin’s algorithm was efficient to search simultaneously the pareto optimal
solutions. In [9], Eichfelder showed that the set of feasible points of the upper level problem
can be expressed completely as the solution set of a multiobjective optimization problem. This
problem was solved based on a scalarization approach. Eichfelder presented an algorithm for
the first time in the case of bicriteria optimization problems on both levels and for a one dimen-
tional upper level variable.

In [8], Dempe and Frank considered a linear bilevel programming problem with multival-
ued objective functions in both upper and lower levels. Using vector optimization theory, the
multiobjective problem was suitably reformulated into a parametric bilevel programming prob-
lem. Then, a respective solution algorithm was presented and illustrated via an example. Even
though multiobjective bilevel optimization problems where both levels are vectorial have not
yet received a broad attention in the literature, real-world decision-making processes always
have several social concern and thus multiple objectives need to be achieved simultaneously.
For illustration of such a class of bilevel problems, let us give the following practical example
[9]. Consider a city bus transportation system financed by the public authorities. They have two
objectives to achieve; The first one is the reduction of the money losses, and the second one is to
bring as many people as possible to use the buses instead of their own cars in order to reduce the
overall traffic. The public authorities can decide about the bus ticket price but with taking into
account the customers in their usage of the buses. The customers may have several objectives
like minimizing their transportation time and costs. Therefore, the transportation system can be
modeled as a bilevel multiobjective optimization problem where the first level includes the ob-
jectives and the constraints of the public authorities and the lower level includes the objectives
and the constraints of the public.

The aim of this paper is to provide necessary and sufficient optimality conditions for (S), the
multiobjective bilevel problem via the Fenchel-Lagrange duality approach. This duality was
first introduced for convex programming problems in [14], and afterwards extended to some
generalized convex programming problems (see, e.g., [5, 7]). In [1], the authors presented a
Fenchel-Lagrange duality approach using conjugacy for a semivectorial bilevel problem where
the upper and lower levels are vectorial and scalar respectively and for a one upper and lower
level variable. In [3], a Fenchel-Lagrange duality approach and optimality conditions were
given for a class of semivectorial bilevel problem where the upper level is vectorial and the
lower level is scalar. In this paper, we extend this duality approach via scalarization to the
multiobjective case where the corresponding upper and lower levels are both vectorial. The
approach considered is based on the use of four operations: Scalarization, regularization, de-
composition, and a conjugate duality. In the first step, we scalarize problem (S) into problem
(Sλ ),λ ∈ intRp. In order to establish strong duality, we need the so-called Slater condition.
Unfortunately, due to the constraint y ∈M (x), problem (S) and its scalarized one in the sense
of Geoffrion ([10]) do not satisfy this condition. In order to avoid this situation, we start by
regularizing problem (Sλ ) into (Sλ

ε ) and the regularization is based on the use of ε-properly



OPTIMALITY CONDITIONS FOR STRONG MULTIOBJECTIVE BILEVEL PROBLEMS 181

efficient solutions of problem (Sλ ). As a main result, we show that any accumulation point
of a sequence of solutions of the scalarized-regularized problem (Sλ

ε ) solves (S). Next, we
decompose the scalarized-regularized problem (Sλ

ε ) according to the second variable. This de-
composition is obtained via the link that exists between the ε−properly efficient solutions of
the lower level problem M̂ ε(x) and the set of µ>ε−solutions of the scalarized problem Pµ(x).
In order to start our procedure of dualization, we consider in a second time a decomposition of
problem (Sλ

ε,µ) into a family of scalar convex minimization problems (Sλ ,x̃
ε,µ), x̃ ∈Rp. The key of

this decomposition is that (Sλ
ε,µ) can be viewed as a minimization problem of a convex scalar

objective function under d.c. constraints. Note that the technique used to obtain such a decom-
position is inspired from the work of Martinez-Legaz and Volle ([12]). Then, based on the study
given in [6], we give the Fenchel-Lagrange dual to every subproblem (Sλ ,x̃

ε,µ). Using the decom-
position, we define a duality for problem (Sλ

ε ) which we call the extended Fenchel-Lagrange
duality. Under appropriate assumptions, we show that strong extended Fenchel-Lagrange dual-
ity holds for (Sλ

ε ). Based on the obtained results, we provide necessary optimality conditions
for the scalarized-regularized problem (Sλ

ε ). Via this duality and some stability results related
to the regularization, we give necessary optimality conditions for the class of properly efficient
solutions of (S) which are accumulation points of a sequence of scalarized-regularized solu-
tions. Finally, sufficient optimality conditions are given for problem (S) without resorting to
duality. Note that this duality approach extends the one given in [2] from the scalar case to the
multiobjective one, where both levels are vectorials.

The paper is organized as follows. We start the second section by some results related to con-
vex analysis. Then, we recall some definitions and results concerning multiobjective optimiza-
tion. After that we give some preliminary results concerning the scalarized problem associated
to the lower level problem. In Section 3, we present the link that exist between the scalarized-
regularized problem and the original bilevel problem that are needed in what follows. In Section
4, we present our duality approach and provide necessary and sufficient optimality conditions
for the scalarized-regularized problem. In Section 5, we provide necessary and sufficient op-
timality conditions for the original multiobjective bilevel programming problem (S). Finally,
Section 6 ends this paper.

2. PRELIMINARIES

In this section, we first recall some results related to convex analysis. Then, we remind
some definitions and results concerning multiobjective optimization. We close this section by
providing some preliminary results concerning the scalarized problem associated to the lower
level problem.

2.1. Background of convex analysis. Let A be a nonempty subset of Rn. We denote by ψA the
indicator function of set A, i.e., ψA(x) = 0 if x∈ A, and ψA(x) =+∞ otherwise. In what follows,
set Rn is equipped with the usual topology and the following conventions in R=R∪{±∞} will
be adopted

(+∞)− (+∞) = (−∞)− (−∞) = (+∞)+(−∞) = +∞{
0× (+∞) = +∞

0× (−∞) = 0

{
α(−∞) =−∞, α(+∞) = +∞ for α ∈ R∗+
α(−∞) = +∞, α(+∞) =−∞ for α ∈ R∗−.
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Definition 2.1. Let h : Rn → R be a function. The conjugate function of h relative to set A
is denoted by h∗A and defined on Rn by h∗A(p) = supx∈A{〈p,x〉 − h(x)}, where 〈., .〉 denotes
the inner product for two vectors in Rn. If A = Rn, then we have the usual Legendre-Fenchel
conjugate function of h, simply denoted by h∗.

Definition 2.2. The effective domain of h denoted by domh is the set defined by domh = {x ∈
Rn / h(x)<+∞}. We say that h is proper if h(x)>−∞, for all x ∈ Rn, and domh is nonempty.

Definition 2.3. Let h : Rn→ R∪{+∞} be a proper convex function and x̄ ∈ domh. The subd-
ifferential in the sense of convex analysis of h at x̄ denoted by ∂h(x̄) is the set defined by

∂h(x̄) = {x∗ ∈ Rn / h(x)≥ h(x̄)+ 〈x∗,x− x̄〉 ∀x ∈ Rn}.
An element x∗ ∈ ∂g(x̄) is called a subgradient of h at x̄.

Remark 2.1. i) x∗ ∈ ∂h(x̄)⇐⇒ 〈x∗, x̄〉= h(x̄)+h∗(x∗).
ii) h(x)+h∗(x∗)≥ 〈x∗,x〉 for all x,x∗ ∈ Rn, called the Fenchel inequality.

Definition 2.4. let C be a nonempty convex subset of Rn and x̄ ∈C. The normal cone NC(x̄) to
C at x̄ in the sense of convex analysis is defined by NC(x̄) = {x∗ ∈Rn : 〈x∗,x− x̄〉 ≤ 0, ∀x∈C}.

Theorem 2.1. [13] Let h : Rn → R∪ {+∞} be a proper, convex, and lower semicontinuous
function, and let C be a nonempty and compact subset of int(domh). Then,

⋃
x∈C ∂h(x) is com-

pact.

Theorem 2.2. [4] Let h1,h2 : Rn→R∪{+∞} be a proper convex functions. Assume that there
exists x0 ∈ domh1 such that h2 is continuous at x0. Then, for every x ∈ Rn, ∂ (h1 + h2)(x) =
∂h1(x)+∂h2(x).

2.2. Background of multiobjective optimization. Let us recall some definitions and results
concerning multiobjective optimization. Consider the following vector minimization problem

(Q) v−min
x∈A

g(x),

where g = (g1, ...,gk)
> : Rp→ Rk is a function and A is a nonempty subset of Rp.

Definition 2.5. [10] An element x̄ ∈A is called an efficient solution to problem (Q) if g(x)≤
g(x̄), for x ∈A , g(x) = g(x̄). An efficient solution is also called a pareto-efficient solution.

Throughout the paper, we adopt the following definition of properly efficient solution in the
sense of Geoffrion .

Definition 2.6. [10] An element x̄ ∈A is called a properly efficient solution to problem (Q) if
it is efficient and if there exists a positive real number M such that, for each i ∈ {1, ...,k} and
x ∈A satisfying gi(x)< gi(x̄), there exists j ∈ {1, ...,k} such that

i) g j(x̄)< g j(x)

ii)
gi(x̄)−gi(x)
g j(x)−g j(x̄)

≤M.

For λ = (λ1, ...,λk)
> ∈ intRk

+, we consider the following scalar minimization problem

(Qλ ) min
x∈A

k

∑
i=1

λigi(x)
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associated to the vector minimization problem (Q).

Theorem 2.3. [10] Let λi > 0(i = 1, ...,k) be fixed. If x̄ is optimal solution to (Qλ ), then x̄ is
properly efficient solution to (Q).

Theorem 2.4. [10] Let A be a convex set, and let gi be convex on A . Then x̄ is properly
efficient of (Q) if and only if there exists λ = (λ1, ...,λk)

> ∈ intRk
+ with ∑

k
i=1 λi = 1 such that x̄

solves the scalarized problem (Qλ ), i.e., ArgminQ =
⋃

λ∈intRk
+

ArgminQλ .

Definition 2.7. ([10, 11]) Let ε = (ε1, ...,εk)
> ∈Rk

+ . A point x̄ ∈A is said to be an ε-efficient
(or pareto ε-efficient) solution to problem (Q) if, for x ∈A such that g(x) ≤ g(x̄)− ε , g(x) =
g(x̄)− ε.

Definition 2.8. [11] Let ε = (ε1, ...,εk)
> ∈ Rk

+ . A point x̄ ∈ A is said to be an ε-properly
efficient solution to problem (Q) if it is ε-efficient and there exists a positive real number M
such that, for each i∈ {1, ...,k} and x∈A satisfying gi(x)< gi(x̄)−εi, there exists j ∈ {1, ...,k}
such that

i) g j(x̄)− ε j < g j(x)

ii)
gi(x̄)−gi(x)− εi

g j(x)−g j(x̄)+ ε j
≤M.

The following result gives a characterization of ε-proper efficiency via scalarization.

Theorem 2.5. [11] Let ε = (ε1, ...,εk)
> ∈ Rk

+ . Assume that the set A and the function g are
convex. Let x̄ ∈ A . Then, x̄ is an ε-properly efficient solution to problem (Q) if and only if
, there exists λ = (λ1, ...,λk)

> ∈ intRk
+ with ∑

k
i=1 λi = 1 such that x̄ is a λ>ε-solution of the

scalar minimization problem (Qλ ) i.e., ∑
k
i=1 λigi(x̄)≤ ∑

k
i=1 λigi(x)+∑

k
i=1 λiεi ∀x ∈A .

2.3. Scalarization of the lower level problem P(x). In this section, we present the scalarized
problem associated to the lower level problem. Then, we establish some results which are
needed for our further investigation.

For a fixed µ = (µ1, ...,µm)
> ∈ intRm

+ , we consider the following scalarized problem of
P(x)

Pµ(x) min
y∈Y

m

∑
j=1

µ j f j(x,y).

Define f̂µ(x,y) = ∑
m
j=1 µ j f j(x,y) on Rp×Rq. Set vµ(x) = infy∈Y f̂µ(x,y) and

M µ(x) =
{

y ∈ Y/ f̂µ(x,y)≤ vµ(x)
}

the infimal value and the set of solutions of the scalar problem Pµ(x) respectively.

Remark 2.2. i) f̂µ is continuous since f j, j = 1, ...,m, are continuous as finite convex
functions.

ii) Since Y is compact and f̂µ is continuous, then Pµ(x), the scalarized problem, admits
at least one solution. Hence vµ(x) ∈ R for all x ∈ X .

Proposition 2.1. Let x ∈ X. Then, ȳ is a properly efficient solution to P(x) if and only if
there exists µx = (µx,1,µx,2, ...,µx,m)

> ∈ int(Rm
+) such that ȳ is a solution to the scalarized

minimization problem Pµx(x) and M (x) =
⋃

µx∈int(Rm
+)

M µx(x).
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Proof. Following Theorem 2.4, we can conclude the result immediately. �

Proposition 2.2. Let ε ∈ int(Rm
+) and x ∈ X. Then, ȳ is an ε-properly efficient solution to P(x)

if and only if there exists µx = (µx,1,µx,2, ...,µx,m)
> ∈ int(Rm

+) such that ȳ is a µ>x ε− solution to
the scalarized minimization problem Pµx(x) and M̂ ε(x) =

⋃
µx∈int(Rm

+)
M̃ µx

µ>x ε
(x) with M̂ ε(x)

being the set of ε-properly efficient solutions of P(x) and M̃ µx
µ>x ε

(x) being the set of µ>x ε-

solutions of Pµx(x), i.e., M̃ µx
µ>x ε

(x) =
{

y ∈ Y/ f̂µx(x,y)≤ vµx(x)+µ>x ε

}
.

Proof. It immediately follows from Theorem 2.5. �

3. THE SCALARIZED-REGULARIZED PROBLEM

As mentioned in the introduction, we need the Slater constraint qualification condition for
the application of the Fenchel-Lagrange duality in our study. Since (S) does not satisfy this
condition, we first proceed to its scalarization and then its regularization. This scalarization-
regularization method uses ε-properly efficient solutions of lower level problem P(x). As
a main result, we show that any accumulation point of a sequence of scalarized-regularized
solutions of problem (Sλ

εn
)

λ∈int(Rk
+),εn∈int(Rm

+)
is a properly efficient solution of (S).

For a given λ = (λ1, ...,λk)
> ∈ int(Rk

+), we consider the following scalarized problem of (S)

(Sλ ) min
x∈X

y∈M (x)

k

∑
i=1

λiFi(x,y).

Let λ ∈ int(Rk
+)and ε ∈ int(Rm

+). We consider the following regularized problem of (Sλ )

(Sλ
ε ) min

x∈X
y∈M̂ ε (x)

k

∑
i=1

λiFi(x,y).

In what follows, for εn↘ 0+Rm , we denote the problem (Sλ
εn
) by (Sλ

n ). The following theorem
establishes that any accumulation point of a sequence of solutions of the scalarized-regularized
problem (Sλ

n ) solves (S).

Theorem 3.1. Let εn↘ 0+Rm ,λ ∈ int(Rk
+) and (xn,yn)n be a sequence of solutions of scalarized-

regularized problem (Sλ
n ), n ∈ N. Let (x,y) be an accumulation point of the sequence (xn,yn).

Then (x,y) is a properly efficient solution to (S).

Proof. Feasibility. Obviously, we have x ∈ X . Let us show that y ∈M (x), i.e., ȳ is a properly
efficient solution to P(x̄).

Efficiency: Let y ∈ Y such that

fi(x̄,y)≤ fi(x̄, ȳ), ∀i ∈ {1, ...,m}= I. (3.1)

Let us show that, for all i ∈ I, fi(x̄, ȳ) = fi(x̄,y). Note that (x̄n, ȳn) is a solution to (Sλ
εn
),n ∈ N.

Then, ȳn ∈ M̂ εn(xn). Then, ȳn is an εn-efficient solution to P(x̄n). We distinguish the following
cases:

1) Assume that there exists n0 ∈N such that fi(x̄n,y)≤ fi(x̄n, ȳn)− ε i
n for all n ∈N ,n≥

n0, i ∈ I. For n ∈ N , since ȳn is an εn−efficient solution to P(x̄n), then fi(x̄n,y) =
fi(x̄n, ȳn)−ε i

n, i∈ I. Passing to the limit as n→+∞,n∈N , we obtain fi(x̄,y)= fi(x̄, ȳ).
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2) Assume that there exists an infinite subset N ′ ⊂N such that fi(x̄n,y)> fi(x̄n, ȳn)−ε i
n

for all n ∈ N ′. Then, passing to the limit as n→ +∞, we obtain fi(x̄,y) ≥ fi(x̄, ȳ).
Using (3.1), we obtain fi(x̄,y) = fi(x̄, ȳ). By means of the two cases and the fact that i
is arbitrary in I, we deduce that f (x̄, ȳ) = f (x̄,y).

Proper efficiency: Now, let us show that ȳ is a properly efficient solution to P(x̄). Assume the
contrary. Let M > 0 be arbitrary. Then, there exist y∗ ∈ Y and i ∈ I such that

fi(x̄,y∗)< fi(x̄, ȳ) (3.2)

and
fi(x̄, ȳ)− fi(x̄,y∗)
f j(x̄,y∗)− f j(x̄, ȳ)

> M (3.3)

for all j ∈ I \ {i}, verifying f j(x̄, ȳ) < f j(x̄,y∗). Set I(ȳ) = { j ∈ I \ {i}/ f j(x̄, ȳ) < f j(x̄,y∗)}.
Since I is finite, then we easily deduce the following property:

(L ) There exists n3 ∈N such that, for all n≥ n3,n ∈N ,
i) fi(x̄n,y∗)< fi(x̄n, ȳn)− εn

i ,
ii) f j(x̄n, ȳn)− εn

j < f j(x̄n,y∗), ∀ j ∈ I(ȳ)

iii) fi(x̄n,ȳn)− fi(x̄n,y∗)−εn
i

f j(x̄n,y∗)− f j(x̄n,ȳn)+εn
j
> M, ∀ j ∈ I(ȳ).

Indeed, assume by contradiction that there exists an infinite subset N
′ ⊂N such that, ∀n ∈

N
′
,
a) fi(x̄n,y∗)≥ fi(x̄n, ȳn)− εn

i , or,
b) ∃ j ∈ I(ȳ) such that f j(x̄n, ȳn)− εn

j ≥ f j(x̄n,y∗), or,

c) ∃ j ∈ I(ȳ) such that fi(x̄n,ȳn)− fi(x̄n,y∗)−εn
i

f j(x̄n,y∗)− f j(x̄n,ȳn)+εn
j
≤M.

We distinguish the following cases:
1) If a) is satisfied, then we obtain fi(x̄,y∗) ≥ fi(x̄, ȳ) by passing to the limit as n→ +∞.

This inequality contradicts (3.2).
2) If b) is satisfied, then we obtain f j(x̄, ȳ) ≥ f j(x̄,y∗) by passing to the limit as n→ +∞.

This contradicts the fact that j ∈ I(ȳ).
3) If c) is satisfied, then we obtain

∃ j ∈ I(ȳ) such that
fi(x̄, ȳ)− fi(x̄,y∗)
f j(x̄,y∗)− f j(x̄, ȳ)

≤M

by passing to the limit as n→+∞. This inequality contradicts (3.3).
Then, we obtain a contradiction. Set In3 = { j ∈ I \ {i} / f j(x̄n, ȳn)− εn

j < f j(x̄n,y∗), ∀n ≥
n3, n ∈N }. Let us show that the third assertion in (L ) is also true for all j ∈ In3 . Let j ∈ In3 .
We distinguish the following cases.

1) If j ∈ I(ȳ), then there is nothing to prove. Note that iii) is satisfied for all j ∈ I(ȳ).
2) If j /∈ I(ȳ), then f j(x̄, ȳ)≥ f j(x̄,y∗). We distinguish the following subcases:

2.1) Assume that f j(x̄, ȳ)> f j(x̄,y∗). Hence, there exists n4 ∈N such that

f j(x̄n, ȳn)− ε
n
j > f j(x̄n,y∗), ∀n≥ n4, n ∈N . (3.4)

Set n5 = max{n4,n3}. Then, for all n≥ n5,n ∈N , we get a contradiction between
(3.4) and the fact that j ∈ In3.
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2.2) Assume that f j(x̄, ȳ) = f j(x̄,y∗). Assume that there exists an infinite subset N
′ ⊂

{n ∈N / n≥ n3} such that

fi(x̄n, ȳn)− fi(x̄n,y∗)− εn
i

f j(x̄n,y∗)− f j(x̄n, ȳn)+ εn
j
≤M, ∀n ∈N

′
. (3.5)

We have lim n→+∞

n∈N ′
f j(x̄n,y∗)− f j(x̄n, ȳn)+εn

j = f j(x̄,y∗)− f j(x̄, ȳ)= 0. Since fi(x̄,y∗)<

fi(x̄, ȳ), then lim n→+∞

n∈N ′

fi(x̄n,ȳn)− fi(x̄n,y∗)−εn
i

f j(x̄n,y∗)− f j(x̄n,ȳn)+εn
j
= +∞, which leads to a contradiction in

(3.5) (+∞≤M).

In summary, we have the following property:
(R) For arbitrary M > 0, there exists y∗ ∈ Rq and i ∈ I such that

i) y∗ ∈ Y,
ii) fi(x̄n,y∗)< fi(x̄n, ȳn)− εn

i ,

iii) fi(x̄n,ȳn)− fi(x̄n,y∗)−εn
i

f j(x̄n,y∗)− f j(x̄n,ȳn)+εn
j
> M, ∀ j ∈ In3.

Therefore, the property (R) gives a contradiction with the fact that ȳn ∈ M̂ εn(x̄n).
Optimality. Let us show that (x,y) is a properly efficient solution of (S). For this, let us show

that there exists λ̃ ∈ int(Rk
+) such that (x̄, ȳ) is a solution to (Sλ̃ ) (see Theorem 2.3). We have

that (x̄n, ȳn) is a solution to scalarized regularized problem (Sλ
n ), i.e.,

k

∑
i=1

λiFi(xn,yn)≤
k

∑
i=1

λiFi(x,y) ∀(x,y) ∈ X×M̂ εn(x). (3.6)

On the other hand, we have M (x)⊂ M̂ εn(x). Hence, from (3.6) we obtain ∑
k
i=1 λiFi(xn,yn)≤

∑
k
i=1 λiFi(x,y), ∀(x,y) ∈ X ×M (x). Using the continuity of the function ∑

k
i=1 λiFi and passing

to the limit as n→ +∞, we obtain ∑
k
i=1 λiFi(x,y) ≤ ∑

k
i=1 λiFi(x,y) for all (x,y) ∈ X ×M (x).

Then, ∃λ̃ = λ ∈ int(Rk
+) such that (x̄, ȳ) is a solution to (Sλ̃ ). Therefore, (x̄, ȳ) is a properly

efficient solution to (S). �

4. OPTIMALITY CONDITIONS FOR THE SCALARIZED-REGULARIZED PROBLEM

In this section, we give a duality approach and provide optimality conditions for scalarized-
regularized problem (Sλ

ε ). This duality approach is achieved in three steps. We first decompose
problem (Sλ

ε ) according to the second variable into a family of subproblems (Sλ
ε,µ)µ∈int(Rm

+)
.

Then, due to the lack of convexity of (Sλ
ε,µ), we give a decomposition of them by a family of

convex minimization problems (Sλ ,x̃
ε,µ), x̃ ∈Rp. Next, we define an extended duality for problem

(Sλ
ε ) via the Fenchel-Lagrange duality applied to every subproblem (Sλ ,x̃

ε,µ), x̃ ∈ Rp.
For λ ∈ int(Rk

+),(ε,µ) ∈ (int(Rm
+))

2, we consider the following problem

(Sλ
ε,µ) min

x∈X
y∈M̃ µ

µ>ε
(x)

k

∑
i=1

λiFi(x,y).

Theorem 4.1. Let λ ∈ int(Rk
+) and (ε,µ) ∈ (int(Rm

+))
2. Then, (Sλ

ε,µ) has at least one solution.
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Proof. The result follows from the continuity of Fi i = 1, ...,k and the compactness of X and
M̃ µ

µ>ε
(x)⊂ Y . �

From Proposition 2.2, the problem (Sλ
ε ) can be written in the following form

(Sλ
ε ) min

x∈X
y∈

⋃
µ∈intRm

+

M̃
µ

µ>ε
(x)

k

∑
i=1

λiFi(x,y).

Then,

infSλ
ε = inf


k

∑
i=1

λiFi(x,y) : x ∈ X , y ∈
⋃

µ∈int(Rm
+)

M µ

µ>ε
(x)

= inf
µ∈int(Rm

+)
infSλ

ε,µ .

Hence, we obtain a decomposition of (Sλ
ε ) according to the second variable into a family of

scalar subproblems (Sλ
ε,µ),λ ∈ int(Rk

+),(ε,µ) ∈ int(Rm
+)

2.

4.1. A formulation of problem (Sλ
ε,µ) by conjugacy. In this subsection, based on the study

given by Martinez-Legaz and Volle [12], we give a formulation of problem (Sλ
ε,µ) that uses the

conjugate of the functions involved. For ε ∈ int(Rk
+) and µ ∈ int(Rm

+), we define on Rp×Rq

hµ

1,ε(x,y) = 0 and hµ

2,ε(x,y) = vµ(x)+µ>ε. We have

(Sλ
ε,µ) min

(x,y)∈X×Y
f̂µ (x,y)≤vµ (x)+µ>ε

k

∑
i=1

λiFi(x,y).

Then, this problem can be written in the following form

(Sλ
ε,µ) min

(x,y)∈Rp×Rq

ψX×Y (x,y)−hµ

1,ε (x,y)≤0

f̂µ (x,y)−hµ

2,ε (x,y)≤0

k

∑
i=1

λiFi(x,y),

which under the data is a minimization problem of a convex function under d.c. constraints. For
λ ∈ int(Rk

+),(ε,µ) ∈ int(Rm
+)

2, let Bλ
ε,µ denote the feasible set of problem (Sλ

ε,µ), i.e.,

Bλ
ε,µ =

{
(x,y) ∈ Rp×Rq/ψX×Y (x,y)−hµ

1,ε(x,y)≤ 0, f̂µ(x,y)−hµ

2,ε(x,y)≤ 0
}
.

Then, from [12, Lemma 2.1], we obtain

Bλ
ε,µ =

⋃
(x∗,y∗)∈Rp×Rq
(t∗,z∗)∈Rp×Rq
(u∗,v∗)∈Rp×Rq

h∗1,ε (x
∗,y∗)−ψ∗X×Y (x∗,y∗)≤0

h∗2,ε (t
∗,z∗)− f∗(t∗,z∗)≤0

{
(x,y) ∈ Rp×Rq / h∗1,ε(x

∗,y∗)+ψX×Y (x,y)

−〈x∗,x〉−〈y∗,y〉 ≤ 0,h∗2,ε(t
∗,z∗)+ f̂ (x,y)−〈t∗,x〉−〈z∗,y〉 ≤ 0

}
.
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For x̃ ∈ Rp,λ ∈ int(Rk
+),(ε,µ) ∈ (int(Rm

+))
2, set

Bλ ,x̃
ε,µ =

{
(x,y) ∈ X×Y/ f̂ (x,y)+ f̂ ∗Y (x̃,0Rq)−〈x̃,x〉 ≤ µ

>
ε

}
.

Proposition 4.1. Let (ε,µ) ∈ (int(Rm
+))

2,λ ∈ int(Rk
+). Then Bλ

ε,µ =
⋃

x̃∈Rp
Bλ ,x̃

ε,µ .

Proof. The proof is obvious, and it is omitted here. �

4.2. Duality for the decomposed problem (Sλ ,x̃
ε,µ). For x̃ ∈ Rp, (ε,µ) ∈ (intRm

+)
2, and λ ∈

intRk
+, consider the following problem

(Sλ ,x̃
ε,µ) min

(x,y)∈β
λ ,x̃
ε,µ

k

∑
i=1

λiFi(x,y),

and the following constraint qualification
(CQ)λ ,x̃

ε,µ There exists (xλ ,x̃
ε,µ ,y

λ ,x̃
ε,µ) ∈ X×Y such that f̂ (xλ ,x̃

ε,µ ,y
λ ,x̃
ε,µ)+ f̂ ∗Y (x̃,0Rq)−〈x̃,xλ ,x̃

ε,µ〉< µ>ε.

Remark 4.1. 1) For x̃ ∈Rp, (ε,µ)∈ (int(Rm
+))

2, and λ ∈ int(Rk
+),(S

λ ,x̃
ε,µ) is a convex min-

imization problem.
2) The qualification condition (CQ)λ ,x̃

ε,µ says that the Slater condition is satisfied by the
problem (Sλ ,x̃

ε,µ). Thanks to our regularization, we can assume the possible satisfaction
of the qualification constraint.

From Proposition 4.1, problem (Sλ
ε,µ ) can be written in the following form

(Sλ
ε,µ) min

(x,y)∈
⋃

x̃∈Rp
Bλ ,x̃

ε,µ

k

∑
i=1

λiFi(x,y). (4.1)

Then,

infSλ
ε,µ = inf

 k

∑
i=1

λiFi(x,y) : (x,y) ∈
⋃

x̃∈Rp

Bλ ,x̃
ε,µ


= inf

x̃∈Rp
inf

{
k

∑
i=1

λiFi(x,y) : (x,y) ∈Bλ ,x̃
ε,µ

}
= inf

x̃∈Rp
infSλ ,x̃

ε,µ .

The formulation of (Sλ
ε,µ) in (4.1) gives a decomposition of problem (Sλ

ε,µ) to a family of convex

minimization subproblems (Sλ ,x̃
ε,µ), x̃ ∈ Rp. We define the following function

g0,ε(x,y) = f̂ (x,y)+ f̂ ∗Y (x̃,0Rq)−〈x̃,x〉−µ
>

ε.

Let gε = (ψX×Y ,g0,ε)
>. Then, the first step to define a new duality for problem (Sλ

ε ) is to
consider the following dual for every problem (Sλ ,x̃

ε,µ), called Fenchel-Lagrange dual ([14])

(D̂λ ,x̃
ε,µ ) sup

(p1,p2)∈Rp×Rq

β=(β0,β1)∈R2
+

−
(

k

∑
i=1

λiFi

)∗
(p1, p2)− (β>gε)

∗(−p1,−p2)

 .
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Let us give an explicit expression of the objective function of problem (D̂λ ,x̃
ε,µ ). We have

(β>gε)
∗(−p1,−p2) = sup

(x,y)∈Rp×Rq


〈(
−p1
−p2

)
,

(
x
y

)〉
− (β>gε)(x,y)


= sup

(x,y)∈Rp×Rq


〈(
−p1
−p2

)
,

(
x
y

)〉
− (β0ψX×Y +β1g0,ε)(x,y)

 .

For (x,y) ∈ Rp×Rq, we have β0ψX×Y (x,y) = ψX×Y (x,y). Then

(β>gε)
∗(−p1,−p2) = sup

(x,y)∈Rp×Rq


〈(
−p1
−p2

)
,

(
x
y

)〉
− (ψX×Y +β1g0,ε)(x,y)


= (βg0,ε)

∗
X×Y (−p1,−p2).

Then, problem (D̂λ ,x̃
ε,µ ) and the following problem

(Dλ ,x̃
ε,µ ) sup

(p1,p2)∈Rp×Rq

β∈R+

−
(

k

∑
i=1

λiFi

)∗
(p1, p2)− (βg0,ε)

∗
X×Y (−p1,−p2)

 ,

have the same supremum. Next, in our investigation, we use the above problem which can be
developed by simple calculus based on conjugate functions to the following problem

(Dλ ,x̃
ε,µ ) sup

(p1,p2)∈Rp×Rq

β∈R+

{
−

(
k

∑
i=1

λiFi

)∗
(p1, p2)+

inf
(x,y)∈X×Y

〈(
p1−β x̃

p2

)
,

(
x
y

)〉
+β ( f̂ ∗Y (x̃,0Rq)−µ

>
ε + f̂ (x,y))

}
.

Because of
k⋂

i=1
ri(domFi) 6= /0, we have from [6] that

(
k

∑
i=1

λiFi

)∗
(p̃1, p̃2) = inf

{
k

∑
i=1

(λiFi)
∗ (p̃1i, p̃2i) :

k

∑
i=1

p̃1i = p̃1,
k

∑
i=1

p̃2i = p̃2

}

and the dual is

(Dλ ,x̃
ε,µ ) sup

(p̃1,p̃2)∈Rp×Rq

β∈R+
(p̃1i,p̃2i)∈Rp×Rq

∑
k
i=1 p̃1i=p̃1

∑
k
i=1 p̃2i=p̃2

{
−

k

∑
i=1

(λiFi)
∗ (p̃1i, p̃2i)+

inf
(x,y)∈X×Y

〈(
p̃1−β x̃

p̃2

)
,

(
x
y

)〉
+β ( f̂ ∗Y (x̃,0Rq)−µ

>
ε + f̂ (x,y))

}
.
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Because of (λiFi)
∗ (p̃1i, p̃2i)= λiF∗i (

p̃1i

λi
,

p̃2i

λi
), i= 1, ...,k, we can make the substitution

p̃1i

λi
=

p1i,
p̃2i

λi
= p2i, i = 1, ...,k and p̃1 =

k

∑
i=1

λi p1i , p̃2 =
k

∑
i=1

λi p2i. Then, omitting p̃1 and p̃2, we

obtain

(Dλ ,x̃
ε,µ ) sup

(p1i,p2i)∈Rp×Rq

i=1,...,k
β∈R+

{
−

k

∑
i=1

λiF∗i (p1i, p2i)+

inf
(x,y)∈X×Y

{〈(
∑

k
i=1 λi p1i−β x̃
∑

k
i=1 λi p2i

)
,

(
x
y

)〉
+β ( f̂ ∗Y (x̃,0Rq)−µ

>
ε)+β f̂ (x,y)

}}
.

Then, we have the following result concerning weak duality between (Sλ ,x̃
ε,µ) and (Dλ ,x̃

ε,µ ).

Proposition 4.2. Let x̃∈Rp, (ε,µ)∈ (int(Rm
+))

2, and λ ∈ int(Rk
+). Then, sup(Dλ ,x̃

ε,µ )≤ inf(Sλ ,x̃
ε,µ).

Proof. The result uses the fact that sup(D̂λ ,x̃
ε,µ ) = sup(Dλ ,x̃

ε,µ ) and the known result of weak
Fenchel-Lagrange duality between (Sλ ,x̃

ε,µ), and (D̂λ ,x̃
ε,µ ) ([14]). �

The following theorem establishes strong duality between (Sλ ,x̃
ε,µ) and (Dλ ,x̃

ε,µ ) for a given x̃ ∈
Rp, ε ∈ intRm

+ , µ ∈ intRm
+ and λ ∈ intRk

+.

Theorem 4.2. Let x̃ ∈ Rp, ε ∈ intRm
+, µ ∈ intRm

+, and λ ∈ intRk
+. Assume that the constraint

qualification (CQ)λ ,x̃
ε,µ is satisfied. Then (Sλ ,x̃

ε,µ) and (Dλ ,x̃
ε,µ ) are in strong Fenchel-Lagrange du-

ality.

Proof. The result follows from [6, Theorem 3.3] immediately. �

We have the following necessary optimality conditions for problem (Sλ ,x̃
ε,µ), x̃∈Rp, ε ∈ intRm

+,
µ ∈ intRm

+, and λ ∈ int(Rk
+).

Theorem 4.3. Let x̃ ∈Rp, ε ∈ intRm
+ , µ ∈ intRm

+, and λ ∈ int(Rk
+). Assume that the constraint

qualification (CQ)λ ,x̃
ε,µ is satisfied. Let (xλ ,x̃

ε,µ ,y
λ ,x̃
ε,µ) be a solution of problem (Sλ ,x̃

ε,µ). Then, there

exists a solution (p1,ε , p2,ε ,βε) of the dual (Dλ ,x̃
ε,µ ) with βε ∈ R+, p1,ε = (pε

11, ..., pε
1k) ∈ Rp×

Rp × ...×Rp, p2,ε = (pε
21, ..., pε

2k) ∈ Rq ×Rq × ...×Rq, such that the following optimality
conditions are satisfied.

i) F∗i (pε
1i, pε

2i)+Fi(x
λ ,x̃
ε,µ ,y

λ ,x̃
ε,µ) = 〈pε

1i,x
λ ,x̃
ε,µ〉+ 〈pε

2i,y
λ ,x̃
ε,µ〉 i = 1, ...,k,

ii) βε( f̂ (xλ ,x̃
ε,µ ,y

λ ,x̃
ε,µ)+ f̂ ∗Y (x̃,0Rq)−〈x̃,xλ ,x̃

ε,µ〉−µ>ε) = 0,

iii) inf
(x,y)∈X×Y


〈(

∑
k
i=1 λi pε

1i−βε x̃
∑

k
i=1 λi pε

2i

)
,

(
x
y

)〉
+βε f̂ (x,y)

=〈(
∑

k
i=1 λi pε

1i−βε x̃
∑

k
i=1 λi pε

2i

)
,

(
xλ ,x̃

ε,µ

yλ ,x̃
ε,µ

)〉
+βε f̂ (xλ ,x̃

ε,µ ,y
λ ,x̃
ε,µ).

Proof. The desired result direclty follows from [6, Theorem 3.4]. �

Remark 4.2. In term of subdifferential and normal cones, properties i) and iii) in Theorem 4.3
are respectively equivalent to
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1)

(
pε

1i
pε

2i

)
∈ ∂Fi(x

λ ,x̃
ε,µ ,y

λ ,x̃
ε,µ) ∀i ∈ {1, ...,k},

2)


βε x̃−

k

∑
i=1

λi pε
1i

−
k

∑
i=1

λi pε
2i

 ∈ ∂ (βε f̂ )(xλ ,x̃
ε,µ ,y

λ ,x̃
ε,µ)+NX×Y (x

λ ,x̃
ε,µ ,y

λ ,x̃
ε,µ).

For ε ∈ intRm
+ and λ ∈ intRk

+, we use I λ
ε =

{
(µ, x̃) ∈ intRm

+×Rp/ infSλ
ε = infSλ ,x̃

ε,µ

}
.

Remark 4.3. For every ε ∈ intRm
+ and λ ∈ intRk

+, I λ
ε is nonempty. In fact, let (xε ,yε) be a

solution to problem (Sλ
ε ). Since, yε ∈ M̂ ε(xε) and M̂ ε(xε) =

⋃
µ∈intRm

+
M̃ µ

µ>ε
(xε), then there

exists µε,xε
∈ intRm

+ such that yε ∈ M̃
µε,xε

µ>ε,xε
ε
(xε). Hence, (xε ,yε) is a feasible point of (Sλ

ε,µε,xε
),

i.e., (xε ,yε) ∈Bλ
ε,µε,xε

.

On the other hand, Bλ
ε,µε,xε

=
⋃

x̃∈Rp Bλ ,x̃
ε,µε,xε

. Hence, there exists x̃λ
ε,µε,xε

∈ Rp such that

(xε ,yε) ∈B
λ ,x̃λ

ε,µε,xε

ε,µε,xε
. Therefore (xε ,yε) solves the problem

(S
λ ,x̃λ

ε,µε,xε

ε,µε,xε
) min

(x,y)∈B
λ ,x̃λ

ε,µε,xε
ε,µε,xε

k

∑
i=1

λiFi(x,y).

It follows that ∑
k
i=1 λiFi(xε ,yε) = infSλ

ε = infS
λ ,x̃λ

ε,µε,xε

ε,µε,xε
. Hence, (µε,xε

, x̃λ
ε,µε,xε

) ∈I λ
ε .

4.3. Optimality conditions for the scalarized-regularized problem. The following theorem
gives necessary optimality conditions for problem (Sλ

ε ).

Theorem 4.4. Let ε ∈ intRm
+. Assume that the following constraint qualification is satisfied

(CQ)ε ∀x̃∈Rp,µ ∈ intRm
+,∃(xx̃

ε,µ ,y
x̃
ε,µ)∈X×Y, s.t. f̂ (xx̃

ε,µ ,y
x̃
ε,µ)+ f̂ ∗Y (x̃,0Rq)−〈x̃,xx̃

ε,µ〉< µ>ε.

Let λ ∈ intRk
+ and (xε ,yε) be a solution to problem (Sλ

ε ) . Then, there exists x̃λ
ε ∈ Rp and

((pλ
1ε
, pλ

2ε
),β λ

ε ) solves (D
λ ,x̃λ

ε

ε,µε
) with β λ

ε ∈ R+ such that the optimality conditions i)− iii) of
Theorem 4.3 are satisfied.

Proof. Let λ ∈ intRk
+ and ε ∈ int(Rm

+). We have (xε ,yε), a solution to (Sλ
ε ). From Remark 4.3,

there exist x̃λ
ε ∈ Rp and µλ

ε ∈ intRm
+ such that (xε ,yε) solves problem

(Sλ ,x̃λ
ε

ε,µλ
ε

) min
(x,y)∈Bλ ,x̃λ

ε

ε,µλ
ε

k

∑
i=1

λiFi(x,y).

By using the qualification constraint (CQ)ε for x̃λ
ε and µλ

ε , we deduce that there exists

(xλ ,x̃λ
ε

ε,µλ
ε

,yλ ,x̃λ
ε

ε,µλ
ε

) ∈ X ×Y such that f̂ (xλ ,x̃λ
ε

ε,µε
,yλ ,x̃λ

ε

ε,µε
) + f̂ ∗Y (x̃

λ
ε ,0Rq)− 〈x̃λ

ε ,x
λ ,x̃λ

ε

ε,µ 〉 < µλ>
ε ε. Then the

constraint qualification (CQ)
λ ,x̃λ

ε

ε,µε
of Theorem 4.3 is satisfied by (Sλ ,x̃λ

ε

ε,µλ
ε

). Via this theorem, there
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exists ((pλ
1ε
, pλ

2ε
),β λ

ε ) ∈ Rp×Rq×R+ solution of the dual (Dλ ,x̃λ
ε

ε,µλ
ε

) such that the following
optimality conditions are satisfied

1) F∗i (pλ ,ε
1i , pλ ,ε

2i )+Fi(x
x̃λ

ε

ε,µλ
ε

,yx̃λ
ε

ε,µλ
ε

) = 〈pλ ,ε
1i ,xx̃λ

ε

ε,µλ
ε

〉+ 〈pλ ,ε
2i ,yx̃λ

ε

ε,µλ
ε

〉 i = 1, ...,k,

2) β λ
ε

(
f̂ (xx̃λ

ε

ε,µλ
ε

,yx̃λ
ε

ε,µλ
ε

)+ f̂ ∗Y (x̃
λ
ε ,0Rq)−〈x̃λ

ε ,x
x̃λ

ε

ε,µλ
ε

〉−µλ>
ε ε

)
= 0,

3) inf(x,y)∈X×Y


〈(

∑
k
i=1 λi p

λ ,ε
1i −β λ

ε x̃λ
ε

∑
k
i=1 λi p

λ ,ε
2i

)
,

(
x
y

)〉
+β λ

ε f̂ (x,y)

=

〈(
∑

k
i=1 λi p

λ ,ε
1i −β λ

ε x̃λ
ε

∑
k
i=1 λi p

λ ,ε
2i

)
,

xx̃λ
ε

ε,µλ
ε

yx̃λ
ε

ε,µλ
ε

〉+β λ
ε f̂ (xx̃λ

ε

ε,µλ
ε

,yx̃λ
ε

ε,µλ
ε

).

�

Because of the lack of convexity of problem (Sλ
ε ), we cannot apply the Fenchel-Lagrange

duality to it. However, an extended Fenchel-Lagrange duality for (Sλ
ε ) can be defined in the

following sense.

Definition 4.1. Let ε ∈ int(Rm
+). Define the extented Fenchel-Lagrange duality for (Sλ

ε ) relative

to the redecomposition by the family of subproblems
{
(Sλ ,x̃ε

ε,µε
), x̃ε ∈ Rp,µε ∈ intRm

+

}
in the

following sense:
1) We say that weak extended Fenchel-Lagrange duality holds for (Sλ

ε ) if there exists x̃ε ∈
Rp and µε ∈ intRm

+ s.t. inf(Sλ
ε )≥ sup(Dλ ,x̃ε

ε,µε
), i.e., there exists weak Fenchel-Lagrange

duality between (Sλ
ε ) and (Dλ ,x̃ε

ε,µε
) for some x̃ε ∈ Rp,µε ∈ intRm

+.
2) We say that strong extended Fenchel-Lagrange duality holds for (Sλ

ε ) if there exists
x̃ε ∈Rp,µε ∈ intRm

+ s.t. inf(Sλ
ε )= sup(Dλ ,x̃ε

ε,µε
), i.e., there exists strong Fenchel-Lagrange

duality between (Sλ
ε ) and (Dλ ,x̃ε

ε,µε
) for some x̃ε ∈ Rp,µε ∈ intRm

+.

Remark 4.4. The extended Fenchel-Lagrange duality was first defined by Aboussoror, Adly
and Saissi in [2] in order to lead to strong duality between the regularized problem and its
decomposed one.

Let ε ∈ int(Rm
+). The following theorem gives sufficient optimality conditions for the scalarized-

regularized problem and show that strong extended Fenchel-Lagrange duality holds for (Sλ
ε ),λ ∈

int(Rk
+).

Theorem 4.5. Let ε ∈ intRm
+,λ ∈ int(Rk

+) and (xε ,yε) be a feasible point of problem (Sλ
ε ).

Assume that there exists (µλ
ε , x̃

λ
ε ) ∈I λ

ε and (pλ
1ε
, pλ

2ε
,β λ

ε ) a feasible point of the dual (Dλ ,x̃ε

ε,µε
)

with β λ
ε ∈ R+ that satisfies together with (xε ,yε) the conditions i)-iii) in Theorem 4.3. Then,

(xε ,yε) and ((pλ
1ε
, pλ

2ε
),β λ

ε ) solve (Sλ
ε ) and (Dλ ,x̃ε

ε,µε
) respectively. Moreover, strong extended

Fenchel-Lagrange duality holds for (Sλ
ε ) .

Proof. Properties i)− ii) in Theorem 4.3 corresponding to our case are written as follows

1) F∗i (pλ ,ε
1i , pλ ,ε

2i )+Fi(xε ,yε) = 〈pλ ,ε
1i ,xε〉+ 〈pλ ,ε

2i ,yε〉 i = 1, ...,k,
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2) β λ
ε

(
f̂ (xε ,yε)+ f̂ ∗Y (x̃

λ
ε ,0Rq)−〈x̃λ

ε ,xε〉−µλ>
ε ε

)
= 0,

3) inf(x,y)∈X×Y


〈(

∑
k
i=1 λi p

λ ,ε
1i −β λ

ε x̃λ
ε

∑
k
i=1 λi p

λ ,ε
2i

)
,

(
x
y

)〉
+β λ

ε f̂ (x,y)

=〈(
∑

k
i=1 λi p

λ ,ε
1i −βε x̃λ

ε

∑
k
i=1 λi p

λ ,ε
2i

)
,

(
xε

yε

)〉
+β λ

ε f̂ (xε ,yε).

From i), we have

k

∑
i=1

λiF∗i (pλ ,ε
1i , pλ ,ε

2i )+
k

∑
i=1

λiFi(xε ,yε)−

〈
k

∑
i=1

λi p
λ ,ε
1i

k

∑
i=1

λi p
λ ,ε
2i

 ,

(
xε

yε

)〉
= 0. (4.2)

Summing i), iii), and (4.2), we obtain

∑
k
i=1 λiFi(xε ,yε) = inf(x,y)∈X×Y

{〈(
∑

k
i=1 λi p

λ ,ε
1i −βε x̃λ

ε

∑
k
i=1 λi p

λ ,ε
2i

)
,

(
x
y

)〉
+β λ

ε f̂ (x,y)

−∑
k
i=1 λiF∗i (pλ ,ε

1i , pλ ,ε
2i )

}
+β λ

ε

(
f̂ ∗Y (x̃

λ
ε ,0Rq)−µλ>

ε ε

)
. (4.3)

From (4.3), the Fenchel-Lagrange duality between (Sλ ,x̃λ
ε

ε,µλ
ε

) and (D
λ ,x̃λ

ε

ε,µλ
ε

), we respectively have

∑
k
i=1 λiFi(xε ,yε)≤ sup(Dλ ,x̃λ

ε

ε,µλ
ε

) and sup(Dλ ,x̃λ
ε

ε,µλ
ε

)≤ inf(Sλ ,x̃λ
ε

ε,µλ
ε

).

On the other hand, since (x̃λ
ε ,µ

λ
ε ) ∈I λ

ε , then infSλ
ε = infSλ ,x̃λ

ε

ε,µλ
ε

. Therefore,

sup(Dλ ,x̃λ
ε

ε,µλ
ε

)≤ inf(Sλ ,x̃λ
ε

ε,µλ
ε

)≤

(
k

∑
i=1

λiFi

)
(xε ,yε)≤ sup(Dλ ,x̃λ

ε

ε,µλ
ε

).

Since ∑
k
i=1 λiFi(xε ,yε) = inf

(x,y)∈X×Y

{〈
k

∑
i=1

λi p
λ ,ε
1i −βε x̃λ

ε

k

∑
i=1

λi p
λ ,ε
2i

 ,

(
x
y

)〉
+β

λ
ε f̂ (x,y)

−
k

∑
i=1

λiF∗i (pλ ,ε
1i , pλ ,ε

2i )

}
+β

λ
ε

(
f̂ ∗Y (x̃

λ
ε ,0Rq)−µ

λ>
ε ε

)
,

we have

a) inf(Sλ
ε ) =

(
k

∑
i=1

λiFi

)
(xε ,yε),

b) sup(Dλ ,x̃λ
ε

ε,µλ
ε

) = inf(x,y)∈X×Y

{〈(
∑

k
i=1 λi p

λ ,ε
1i −βε x̃λ

ε

∑
k
i=1 λi p

λ ,ε
2i

)
,

(
x
y

)〉
+β λ

ε f̂ (x,y)−

∑
k
i=1 λiF∗i (pλ ,ε

1i , pλ ,ε
2i )

}
+β λ

ε

(
f̂ ∗Y (x̃

λ
ε ,0Rq)−µλ>

ε ε

)
,

c) inf(Sλ
ε ) = sup(Dλ ,x̃ε

ε

ε,µλ
ε

).
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Therefore, (xε ,yε) is a solution to (Sλ
ε ) and ((pλ

1ε
, pλ

2ε
),β λ

ε ) is a solution to (D
λ ,x̃λ

ε

ε,µλ
ε

). Moreover,

strong extended Fenchel-Lagrange duality holds for (Sλ
ε ). �

5. OPTIMALITY CONDITIONS FOR PROBLEM (S)

In this section, we provide necessary and sufficient optimality conditions for problem (S).
We need the following additional assumptions:

(H1) For every ε ∈ int(Rm
+), there exists (xε ,yε) ∈ intX× intY such that

fi(xε ,yε)≤ inf
y∈Y

fi(xε ,y)+ εi,∀i ∈ {1, ...,m} .

(H2) ∃(x̃, ỹ) ∈ Rp×Rq s.t. Fj(x̃, ỹ)< Fj(x,y), ∀(x,y) ∈ X×Y,∀ j ∈ {1, ...,k} .
(H3) ∃ỹ ∈ Rq s.t. fi(x, ỹ)< fi(x,y), ∀x ∈ X ,∀i ∈ {1, ...,m} .
For x ∈ Rp, we define the function fi,x(.) on Rq by fi,x(y) = fi(x,y).

Remark 5.1. 1) From assumption (H1), we have fi(xε ,yε) ≤ infy∈Y fi(xε ,y)+ εi for all
i ∈ {1, ...,m} .

Then, for all µi > 0, i = 1, ...,m we have ∑
m
i=1 µi fi(xε ,yε) ≤ infy∈Y ∑

m
i=1 µi fi(xε ,y)+

µ>ε. Hence, yε ∈ M̃ µ

µ>ε
(xε), i.e., (xε ,yε) is a feasible point of (Sλ

ε,µ).
2) Assumptions (H2) and (H3) imply respectively that

i)

(
0Rp

0Rq

)
/∈ ∂Fi(x,y), ∀(x,y) ∈ X×Y, ∀i ∈ {1, ...,k} ,

ii) ∀x ∈ X , 0Rq /∈ ∂ fix(y), ∀i ∈ {1, ...,m} , ∀y ∈ Y.

Example 5.1. Let X = [0,1] and Y = [0,2], and let Fi, fi, i = 1,2,3 be the functions defined on
R×R by 

F1(x,y) = x2 + y,
F2(x,y) = y,
F3(x,y) = 2x2 +2y,

and


f1(x,y) = x+ y,
f2(x,y) =−x+ y,
f3(x,y) = 2x+ y.

Then, X and Y are compact convex sets and F and f are convex functions.

(H1) Let xε =
1
2

and yε = ε̃ such that 0 < ε̃ < εi, i = 1,2,3. Then, xε ∈ intX and yε ∈ intY .

Moreover, we have fi(xε ,yε) ≤ infy∈Y fi(xε ,y) + εi, ∀i ∈ {1,2,3}. Then assumption
(H1) is satisfied.

(H2) Let (x̄, ȳ) = (0,−2). Then,


−2 = F1(x̄, ȳ)< F1(x,y),
−2 = F2(x̄, ȳ)< F2(x,y),
−4 = F3(x̄, ȳ)< F3(x,y),

for all (x,y) ∈ X ×Y . Then

assumption (H2) is satisfied.

(H3) Let ỹ = −2 ∈ Rq. Then,


f1(x, ỹ) = x−2 < x+ y,
f2(x, ỹ) =−x−2 <−x+ y,
f3(x, ỹ) = 2x−2 < 2x+ y,

for all (x,y) ∈ X ×Y . Then

assumption (H3) is satisfied.
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5.1. Necessary optimality conditions for problem (S). The following theorem gives neces-
sary optimality conditions for the properly efficient solutions of problem (S) which are accu-
mulation points of a sequence of scalarized-regularized solutions.

Theorem 5.1. Let εn ↘ 0+Rm . Let assumptions (H1)− (H3) be satisfied. Let λ ∈ int(Rk
+)

and (xn,yn) be a feasible point of (Sλ
n ) given by assumption (H1) for εn. Assume that there

exists (µεn, x̃n) ∈ I λ
εn

and a feasible point (p1,n, p2,n,βn) ∈ Rp×Rq×R of the dual problem

(D
λ ,x̃λ

n
εn,µ

λ
εn
) of (Sλ ,x̃λ

n
εn,µ

λ
εn
) that satisfy together with (xn,yn) the conditions (i)-(iii) in Theorem 4.3.

Let (x̄, ȳ) be an accumulation point of the sequence (xn,yn) . Then, (x̄, ȳ) is a properly efficient
solution of problem (S) and there exist ((p̄1, p̄2), β̄ ) with p̄1 = (p̄11, ..., p̄1k) ∈ Rp× ...×Rp,
p̄2 = (p̄21, ..., p̄2k) ∈ Rq× ...×Rq, β̄ ∈ R∗+, µ̄ ∈ int(Rm

+) and x̃ ∈ Rp s.t.

i)

(
p̄1i
p̄2i

)
∈ ∂Fi(x̄, ȳ), ∀(x,y) ∈ X×Y, ∀i ∈ {1, ...,k} ,

ii)

 m

∑
j=1

µ̄ j f j

∗ (x̃,0Rq)+

 m

∑
j=1

µ̄ j f j

(x̄, ȳ) = 〈x̃, x̄〉,

iii)


x̃− ∑

k
i=1 λi p1i

β̄

−∑
k
i=1 λi p2i

β̄

 ∈ ∂

(
∑

m
j=1 µ̄ j f j

)
(x̄, ȳ).

Proof. first of all, let us show that βn > 0 for large n ∈ N. Assume that there exists an infinite
subset N ∗ of N such that βn = 0 for all n ∈N ∗. Let n ∈N ∗. In our case, properties i)− iii)
in Theorem 4.3 are written as follows:

a) F∗i (pn
1i, pn

2i)+Fi(xn,yn) = 〈pn
1i,xn〉+ 〈pn

2i,yn〉, ∀i ∈ {1, ...,k} ,
b) βn( f̂ (xn,yn)+ f̂ ∗Y (x̃n,0Rq)−〈x̃n,xn〉−µ>n εn) = 0,

c) inf
(x,y)∈X×Y


〈(

∑
k
i=1 λi pn

1i−βnx̃n

∑
k
i=1 λi pn

2i

)
,

(
x
y

)〉
+βn f̂ (x,y)

=

∑
k
i=1 λi

〈(
pn

1i−βnx̃n
pn

2i

)
,

(
xn
yn

)〉
+βn f̂ (xn,yn).

From Remark 4.2, the property (c) is written as


βnx̃−

k

∑
i=1

λi pn
1i

−
k

∑
i=1

λi pn
2i

 ∈ ∂ (βn f̂ )(xn,yn)+NX×Y (xn,yn). (5.1)
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From assumption (H1), we have (xn,yn) ∈ int(X ×Y ), which implies that NX×Y (xn,yn) =(
0Rp

0Rq

)
. Hence property (5.1) becomes


βnx̃n−

k

∑
i=1

λi pn
1i

−
k

∑
i=1

λi pn
2i

 ∈ (βn f̂ )(xn,yn). That is,

βn f̂ (x,y)≥ βn f̂ (xn,yn)+

〈
βnx̃n−

k

∑
i=1

λi pn
1i

−
k

∑
i=1

λi pn
2i

 ,

(
x− xn
y− yn

)〉
, ∀(x,y) ∈ Rp×Rq.

Since βn = 0, then
〈(−∑

k
i=1 λi pn

1i
−∑

k
i=1 λi pn

2i

)
,

(
x− xn
y− yn

)〉
≤ 0, (x,y) ∈ Rp×Rq. Hence,

〈
−

k

∑
i=1

λi pn
1i

−
k

∑
i=1

λi pn
2i

 ,

(
x− xn
y− yn

)〉
≤ 0, (x,y) ∈ X×Y.

Then,

(
−∑

k
i=1 λi pn

1i
−∑

k
i=1 λi pn

2i

)
∈NX×Y (xn,yn) =

(
0Rp

0Rq

)
. Hence,−∑

k
i=1 λi pn

1i = 0 and −∑
k
i=1 λi pn

2i =

0. Since λ ∈ int(Rk
+), then λi > 0, i ∈ {1, ...,k} . Hence, pn

1i = 0 and pn
2i = 0, i ∈ {1, ...,k} .

On the other hand, we have from (a) that

(
pn

1i
pn

2i

)
∈ ∂Fi(xn,yn), i ∈ {1, ...,k} , i.e.,

(
0Rp

0Rq

)
∈

∂Fi(xn,yn), i ∈ {1, ...,k} . From assumption (H2), we have

(
0Rp

0Rq

)
/∈ ∂Fi(xn,yn), i ∈ {1, ...,k} ,

which gives a contradiction. Hence βn > 0 for large n ∈ N. i.e., ∃n0 ∈ N, n≥ n0, βn > 0. Now,
let us show that the accumulation point (x̄, ȳ) is a properly efficient solution of problem (S). Let
N be an infinite subset of N such that (xn,yn)→ (x̄, ȳ) as n→+∞, n≥ n0. Then, Theorem 4.5
implies that (xn,yn) solves problem (Sλ

n ) and ((p1n, p2n),βn) solves (D
λ ,x∗n
εn,µn). It follows from

Theorem 3.1 that the accumulation point (x̄, ȳ) is a properly efficient solution of the original
bilevel problem (S). In order to show properties i)− iii). we set N1 = N ∩

{
n ∈ N / n≥ n0

}
.

Property i): For n ∈N1, we have(
pn

1i
pn

2i

)
∈ ∂Fi(xn,yn)⊂

⋃
(x,y)∈X×Y

∂Fi(x,y) ∀i ∈ {1, ...,k} .

Since X ×Y ⊂ int(domF) = Rp×Rp and X ×Y is compact, then
⋃

(x,y)∈X×Y
∂Fi(x,y) is com-

pact (Theorem 2.1). Hence, there exists an infinite subset N2 of N1 such that the sequence
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(pn
1i, pn

2i)n∈N2 converges to (p̄1i, p̄2i). On the other hand, we have

Fi(x,y)≥ Fi(xn,yn)+

〈(
pn

1i
pn

2i

)
,

(
x− xn
y− yn

)〉
, ∀(x,y) ∈ Rp×Rq. (5.2)

Passing to the limit in (5.2) as n→ +∞, we deduce that

(
p̄1i
p̄2i

)
∈ ∂Fi(x̄, ȳ), i ∈ {1, ...,k} .

Hence, property i) is satisfied.
Property ii): Let n ∈N2. Since βn > 0, then (b) becomes f̂ ∗Y (x̃n, ,0Rq)+ f̂ (xn,yn)−〈x̃n,xn〉−

µ>n εn = 0. Hence,

f̂ ∗Y (x̃n,0Rq) = 〈x̃n,xn〉− f̂ (xn,yn)+µ
>
n εn

= sup
(x,y)∈Rp×Y


〈(

x∗n
0Rq

)
,

(
x
y

)〉
− f̂ (x,y)

 .

Therefore, for all (x,y) ∈ Rp×Y

f̂ (x,y)≥ f̂ (xn,yn)+ 〈x̃n,x− xn〉−µ
>
n εn. (5.3)

Then, for all x ∈ Rp, we have infy∈Y f̂ (x,y) = vµn(x)≥ vµn(xn)+ 〈x̃n,x− xn〉−µ>n εn, i.e., x̃n ∈
∂

µ>n εn
vµn(xn). Note ε̃n = µ>n εn. Hence x̃n ∈ ∂ε̃nvµn(xn). Let ε∗ ∈ int(R+

k ). Since εn↘ 0+, then
ε̃n↘ 0+, n∈N2. On the other hand, we have ε∗i > 0,∀i∈ {1, ...,k}. Then, there exists n1 ∈N2
such that ε̃ni < ε∗i , n≥ n1,n ∈N2, i = 1, ...,k. Hence ∂ε̃nvµn(xn)⊂ ∂ε∗vµn(xn), n≥ n1,n ∈N2.
Since x̃n ∈ ∂ε̃nvµn(xn) ⊂

⋃
x∈X

∂ε∗vµn(xn), n ≥ n1,n ∈N2 which is compact, then, there exists an

infinite subset N3 of N2 such that x̃n → x̃, as n→ ∞,n ∈ N3. On the other hand, we have
µn

j > 0, j = 1, ...,m and ∑
m
j=1 µn

j = 1. Hence µn
j ∈ [0,1] compact. Then, there exists N4 ⊂N3

such that µn
j → µ̄ j, n→+∞,n∈N4. From (5.3), we have ∑

m
j=1 µn

j f j(x,y)≥∑
m
j=1 µn

j f j(xn,yn)+

〈x̃n,x− xn〉−µ>n εn. Passing to the limit as n→+∞,n ∈N4, we obtain
m

∑
j=1

µ̄ j f j(x,y)≥
m

∑
j=1

µ̄ j f j(x̄, ȳ)+ 〈x̃,x− x̄〉, ∀(x,y) ∈ Rp×Y.

Then,〈(
x̃

0Rq

)
,

(
x
y

)〉
−

m

∑
j=1

µ̄ j f j(x,y)≤

〈(
x̃

0Rq

)
,

(
x̄
ȳ

)〉
−∑

m
j=1 µ̄ j f j(x̄, ȳ) ∀(x,y) ∈ Rp×Y.

Then, for all (x,y) ∈ Rp×Y ,

sup
(x,y)∈Rp×Y


〈(

x̃
0Rq

)
,

(
x
y

)〉
−

m

∑
j=1

µ̄ j f j(x,y)

=

〈(
x̃

0Rq

)
,

(
x̄
ȳ

)〉
−∑

m
j=1 µ̄ j f j(x̄, ȳ).

Hence,  m

∑
j=1

µ̄ j f j

∗
Y

(x̃,0Rq) =

〈(
x̃

0Rq

)
,

(
x̄
ȳ

)〉
−

m

∑
j=1

µ̄ j f j(x̄, ȳ).

That is, Property ii) is satisfied.
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Property iii): Let n ∈N4. From property (c) and the fact that (xn,yn) ∈ int(X ×Y ), we have(
βnx̃n−∑

k
i=1 λi pn

1i
−∑

k
i=1 λi pn

2i

)
∈ ∂ (βn f̂ )(xn,yn). That is, for all (x,y) ∈ Rp×Rq,

f̂ (x,y)≥ f̂ (xn,yn)+

〈x̃n−
∑

k
i=1 λi pn

1i
βn

−∑
k
i=1 λi pn

2i
βn

 ,

(
x− xn
y− yn

)〉
. (5.4)

Moreover, ∂ f̂ (xn,yn) ⊂
⋃
(x,y)∈X×Y ∂ f̂ (x,y). Since

⋃
(x,y)∈X×Y ∂ f̂ (x,y) is compact, then there

exist (r1,r2) ∈ Rp×Rq and an infinite subset N5 of N4 such that r1n = x̃n− ∑
k
i=1 λi pn

1i
βn

→ r1 as

n→ +∞, n ∈N5 and r2n =
∑

k
i=1 λi pn

2i
βn

→ r1 as n→ +∞, n ∈N5. Passing to the limit in (5.4) as
n→+∞,n ∈N5, we have

m

∑
j=1

µ̄ j f j(x,y)≥
m

∑
j=1

µ̄ j f j(x̄, ȳ)+

〈(
r1
r2

)
,

(
x− x̄
y− x̄

)〉
,∀(x,y) ∈ Rp×Rq. (5.5)

Setting x = x̄ in (5.5), we deduce that r2 ∈ ∂

(
∑

m
j=1 µ̄ j f j

)
x̄
(ȳ). Moreover, assumption (H3)

implies that 0Rq /∈ ∂

(
∑

m
j µ̄ j f j

)
x̄
(ȳ). Then r2 6= 0Rq . We have ‖r2n‖→‖r2‖ as n→+∞,n∈N5.

Since r2 6= 0Rq, then there exists n2 ∈N5 such that ‖r2n‖ > 0, n ≥ n2, n ∈N5. Hence, for all

n≥ n2,n ∈N5, we have βn =
‖∑k

i=1 λi pn
1i‖

‖r2n‖ . Since pn
2i→ p̄2i,n→+∞,n ∈N5, i ∈ {1, ...,k}, then

βn =
‖∑k

i=1 λi pn
1i‖

‖r2n‖
→ β̄ =

‖
k

∑
i=1

λi p̄1i‖

‖r2‖
,n→+∞, n ∈N5.

Thus 
x̃n−

k

∑
i=1

λi pn
1i

βn

−

k

∑
i=1

λi pn
2i

βn


→


x̃−

k

∑
i=1

λi p̄1i

β̄

−

k

∑
i=1

λi p̄2i

β̄


as n→+∞,n ∈N5.

Hence, passing to the limit in (5.4), we obtain, for all (x,y) ∈ Rp×Rp,

m

∑
j=1

µ̄ j f j(x,y)≥
m

∑
j=1

µ̄ j f j(x̄, ȳ)+

〈
x̃− ∑

k
i=1 λi p̄1i

β̄

−∑
k
i=1 λi p̄2i

β̄

 ,

(
x− x̄
y− x̄

)〉
.
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Then 
x̃−

k

∑
i=1

λi p̄1i

β̄

−

k

∑
i=1

λi p̄2i

β̄


∈ ∂

 m

∑
j=1

µ̄ j f j

(x̄, ȳ).

That is, property (iii) is satisfied. �

5.2. Sufficient optimality conditions for problem (S). In this subsection, we provide suffi-
cient optimality conditions for solving problem (S).

Theorem 5.2. Let (x̄, ȳ) ∈ X ×Y . Assume that there exists x̃ ∈ Rp, µ̄ ∈ intRm
+,λ ∈ intRk

+ and
((p̄1, p̄2), β̄ ) s.t., p̄1 = (p̄11, ..., p̄1k) ∈ (Rp)k , p̄2 = (p̄21, ..., p̄2k) ∈ (Rq)k , β̄ ∈ R∗+ and

(i)

(
p̄1i
p̄2i

)
∈ ∂Fi(x̄, ȳ), ∀i ∈ {1, ...,k} ,

(ii) 0 ∈ ∂

(
∑

m
j=1 µ̄ j f jx̄

)
(ȳ)+NY (ȳ),

(iii)


x̃− ∑

k
i=1 λi p̄1i

β̄

−∑
k
i=1 λi p̄2i

β̄

 ∈ ∂

(
∑

m
j=1 µ̄ j f j

)
(x̄, ȳ),

(iv) (x̄, ȳ) solves max(x,y)∈X×Y

{
∑

m
j=1 µ̄ j f j(x,y)−〈x̃,x〉

}
.

Then, (x̄, ȳ) is a properly efficient solution to problem (S).

Proof. Feasibility: Let us show that ȳ ∈M (x̄), i.e., ȳ is a properly efficient solution of P(x̄).
Since P(x̄) is convex, then it is equivalent to show that there exists µ ∈ intRm

+ such that ȳ solves
miny∈Y ∑

m
j=1 µ j f j(x̄,y). From property (ii), we have,

∃µ̄ ∈ intRm
+ s.t., 0 ∈ ∂

 m

∑
j

µ̄ j f jx̄

(ȳ)+NY (ȳ).

Hence, ȳ ∈M (x̄).
Optimality: Let us show that (x̄, ȳ) is a properly efficient solution of (S).
From Theorem 2.3, we show that there exists λ ∈ intRm

+ such that (x̄, ȳ) is an optimal solution
to

(Sλ ) min
x∈X

y∈M (x)

k

∑
i=1

λiFi(x,y),

i.e., ∑
k
i=1 λiFi(x,y) ≤ ∑

k
i=1 λiFi(x,y) for all (x,y) ∈ X ×M (x). Let (x,y) ∈ X ×Y such that

y ∈M (x). From property (i), we have

Fi(x
′
,y
′
)≥ Fi(x̄, ȳ)+

〈(
p̄1i
p̄2i

)
,

(
x
′− x̄

y
′− ȳ

)〉
, ∀(x

′
,y
′
) ∈ Rp×Rq,∀i ∈ {1, ...,k} .
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Then, for x
′
= x and y

′
= y, we obtain, ∀i ∈ {1, ...,k}, Fi(x,y)≥ Fi(x̄, ȳ)+

〈(p̄1i
p̄2i

)
,

(
x− x̄
y− ȳ

)〉
.

Likewise, property (iii) is written as

m

∑
j=1

µ̄ j f j(x
′
,y
′
)≥

m

∑
j=1

µ̄ j f j(x̄, ȳ)+

〈
x̃− ∑

k
i=1 λi p̄1i

β̄

−∑
k
i=1 λi p̄2i

β̄

 ,

(
x
′− x̄

y
′− x̄

)〉
, ∀(x′,y′) ∈ Rp×Rp.

For x
′
= x and y

′
= y, one has〈 ∑

k
i=1 λi p̄1i

β̄

−∑
k
i=1 λi p̄2i

β̄

 ,

(
x− x̄
y− x̄

)〉
≥

m

∑
j=1

µ̄ j f j(x̄, ȳ)−∑
m
j=1 µ̄ j f j(x,y)+

〈(
x̃

0Rq

)
,

(
x− x̄
y− ȳ

)〉
.

(5.6)
On the other hand, from property (ii), we have ∑

m
j=1 µ̄ j f j(x̄, ȳ)−〈x̃, x̄〉 ≥∑

m
j=1 µ̄ j f j(x,y)−〈x̃,x〉.

Hence, from (5.6) and β̄ > 0, we see that〈(
∑

k
i=1 λi p̄1i

∑
k
i=1 λi p̄2i

)
,

(
x− x̄
y− x̄

)〉
≥ 0,

which implies

k

∑
i=1

λiFi(x,y)≥
k

∑
i=1

λiFi(x̄, ȳ)+
k

∑
i=1

λi

〈(
p̄1i
p̄2i

)
,

(
x− x̄
y− ȳ

)〉
.

Hence, we see that there exists λ ∈ intRk
+ such that ∑

k
i=1 λiFi(x,y)≥ ∑

k
i=1 λiFi(x̄, ȳ). Therefore,

(x̄, ȳ) is a properly efficient solution to (S). �

Example 5.2. Let X =
[
−1

2 ,
1
2

]
and Y = [0,1]× [−1,1], and let Fi and fi, i = 1,2,3 be the

functions defined on R×R2 by
F1(x,y) =−2|x|−2y1 + y2

2−2y2,
F2(x,y) =−2x−2y1,
F3(x,y) =−2|x|−2y1 +1,

and


f1(x,y) = x2 + y1,
f2(x,y) = y1,
f3(x,y) = x2 +2y1.

Then, X and Y are compact convex sets and F and f are convex functions. Let us determine
a point (x̄, ȳ) ∈ X ×Y that satisfies the sufficient conditions in Theorem 5.2 Then, we are led
to verify if there exists x̃ ∈ R, p̄1 = (p̄11, p̄12, p̄13) ∈ R3, p̄2 = (p̄21, p̄22, p̄23) ∈ (R2)3, p̄2i =
(p̄1

2i, p̄2
2i) ∈ R2, i = 1,2,3 β̄ ∈ R∗+, λ = (λ1,λ2,λ3)

> ∈ intR3
+, µ̄ = (µ̄1, µ̄2, µ̄3)

> ∈ intR3
+ such

that the following optimality conditions are satisfied

(i)

(
p̄1i
p̄2i

)
∈ ∂Fi(x̄, ȳ),∀i ∈ {1,2,3}, (ii) 0 ∈ ∂

(
∑

3
j=1 µ̄ j f j

)
x̄
(ȳ)+NY (ȳ).

(iii)

x̃− ∑
3
i=1 λi p̄1i

β̄

−∑
3
i=1 λi p̄2i

β̄

 ∈ ∂

(
∑

3
j=1 µ̄ j f j

)
(x̄, ȳ).
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(iv) (x̄, ȳ) solves max(x,y)∈X×Y

{
∑

3
j=1 µ̄ j f j(x,y)−〈x̃,x〉

}
.

For x ∈ X and y ∈ Y , we have

∂F1(x,y) =


{−2}×

{
(−2,2y2−2)>

}
if x > 0, y ∈ Y,

[−2,2]×
{
(−2,2y2−2)>

}
if x = 0, y ∈ Y,

{2}×
{
(−2,2y2−2)>

}
if x < 0, y ∈ Y,

∂F2(x,y) = {−2}×


(
−2
0

) , ∂F3(x,y) =


{−2}×

{
(−2,0)>

}
if x > 0, y ∈ Y,

[−2,2]×
{
(−2,0)>

}
if x = 0, y ∈ Y,

{2}×
{
(−2,0)>

}
if x < 0, y ∈ Y.

If x̄ > 0, then we obtain from i) that(
p̄11
p̄21

)
=

 −2
−2
2y2−2

 ,

(
p̄12
p̄22

)
=

 −2
−2
0

 ,

(
p̄13
p̄23

)
=

 −2
−2
0

 . (5.7)

Note that ii) implies that (ȳ1, ȳ2) ∈Mµ(x̄), where Mµ(x̄) is the solution set of the problem

min
y∈[0,1]×[−1,1]

x̄2(µ1 +µ3)+ y1(µ1 +µ2 +2µ3).

Then, Mµ(x̄) = {0}× [−1,1]. Hence, ȳ1 = 0 and ȳ2 ∈ [−1,1].
On the other hand, iii) implies that β̄ x̃−∑

k
i=1 λi p̄1i

−∑
k
i=1 λi p̄1

2i
−∑

k
i=1 λi p̄2

2i

 ∈ β̄ ∂
(
µ̄1 f1(x̄, ȳ)+ µ̄2 f2(x̄, ȳ)+ µ̄3 f3(x̄, ȳ)

)
.

Then, we obtain


β̄ x̃−λ1 p̄11−λ2 p̄12−λ3 p̄13 = 2β̄ (µ̄1 + µ̄3)x̄,
−λ1 p̄1

21−λ2 p̄1
22−λ3 p̄1

23 = β̄ (µ̄1 + µ̄2 +2µ̄3),
−λ1 p̄2

21−λ2 p̄2
22−λ3 p̄2

23 = 0,
which together with (5.7)

yields
β̄ x̃−2λ1 +2λ2 +2λ3 = 2β̄ (µ̄1 + µ̄3)x̄, (5.8)
2λ1 +2λ2 +2λ3 = β̄ (µ̄1 + µ̄2 +2µ̄3), (5.9)
λ1(2−2y2)p̄2

21 = 0, (5.10)

Let λ = (1,1,1). From (5.10), we have 2−2y2 = 0. Thus y2 = 1. Since µ ∈ int(R3
+), we find

from (5.9) that

β̄ =
2

µ̄1 + µ̄2 +2µ̄3
. (5.11)

From (5.8), we obtain
2

µ̄1 + µ̄2 +2µ̄3
x̃+2 =

4(µ̄1 +2µ̄3)

µ̄1 + µ̄2 +2µ̄3
x̄. (5.12)
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(iv) implies that (x̄, ȳ) solves

max
(x,y)∈X×Y

{µ̄1 f1(x,y)+ µ̄2 f2(x,y)+ µ̄3 f3(x,y)− x̃x}.

Let h(x,y) = µ̄1 f1(x,y)+ µ̄2 f2(x,y)+ µ̄3 f3(x,y)− x̃x. We need to solve the problem

max
(x,y)∈X×Y1

h(x,y).

We see that X ×Y1 = [−1
2 ,

1
2 ]× [0,1] is convex compact and h is convex. Thne the maximum

is attained at an extreme point of X ×Y1. Let us calculate the images of the extreme points of
X×Y1 by h. Since ȳ1 = 0, we need to compare the values

h
(
−1

2
,0
)
=

1
4
(µ̄1 + µ̄3)+

1
2

x̃ and h
(

1
2
,0
)
=

1
4
(µ̄1 + µ̄3)−

1
2

x̃.

In view of x̄ > 0, we conclude that the maximum is attained at (x̄, ȳ1) = (1
2 ,0). By letting

(µ̄1, µ̄2, µ̄3) = (1,1,1), we obtain from (5.11) that β̄ = 1
2 and we also obtain from (5.12) that

x̃ =−2. We conclude that (x̄, ȳ1, ȳ2)
> = (1

2 ,0,1)
> is a properly efficient solution to (S). Letting

λ = µ̄ = (1,1,1) we obtain x̃ = −2, β̄ = 1
2 , p̄1 = (p̄11, p̄12, p̄13) = (−2,−2,−2), and p̄2 =

(p̄21, p̄22, p̄23) = ((−2,0),(−2,0),(−2,0)).

6. CONCLUSION

Most current multiobjective bilevel problems in the literature are problems where exactly
one level is vectorial. In order to investigate the class of strong multiobjective bilevel program-
ming where both levels are vectorial, as (S), we provided necessary and sufficient optimality
conditions. These results were obtained based on four operations: regularization, scalariza-
tion, decomposition, and conjugate duality. They need to use these operations stems from
the fact that problem (S) is not convex and does not satisfy the classical slater condition.
In order to avoid this situation, we proceeded by scalarizing, then regularizing the scalar-
ized problem. As a stability result, we demonstrated that any accumulation point of a se-
quence of scalarized-regularized solutions solves the original bilevel problem (S). Then, we
decomposed (Sλ

ε ),λ ∈ int(Rk
+) according to the second variable into a family of subproblems

(Sλ
ε,µ),µ ∈ int(Rm

+) that satisfies the slater condition. However, in general, we have the same
problem with (Sλ

ε,µ),µ ∈ int(Rm
+) concerning the lack of convexity. We gave a decomposition

of the problem (Sλ
ε,µ) by a family of convex programming subproblems (Sλ ,x̃

ε,µ), x̃ ∈Rp. Under a
constraint qualification, we gave its Fenchel-Lagrange dual. Thanks to the decomposition and
this duality, we defined an extended Fenchel-Lagrange duality for the scalarized-regularized
problem (Sλ

ε ). Under appropriate assumptions, we demonstrated that strong extended Fenchel-
Lagrange duality holds for (Sλ

ε ) and provided optimality conditions for it. Finally, we estab-
lished necessary and sufficient optimality conditions for problem (S). We here mention that our
results extend the ones given in [2] from the scalar case to the multiobjective one.
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