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FOR MULTI-LEADER-MULTI-FOLLOWER GAMES
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Abstract. This paper introduces a kind of hybrid equilibrium to multi-leader-multi-follower games.
The existence of hybrid equilibria of the games is proven via set-valued analysis. Our hybrid equilibria
can include both noncooperative equilibria and cooperative equilibria in references as special cases. In
addition, a weak hybrid equilibrium is introduced both for normal form games and multi-leader-multi-
follower games with infinitely many players. The existence of weak hybrid equilibria is established for
infinitely many players. The notion of the weak hybrid equilibrium is a generalization of weak α-core
in cooperative games. These equilibrium conceptions and results are new in multi-leader-multi-follower
games.
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rium.
2020 Mathematics Subject Classification. 91A12, 47H04.

1. INTRODUCTION

It is known that Nash equilibria focuses the noncooperative behavior of players, while the
conceptions of core and other cooperative equilibria focus on the cooperative behavior among
players. A classical existence theorem for α-core (see Aumann [1]) in normal form games was
given based on the existence of core of characteristic games [2]. The α-core was extended to
multi-objective games and TU α-core by Zhao [3, 4], to games with nonordered preferences
by Kajii [5], to multi-objective games with continuous set payoffs by Zhang and Sun in [6],
to multi-objective games with discontinuous set payoffs in [7] by Song et al, and to popula-
tion games in [8, 9] (for populations games, see [10]). For the existence results for α-core of
discontinuous TU and NTU games, we refer to [11]. Noncooperative equilibria and cooper-
ative equilibria have deep relations. Social coalitional equilibria in [12], defined by Ichiishi,
integrate the notion of Nash equilibrium and core. Another closely related conception is the
hybrid solution (hybrid equilibrium), introduced for general cooperative games by Zhao [13].
Some structures of solutions of general cooperative games were revealed by Song in [14]. A
hybrid equilibrium includes Nash equilibrium points and α-core as special cases in normal form
games. Recently, Yang and Yuan generalized the conception of hybrid equilibria to the games
with nonordered preferences in [15].
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In the field of multi-leader-multi-follower games (MLMFgames), numerous existence results
for noncooperative equilibria were established. Pang and Fukushima [16] formulated a kind of
MLMF game as a generalized Nash equilibrium problem or a generalized quasi-variational in-
equality (for the original GQVI, see Yao [17]) . In two-leader-follower games, Yu and Wang
[18] provided some Nash equilibrium results. Later, using variational inequalities, Hu and
Fukushima [19] obtained the existence and uniqueness of Nash equilibria for MLMF games.
Recently, for generalized MLMF games, Jia et al. [20] demonstrated the existence and sta-
bility of weakly Pareto-Nash equilibria. Considering noncompact FC-spaces, the equilibrium
existence was proven by Ding [21] for MLMF games. Furthermore, it is also known that the
original development of bilevel programming is stimulated by the leader-follower games (Stack-
elberg games); see [22]. In recent years, the study of the existence of cooperative equilibria for
MLMF games have been arising. In [23], Yang and Yu studied the existence and generic sta-
bility of cooperative equilibria, where cooperative equilibria originate from α-core. Yang and
Gong, in [24], presented an existence result of weakly cooperative equilibria defined from weak
core for normal form games in [25]. Very recently, the continuity of α-core of MLMF games
was studied in [26]. There are resutls on Nash equilibria and cooperative equilibria in MLMF
games, however, the hybrid equilibria integrating the noncooperative and cooperative equilibria
are still not studied in MLMF games. We generalize the notion of the hybrid equilibria in Zhao
[13] to MLMF games, and study their existence. Inspired by Yang and Yuan [15], we introduce
weak hybrid equilibria to MLMF games, and give a study of their existence for the case with
infinitely many leaders and followers.

The rest is organized as follows. In Section 2, the related setting and the definition of hybrid
equilibria are given for MLMF games. Section 3 proves the existence of hybrid equilibria for
MLMF games. In Section 4, the notion of weak hybrid equilibria is introduced to normal form
games and MLMF games. Then, based on the existence results for normal form games in this
paper, the set of weak hybrid equilibria is demonstrated to be nonempty for MLMF games.

2. PRELIMINARIES ANDHHYBRID EQUILIBRIA

2.1. Multi-leader-multi-follower games and hybrid equilibria. Let I = {1, . . . ,n} be the set
of leaders and J = {1, . . . ,m} be the set of followers. For i∈ I, Xi is the strategy set of the leader
i and fi : X ×Y −→ R is i’s payoff function. For a follower j in J, Y j is his/her strategy set and
g j : X×Y −→ R is the payoff of the follower j. For convenience, one sets

X = ∏
i∈I

Xi, X−i = ∏
i6=k,k∈I

Xk, XS = ∏
S⊆I
i∈S

Xi, X−S = ∏
S⊆I
i/∈S

Xi.

Y,Y− j,YS, and Y−S are similar with X ,X−i,XS, and X−S for each j ∈ J and each S⊆ J. Then, Γ =
〈I,J,{Xi}i∈I,{Yj} j∈J,{ fi}i∈I,{g j} j∈J〉 is called a multi-leader-multi-follower (MLMF) game
with finite players. In a MLMF game, the leaders firstly make a decision x from the strategy
set X . Secondly, the followers accept the strategy x ∈ X of leaders and make a corresponding
strategy y∈Y . In fact, a MLMF game is a generalization of usual normal form games. A normal
form game with a partition p of players is G = 〈N, p,{Xi}i∈N , {ui}i∈N〉, where p with p =
{N1,N2, . . . ,Nk} is a partition of the player set N (that is, ∪k

r=1Nr =N, Nr∩Nr′ = /0, ∀r 6= r′). For
each player i∈N, Xi is the strategy set of the player i, and ui : X −→R denotes the payoff for the
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player i. In the above game G, if the preference of a player i∈N is denoted by a correspondence
Pi : X ⇒ X instead of the payoff ui, then a game with preferences is 〈N, p,{Xi}i∈N , {Pi}i∈N〉.

Definition 2.1. (Zhao [13]) Let G be a normal form game with N being a finite set. A point
x∗ = (x∗N1

,x∗N2
, · · · ,x∗Nk

) ∈ X is said to be a hybrid equilibrium of G if, for any Nr ∈ p and any
B ⊆ Nr, there exists no yB ∈ XB such that ui(yB,zNr−B,x∗−Nr

) > ui(x∗Nr
,x∗−Nr

), ∀i ∈ B, ∀zNr−B ∈
XNr−B, where Nr−B = {i | i ∈ Nr, i /∈ B}.

Remark 2.1. It should be pointed that if |p| = 1, a hybrid equilibrium belongs to α-core,
Furthermore, if |Nr|= 1 for any r ∈ {1,2, . . . ,k}, then hybrid equilibrium is deduced to a Nash
equilibrium.

We extend the definition of hybrid equilibria in normal form games to MLMF games. For a
MLMF game with partitions

Γ = 〈I,J, p, p̄,{Xi}i∈I,{Yj} j∈J,{ fi}i∈I,{g j} j∈J〉, (2.1)

where p is a partition of leaders I with p = {N1,N2, . . . ,Nk} and |p| = k; p̄ is a partition of
followers J with p̄ = {N′1,N′2, . . . ,N′k1

} and |p̄| = k1. Note that ∪k
r=1Nr = I and ∪k1

r=1N′r = J,
where Nr∩Nr′ = /0 and N′r∩N′r′ = /0, ∀r 6= r′.

Let h(x) be the set of hybrid equilibria of the followers’ norm game, G′ = 〈J, p̄,{Yj} j∈J,
{g j(x, ·)} j∈J〉 for each fixed strategy profile x∈ X of leaders. Then, a correspondence h : X ⇒Y
is defined. The point ȳ = (ȳN′1

, ȳN′2
, . . . , ȳN′k1

) ∈ h(x) implies that ȳ is a hybrid equilibrium of G′.

That is, for any N′r ∈ p̄(r ∈ {1,2 . . . ,k1}) and S′ ⊆ N′r, there exists no yS′ ∈ YS′ such that
g j(x,yS′,wN′r−S′, ȳ−N′r)> g j(x, ȳN′r , ȳ−N′r), ∀ j ∈ S′, ∀wN′r−S′ ∈ YN′r−S′ .

Definition 2.2. A strategy x̄ = (x̄N1, x̄N2, . . . , x̄Nk) ∈ X is called a hybrid equilibrium of a MLMF
game Γ in (2.1) if, for any Nr ∈ p and for any S⊆ Nr, there exists no xS ∈ XS such that

fi(xS,wNr−S, x̄−Nr , ȳ)> fi(x̄Nr , x̄−Nr , ȳ), ∀i ∈ S, ∀ȳ ∈ h(x̄), ∀wNr−S ∈ XNr−S.

Remark 2.2. A hybrid equilibrium x̄ of a MLMF game requires that, for any hybrid equilibrium
ȳ ∈ h(x̄) of the followers’ game, x̄ is still a hybrid equilibrium of leaders’ game. Therefore, the
hybrid equilibrium in Definition 2.2 is very different from that in Definition 2.1.

The following result needed in the paper is from Yang and Yuan [15] for hybrid equilibria of
games without ordered presences.

Lemma 2.1. [15] Suppose that G = 〈N, p,{Xi}i∈N ,{Pi}i∈N〉 is a game with preferences, where
N is a finite set, p = {N1,N2, · · · ,Nk} and Pi : X ⇒ X for each i ∈ N with X = ∪i∈NXi. For each
i ∈ N, if G satisfies the following conditions:

(1) Xi is a nonempty, convex, and compact subset of Rmi;
(2) Pi(·) has convex values with open graph in X×X and x /∈ Pi(x) for all x in X,

then G has at least a hybrid equilibrium. That is, for any Nr ∈ p and any S⊆ Nr, there exists no
zS ∈ XS such that {zS}×XNr−S×{x̄−Nr} ⊂ Pi(x̄Nr , x̄−Nr), ∀i ∈ S.

2.2. On the concept of hybrid equilibria. The existence of noncooperative equilibria was
given in multi-leader-multi-follower games [27]. The original development of bilevel program-
ming is from the leader-follower games (Stackelberg games), see [22]. There are numerous



226 H.B. HAN, Q.Q. SONG, X.Y. CHI

applications of multi-leader-multi-follower games, such as the congestion control in commu-
nication networks [28], competitive bidding problems in electricity markets [16], and bidding
problems with an arbitrager in electricity markets [16]. For competitive bidding problems in
electricity markets, the followers are independent system operators (ISO), and the leaders are
the firms to bid for the market power in some regions.

In a normal form game, the concept of cooperative equilibria was used widely [29]. As a
generalization of normal form games, it cannot be eliminated cooperation in a multi-leader-
multi-follower game. For example, in Blockchain Ecosystems, if one takes independent system
operators as followers, and takes the miners as leaders, then it is a MLMF game. It was pointed
out that there exists cooperation in some miner groups; see [29]. A cooperative equilibrium
in MLMF games (which was firstly given in [23]) means that it cannot be α-blocked by any
coalition, and the meaning of cooperation in miner groups in [29] is also based on α-blockings.
Hybrid equilibria bridge the noncooperative equilibria and cooperative equilibria in [3] for nor-
mal form games. Hybrid games, as one of important economic aspects, are games to be used
to model simultaneous cooperation within firms and competition among firms, such as “island
economies”; see [30].

Hybrid equilibria were used to analyze financial problems. Under the framework of Blockchain
ecosystems, in mining gap games, all miners (players) p are divided into several disjoint groups
with p= {N1,N2, · · · ,Nk}. In each miner group N j, players cooperate together; players compete
among groups. As an applications of hybrid equilibria in [29], consensus equilibria were char-
acterized by hybrid equilibria for mining gap games. Under a given reasonable consensus, the
existence of the honest miners keeping “Mining Longest Chain Rules” was guaranteed. In view
of the existence of noncooperative equilibria and cooperative equilibria in MLMF games and
the potential applications of hybrid equilibria, Definition 2.2 gives a concept of hybrid equi-
libria in MLMF games based on the hybrid equilibrium in [13] by Zhao and the cooperative
equilibrium in [23] by Yang and Ju.

If x̄ is a hybrid equilibrium of a MLMF game Γ as (2.1) and there are no followers, then
x̄ is a hybrid equilibrium (as stated in Definition 2.1) in [13] for a normal form game with
partitions. If there has only the coarsest partition, that is, |p| = |p̄| = 1, a hybrid equilibrium
of a MLMF game Γ as (2.1) is a cooperative equilibrium in [23]. If all groups are the finest,
that is, |Nr| ≡ 1 and |N′r| ≡ 1, then the hybrid equilibrium in Definition 2.2 can reduce to a
noncooperative solution (Nash equilibrium) for some special MLMF games in references.

Here, we give an MLMF game which is a slight variant of the example in [16] by Pang
and Fukushima. The follower’s problem is to find a best y for a given x = (x1,x2,x3) such
that maxy≥0 g(x,y) = y(1− x1− x2)− 1

2y2. There are three leaders. The first leader is to find
the best x1 of maxx1∈[0,1] f1(x,y) = −1

2x1, the second leader’s problem is maxx2∈[0,1] f2(x,y) =
−1

2x2x1+x2y, and the third leader’s problem is maxx3∈[0,1] f3(x,y) =−1
2x3+y. Let I = {1,2,3},

J = {1}, p = {{1},{2},{3}}, p̄ = {1}, Xi = [0,1] for each i ∈ I, and Y = [0,+∞). Then,
there is a multi-leader-one-follower game with partitions: Γ1 = 〈I,J, p, p̄,{Xi}i∈I,Y,{ fi}i∈I,g〉.
From the finest partition {{1},{2},{3}} of leaders, the hybrid equilibria of Γ1 in Definition
2.2 are noncoperative equilibria among leaders. The follower’s best reaction of a given x is
y ∈ h(x) such that h(x) = max{0,1−x1−x2}. Then, the hybrid equilibria of Γ1 consisting with
competitive equilibria is the singleton set NE = {(0,1,0)} ⊂ X1×X2×X3. For any point in the
set NE, there is no coalition {i} which can α-block the point. For instance, if the coalition {2}
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can α-block the point x̄ = (0,1,0), then there exists an x′2 ∈ X2 such that f2((0,x′2,0),h(x̄)) >
f2(x̄,h(x̄)), then it reaches a contradiction. If it is allowed to cooperate between leaders 1 and
2, then the partition of p′ of leaders is written as p′ = {{1,2},{3}}. Then, a multi-leader-
one-follower game with partitions is defined as Γ2 = 〈I,J, p′, p̄,{Xi}i∈I,Y,{ fi}i∈I,g〉. We assert
that x∗ = (0, 1

2 ,0) is in the set of hybrid equilibria of Γ2, which is a cooperative equilibrium
in [23, 24] under [1]. For each coalition S of I, there is no xS ∈ XS which can α-block the
strategy x∗. For instance, if {2} ⊂ {1,2} can α-block the strategy x∗, then there is an x′2 ∈ X2
such that f2((w1,x′2,0),h(x

∗)) > f2(x∗,h(x∗)),∀w1 ∈ X1. Then, 1
2x′2(1−w1) >

1
4 for all w1 in

X1. There is a contradiction when w1 = 1. Clearly, the cooperative equilibrium point x∗ is not
in the set NE. Furthermore, it holds that fi(x∗,h(x∗)) ≥ fi(x,h(x)),∀i ∈ I,∀x ∈ NE. Then, to
allow the cooperation for leaders under the α-blocking rule in [1] may benefit leaders in the
MLMF game. Due to the different partitions of leaders in the above example, it may reduce
to competitive equilibria or cooperative equilibria by hybrid equilibria in Definition 2.2. The
different partitions of leaders or followers represent the complexity of internal organizations for
players. Note the difference between the competitive equilibria and cooperative equilibria of
MLMF games in the above example. One may ask: what kinds of conditions can bridge the
gap between these equilibria? Section 3 aims to find some sufficient conditions. In addition,
it is easy to generalize the above example to the case with infinitely many players. For games
with infinitely many players, similar with Section 3, Section 4 intends to find some sufficient
conditions to bridge the gap between competitive equilibria and cooperative equilibria.

3. THE EXISTENCE OF HYBRID EQUILIBRIA FOR MLMF GAMES WITH FINITE PLAYERS

The correspondence h in Section 2 has the property in Lemma 3.1.

Lemma 3.1. Suppose that a MLMF game Γ as (2.1) satisfies
(1) for each i ∈ I, Xi is a nonempty convex compact subset of Rmi;
(2) for each j ∈ J, Yj is a nonempty convex compact subset of Rm j;
(3) for each j ∈ J, g j is continuous on X×Y .
Then, h : X ⇒ Y is an upper semi-continuous correspondence with compact values.

Proof. By the closed Graph Theorem in [31], it suffices to show that the graph of h is closed.
Let {(xn, ȳn)} be a sequence in X ×Y with (xn, ȳn)−→ (x, ȳ) ∈ X ×Y and ȳn ∈ h(xn). Suppose
that ȳ /∈ h(x). Then, there exists N′r ∈ p̄, S′ ⊆ N′r, and uS′ ∈ YS′ such that

g j(x,uS′,wN′r−S′, ȳ−N′r)> g j(x, ȳN′r , ȳ−N′r), ∀ j ∈ S′, ∀wN′r−S′ ∈ YN′r−S′ .

Because g j is continuous on X×Y and YN′r−S′ is a compact subset, it holds that

min
wN′r−S′∈YN′r−S′

g j(x,uS′,wN′r−S′ , ȳ−N′r)> g j(x, ȳN′r , ȳ−N′r), ∀ j ∈ S′. (3.1)

By the Berge Maximum Theorem in [31], (x,uS′, ȳ−N′r) −→ min
wN′r−S′∈YN′r−S′

g j(x,uS′ ,wN′r−S′, ȳ−N′r)

is continuous. Therefore, from (3.1), there exists n0 > 0 such that, when n > n0,

min
wN′r−S′∈YN′r−S′

g j(xn,uS′,wN′r−S′, ȳ
n
−N′r

)> g j(xn, ȳn
N′r
, ȳn
−N′r

), ∀ j ∈ S′.

Then, for N′r ∈ p̄ and S′ ⊆ N′r, there exists uS′ ∈ YS′ such that

g j(xn,uS′,wN′r−S′, ȳ
n
−N′r

)> g j(xn, ȳn
N′r
, ȳn
−N′r

), ∀ j ∈ S′,∀wN′r−S′ ∈ YN′r−S′.
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It is contradictory to the fact ȳn ∈ h(xn). �

From Definition 2.2, Lemma 3.1, and Lemma 2.1, we establish the following existence of
hybrid equilibria in MLMF games.

Theorem 3.1. Suppose that a MLMF game Γ as (2.1) satisfies the following conditions:
(1) I and J are finite sets;
(2) for each i ∈ I and each j ∈ J, Xi and Y j are two nonempty, convex, and compact subsets

with Xi ⊂ Rmi and Yj ⊂ Rm j;
(3) for each i ∈ I and each j ∈ J, fi and g j are continuous on X×Y ;
(4) for each i ∈ I, fi( · ,x−Nr ,y) is quasi-concave on XNr;
(5) for each j ∈ J, g j(x, · ,y−N′r) is quasi-concave on YN′r .
Then, Γ has at least a hybrid equilibrium.

Proof. The proof is divided into two steps.
Step 1. Given an x ∈ X , for any N′r ∈ p̄ and j ∈ N′r, we define a preference correspondence

PFr′
j (x, ·) : Y ⇒ Y for the follower j by

PFr′
j (x,y) = {(uN′r ,y−N′r) ∈ Y | g j(x,uN′r ,y−N′r)> g j(x,yN′r ,y−N′r)}. (3.2)

Since each member in p̄ corresponds to a N′r ∈ p̄ and a j ∈ N′r, we have a preference PFr′
j for

each member in p̄. For convenience, let J′ = {(N′r, j) j∈N′r | r ∈ {1,2, · · · ,k1}}. Clearly, there
exists a bijection between J′ and J. Then, given an x∈X , the followers’ game can be denoted by
〈J, p̄,{Yt}t∈J,{P

Fr′
j (x, ·)}(N′r, j)∈J′〉. Clearly, y /∈ PFr′

j (x,y) for any y ∈ Y and j ∈ N′r. Note that p̄

with p̄ = {N′1,N′2, . . . ,N′k1
} is a partition of J. Therefore, for any j ∈ J, it holds that y /∈ PFr′

j (x,y)
for a given x ∈ X . Given a point x ∈ X , by the quasi-concave condition (5), from [31, Lemma
7.73], it obtains directly that PFr′

j (x, ·) is convex for each j ∈ J. Next, from condition (3), g j

is continuous. For any x ∈ X and j ∈ N′r, it holds that Graph(PFr′
j (x, ·)) is open in Y ×Y .

Thus, from Lemma 2.1, the followers game 〈J, p̄,{Yt}t∈J,{P
Fr′
j (x, ·)}(N′r, j)∈J′〉 exists a hybrid

equilibrium ȳ = (ȳN′1
, ȳN′2

, . . . , ȳN′k1
) ∈ Y . This means that, for any N′r ∈ p̄ and any S′ ⊆ N′r, there

exists no uS′ ∈ YS′ such that {x}×{uS′}×YN′r−S′ ×{ȳN′r} ⊂ PFr′
j (x, ȳ), ∀ j ∈ S′. According to

(3.2), for the strategy ȳ = (ȳN′1
, ȳN′2

, . . . , ȳN′k1
) in Y , for any N′r ∈ p̄ and S′ ⊆ N′r, there exists no

uS′ ∈ YS′ such that g j(x,uS′ ,wN′r−S′, ȳ−N′r)> g j(x, ȳN′r , ȳ−N′r), ∀ j ∈ S′, ∀wN′r−S′ ∈ YN′r−S′ .
Step 2. For the partition p of I with p = {N1,N2, . . . ,Nk}, for any Nr ∈ p and i∈Nr, we define

the preference correspondence PLr
i : X ⇒ X for the leader i by

PLr
i (x) = {(zNr ,x−Nr) ∈ X | fi(zNr ,x−Nr ,y)> fi(xNr ,x−Nr ,y), ∀y ∈ h(x)}. (3.3)

Let I′ = {(Nr, i)i∈Nr | r ∈ {1,2, · · · ,k}}. Obviously, there exists a bijection between I′ and I.
Then, the leaders’ game can be denoted by 〈I, p,{Xt}t∈I,{PLr

i }(Nr,i)∈I′〉. Clearly, x /∈ PLr
i (x) for

any i ∈ I and x ∈ X . For any x ∈ X and i ∈ I, PLr
i (x) is convex. This can be deduced directly

from [31, Lemma 7.73] by noting the quasi-concave condition (4).
We next show that the Graph(PLr

i ) is open in X×X for each i ∈ Nr. For each i ∈ Nr, suppose
that (zn

Nr
,xn
−Nr

) /∈ PLr
i (xn) with (xn,zn

Nr
,xn
−Nr

)−→ (x,zNr ,x−Nr) ∈ X×X . It suffices to prove that
(zNr , x−Nr) /∈ PLr

i (x). As (zn
Nr
,xn
−Nr

) /∈ PLr
i (xn) for each n = 1,2, . . ., we have fi(zn

Nr
,xn
−Nr

,yn)≤
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fi(xn
Nr
,xn
−Nr

,yn), for some yn ∈ h(xn). From Lemma 3.1, h is an upper semi-continuous corre-
spondence with nonempty compact values. From [31], one also sees that there exists a subse-
quence {ynk} of yn such that {ynk} −→ y0 ∈ h(x). Therefore, as k tends to infinity, we have
fi(zNr ,x−Nr ,y

0)≤ fi(xNr ,x−Nr ,y
0) and y0 ∈ h(x). It implies that (zNr ,x−Nr) /∈ PLr

i (x). Thus, for
each i ∈ Nr, for each r ∈ {1,2, · · · ,k}, the graph of PLr

i is open in X×X . From Lemma 2.1, the
game 〈I, p,{Xt}t∈I,{PLr

i }(Nr,i)∈I′〉 exists at least an x̄ = (x̄N1 , x̄N2 , . . . , x̄Nk) ∈ X such that for any
Nr ∈ p and any S⊆Nr, there exists no zS ∈XS for which {zSi}×XNr−S×{x̄−Nr}⊂PLr

i (x̄), ∀i∈ S.
By (3.3), for any Nr ∈ p and any S⊆ Nr, there exists no zS ∈ XS such that

fi(zS,wNr−S, x̄−Nr , ȳ)> fi(x̄Nr , x̄−Nr , ȳ), ∀i ∈ S, ∀ȳ ∈ h(x̄), ∀wNr−S ∈ XNr−S.

Finally, we have that the strategy profile x̄ ∈ X is a hybrid equilibrium of Γ. The proof is
completed. �

Remark 3.1.
(a) If the set J of followers is a singleton, Theorem 3.1 shows the existence of hybrid equilibria

in multi-leader-single-follower games. If there are no followers in Γ, a hybrid equilibrium
of Γ is a hybrid equilibrium of a normal form game with a partition p, which is a kind of
general cooperative game in Zhao [13].

(b) For partitions p and p̄, if |Nr|= 1 and |N′r|= 1, the existence of hybrid equilibria is deduced
to the existence of noncooperative (Nash) equilibria in MLMF games. On the other hand,
if | p |=| p̄ |= 1, the existence of a hybrid equilibrium x̄ with ȳ ∈ h(x̄) is the existence of
cooperative equilibria (x̄ and ȳ are α-core equilibria for leaders and followers, respectively)
in MLMF games in Yang [23].

Example 3.1. Consider a two-leader-two-follower game

Γ = 〈I,J, p, p̄,{Xi}i∈I,{Yj} j∈J,{ fi}i∈I,{g j} j∈J〉,

where I = {1,2}, J = {1,2}, X1 = X2 = [0,1] ∈ R, Y1 = Y2 = [0,1] ∈ R, and f1(x1,x2,y1,y2) =
x1y1y2, f2(x1,x2,y1,y2)= x2y2, g1(x1,x2,y1,y2)= 1, and g2(x1,x2,y1,y2)= y2 for any (x1,x2,y1,
y2) ∈ X×Y .

Case 1. For partitions p = {{1},{2}} and p̄ = {{1},{2}}, Γ satisfies all the conditions of
Theorem 3.1.

Let ℵ(x) be the set of Nash equilibria in the parametric followers’ game. It is clear that
ℵ(x) = [0,1]×{1} ⊂ Y for any x ∈ X . Therefore, the set of hybrid equilibria is {1}×{1} for
the two-leader-two-follower game, where {1}×{1} ⊂ X is actually the Nash equilibrium set
of the parametric leaders’ game.

Case 2. For p = {{1,2}}, p̄ = {{1,2}}, Γ satisfies all the conditions of Theorem 3.1, and it is
obvious that the hybrid equilibria of the two-leader-two-follower game are the same as α-core
for leaders and followers.

Let h(x) be the set of α-core for the parametric followers’ game with the leaders’ strategy
x ∈ X . We can obtain that h(x) = [0,1]×{1} ⊂ Y for any x ∈ X . Therefore, it can be checked
that the set of hybrid equilibria of Γ is [0,1]×{1}. Furthermore, it can be found that the hybrid
equilibrium are different in the above two cases.

Corollary 3.1. Let h : X ⇒ Y be upper semi-continuous and nonempty compact valued. If a
normal form game 〈I, p,{Xi}i∈I,{ fi}i∈I〉 with a partition p satisfies the conditions (1)-(4) of
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Theorem 3.1, then we say that the game has at least one hybrid equilibrium with respect to h.
That is, there exists x̄ ∈ X such that, for any Nr ∈ p and S⊆ Nr, there exists no zS ∈ XS such that

fi(zS,wNr−S, x̄−Nr , ȳ)> fi(x̄Nr , x̄−Nr , ȳ), ∀i ∈ S, ∀ȳ ∈ h(x̄), ∀wNr−S ∈ XNr−S.

Proof. By the step 2 in Theorem 3.1, the existence of hybrid equilibria in the parametric leaders’
game implies the desired result. �

4. THE EXISTENCE OF WEAK HYBRID EQUILIBRIA FOR MLMF GAMES WITH

INFINITELY PLAYERS

Before introducing weak hybrid equilibria of MLMF games and proving their existence, we
need to introduce weak hybrid equilibria to normal form games and give a deep study for their
existence.

Given a normal form game

G = 〈N, p,{Xi}i∈N ,{vi}i∈N〉, (4.1)

where p = {Nr | r ∈ R} is a partition of the player set N (R is an index set), and vi : X −→ R is
the payoff function of a player i ∈ N. Recall that X = XN = ∏i∈N Xi. Define a set

Ω̂ = {(Nr,S) | S⊆ Nr, Nr ∈ p}.

Definition 4.1. For a normal form game G as (4.1), a strategy x̄ ∈ X is said to be hybrid-
blocked by (Nr,S) of Ω̂ if there exists xS ∈ XS such that vi(xS,zNr−S, x̄−Nr)− vi(x̄Nr , x̄−Nr) >

0, ∀i ∈ S, ∀zNr−S ∈ XNr−S. A strategy x̄ ∈ X is strongly hybrid-blocked by (Nr,S) of Ω̂ if there
exists xS ∈XS and ε > 0 such that vi(xS,zNr−S, x̄−Nr)−vi(x̄Nr , x̄−Nr)> ε, ∀i∈ S, ∀zNr−S ∈XNr−S.
A strategy profile x̄∈ X is called a weak hybrid equilibrium of G, if it cannot be strongly hybrid-
blocked by any (Nr,S) ∈ Ω̂.

Remark 4.1. (a) The hybrid-blocking concept for normal form games in Definition 4.1 is from
the hybrid-blocking concept in games without ordered preferences in Yang and Yuan [15].
The hybrid-blocking concept was defined by the α−blocking concept, see [15, 25]. The
strongly hybrid-blocking in Definition 4.1 is inspired by the strongly hybrid-blocking for
games without ordered preferences in [15], and the relation between them needs to be stud-
ied in the future.

(b) If a strategy x̄ cannot be hybrid-blocked, which means that, for each group Nr, each coalition
S in Nr, and the fixed strategy x̄−Nr of the other groups, x̄Nr cannot be α−blocked by S. That
is, each x̄Nr is in the α−core of the game 〈Nr,(Xi)i∈Nr , vi(·, x̄−Nr)i∈Nr〉.

Assumption 4.1. N is a nonempty compact subset of a Hausdorff topological space.

Assumption 4.2. For each i ∈ N, Xi is a nonempty convex compact subset of Rmi .

Assumption 4.3. For each i ∈ N, vi is continuous on X , and vi is quasi-concave on XNr for each
Nr ∈ p.

From Definition 4.1, it is obvious that the following lemma holds.

Lemma 4.1. Under Assumptions 4.1-4.3, if a strategy x ∈ X can be strongly hybrid-blocked by
a member (Nr,S) in Ω̂, then x can be hybrid-blocked by (Nr,S).
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Lemma 4.2. Under Assumptions 4.1-4.3, for each (Nr,S) ∈ Ω̂, define F(Nr,S) = {x ∈ X | x
cannot be strongly hybrid-blocked by (Nr,S)}. Then F(Nr,S) is closed on X.

Proof. It suffices to show that F(Nr,S)c is open on X . If x ∈ F(Nr,S)c, then there exists yS ∈ XS
and ε > 0 such that vi(yS,zNr−S,x−Nr)−vi(xNr ,x−Nr)> ε, ∀i ∈ S, ∀zNr−S ∈ XNr−S. Since N is a
nonempty compact set, clS is compact on N. By Assumption 4.3, we have

mini∈clS minzNr−S∈XNr−S [vi(yS,zNr−S,x−Nr)− vi(xNr ,x−Nr)]≥ ε > ε

2 .

Then,

(xNr ,x−Nr)→ min
i∈clS

min
zNr−S∈XNr−S

[vi(yS,zNr−S,x−Nr)− vi(xNr ,x−Nr)]

is continuous on X . Then there exists an open neighborhood U(x) of x in X such that

min
i∈clS

min
zNr−S∈XNr−S

[vi(yS,zNr−S,x′−Nr)− vi(x′Nr ,x
′
−Nr)]>

ε

2
, ∀x′ ∈U(x).

Therefore, for any x′ ∈U(x), we obtain that vi(yS,zNr−S,x′−Nr)− vi(x′Nr ,x
′
−Nr) >

ε

2 . That is,
U(x)⊂ F(Nr,S)c. The proof is completed. �

Lemma 4.3. Under Assumptions 4.1-4.3, for any {(Nr,Sr,i)
n(r)
i=1 | Sr,i ⊆ Nr, ∀i = 1, . . . ,n(r)}r0

r=1
of Ω̂, there exists x∈ X such that x cannot be hybrid-blocked by (Nr,Sr,i), ∀i = 1, . . . ,n(r), ∀r =
1, . . . ,r0.

Proof. Without loss of generality, we assume that Nr−
⋃n(r)

i=1 Sr,i 6= /0, N−
⋃r0

r=1 Nr 6= /0. Let

Sr,n(r)+1 = Nr−
n(r)⋃
i=1

Sr,i, ∀r = 1, . . . ,r0, Nr0+1 = N−
r0⋃

r=1

Nr, Sr0+1,1 = Nr0+1,

n̄(r) = n(r) + 1, and n̄(r0 + 1) = 1. Thus, we obtain a family {(Nr,Sr,i)
n̄(r)
i=1 | Sr,i ⊆ Nr, ∀i =

1, . . . , n̄(r)}r0+1
r=1 . For any {Sr,i ⊆ Nr | i = 1, . . . , n̄(r)}, r = 1, . . . ,r0 +1, there definitely exists a

family {Kr, j ⊆ Nr | j = 1, . . . ,m(r)} such that

Nr =

n̄(r)⋃
i=1

Sr,i =

m(r)⋃
j=1

Kr, j with Kr,a∩Kr,b = /0, ∀a 6= b.

Obviously, each Sr,i is a union of some sets Kr, j for any r = 1, . . . ,r0 + 1. In fact, {Kr, j | j =
1, . . . ,m(r)} becomes a partition of Nr.

We next construct a finite-player normal form game 〈I, p̄,{Yq}q∈I,{φq}q∈I〉 with a partition
p̄ as follows:

(1) p̄ = {I1, I2, . . . , Ir0}, Ir = {(r, j(r)) | j(r) = 1, . . . ,m(r)}, ∀ r = 1, . . . ,r0.
(2) I = ∪r0

r=1Ir = ∪r0
r=1{(r, j(r)) | j(r) = 1, . . . ,m(r)}. In addition, for convenience, denote

∪ j∈BKr, j by Kr,B, and let (r,B) = {(r, j) : j ∈ B} ⊂ Ir, where r ∈ {1, . . . ,r0} and B ⊆
{1, . . . ,m(r)}. Let KI = {Kr, j : (r, j) ∈ I}. It is clear that N−KI = Nr0+1 6=∅.

(3) For any player q = (r, j(r)) ∈ I, Yq is the player’s nonempty convex compact strategy set
with Yq = ∏i∈Kq Xi ⊂∏i∈Kq R

mi .
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(4) For each player q = (r, j(r)) ∈ I, the payoff function φq : YI(YI = ∏l∈I Yl = ∏l∈I ∏i∈Kl
Xi =

XKI)→ R is defined by φq(yI) = vt(q)(yIr ,yI−Ir ,x
0
−KI

), ∀yI ∈ YI , where t(q) is picked and
fixed in Kq, and x0

−KI
is picked and fixed with x0

−KI
∈ X−KI = XN−KI = XNr0+1 .

Firstly, it is easy to verify that φq is continuous on YI . Next, since vt(q) is quasi-concave
on XNr from Assumption 4.3, we have that φq is quasi-concave on YIr with YIr = ∏l∈Ir Yl =

∏l∈Ir ∏i∈Kl
Xi = XNr , ∀r = 1,2, . . . ,r0. Therefore, the game 〈I, p̄,{Yq}q∈I,{φq}q∈I〉 satisfies

all the conditions of the theorem 2 in Zhao [13]. Hence, there exists a hybrid equilibrium
y0

I ∈∏l∈I Yl such that, for any Ir ∈ p̄ and any B⊆{1, . . . ,m(r)}, there exists no y(r,B) ∈∏l∈(r,B)Yl
such that

φq(y(r,B),zIr−(r,B),y
0
I−Ir

)> φq(y0
Ir
,y0

I−Ir
),∀q ∈ (r,B), ∀zIr−(r,B) ∈ ∏

l∈Ir−(r,B)
Yl.

That is, for any r = 1, . . . ,r0 and B⊆ {1, . . . ,m(r)}, there exists no y(r,B) ∈∏l∈(r,B)Yl such that

vt(q)(y(r,B),zIr−(r,B),y
0
I−Ir

,x0
−KI

)> vt(q)(y
0
Ir
,y0

I−Ir
,x0
−KI

), (4.2)

for any zIr−(r,B) ∈∏l∈Ir−(r,B)Yl , and for any q = (r, j(r)) ∈ (r,B) (recall that t(q) is fixed in Kq).
Since ∏l∈(r,B)Yl = ∏l∈(r,B)∏i∈Kl

Xi = XKr,B , it is written y(r,B) ∈∏l∈(r,B)Yl as yKr,B ∈ XKr,B . Since
YIr = XNr , it holds that ∏l∈Ir−(r,B)Yl = ∏l∈Ir−(r,B)∏i∈Kl

Xi = XNr−Kr,B . We will write zIr−(r,B) ∈
∏l∈Ir−(r,B)Yl as zNr−Kr,B ∈ XNr−Kr,B , and write y0

Ir
∈ YIr as y0

Nr
∈ XNr . In addition, since YI−Ir =

XKI−Nr = XN−Nr0+1−Nr , it can be written y0
I−Ir
∈ YI−Ir as y0

KI−Nr
∈ XKI−Nr . Then, from (4.2), for

any r = 1, . . . ,r0, B ⊆ {1, . . . ,m(r)}, and yKr,B ∈ XKr,B , there exist some zNr−Kr,B ∈ XNr−Kr,B , and
q = (r, j(r)) ∈ (r,B) such that vt(q)(yKr,B,zNr−Kr,B,y

0
KI−Nr

,x0
−KI

) ≤ vt(q)(y
0
Nr
,y0

KI−Nr
,x0
−KI

). Ob-
serve that, for any fixed r = {1, . . . ,r0} and fixed i∈{1, . . . ,n(r)}, there exists B⊆{1, . . . ,m(r)},
such that Sr,i = Kr,B. Therefore, for any ySr,i = yKr,B ∈ XKr,B = XSr,i , there exist some zNr−Sr,i ∈
XNr−Sr,i , and q = (r, j(r)) ∈ (r,B), t(q) ∈ Kr, j(r) ⊂ Sr,i such that

vt(q)(ySr,i,zNr−Sr,i,y
0
KI−Nr

,x0
−KI

)≤ vt(q)(y
0
Nr
,y0

kI−Nr
,x0
−KI

). (4.3)

Let x0
−Nr

= (y0
KI−Nr

,x0
−KI

). Then, Eq. (4.3) becomes vt(q)(ySr,i,zNr−Sr,i,x
0
−Nr

) ≤ vt(q)(y0
Nr
,x0
−Nr

).

Since y0
Nr
∈ XNr , y0

kI−Nr
∈ XKI−Nr = XN−Nr0+1−Nr , and x0

−KI
∈ X−KI = XNr0+1, we have x0

−Nr
=

(y0
kI−Nr

,x0
−KI

) ∈ X−Nr . Hence, x̂ = (y0,x0
−KI

) = (y0
Nr
,x0
−Nr

) ∈ X . It shows that x̂ ∈ X cannot
be hybrid-blocked by (Nr,Sr,i) for each r = 1, . . . ,r0 and i = 1, . . . ,n(r). This completes the
proof. �

Theorem 4.1. If a normal form game G as (4.1) satisfies Assumptions 4.1-4.3, then G at least
has a weak hybrid equilibrium.

Proof. By Lemma 4.3, for any finite family Ω̂′ of members of Ω̂, there exists x ∈ X such that
x cannot be hybrid-blocked by any (Nr,S) ∈ Ω̂′. Further, by Lemma 4.1, x cannot be strongly
hybrid-blocked by any (Nr,S) ∈ Ω̂′. That is, x ∈ ∩(Nr,S)∈Ω̂′F(Nr,S). Note that F(Nr,S) is
closed by Lemma 4.2. In view of the compactness of X , one sees there exists x ∈ X such that
x ∈ ∩(Nr,S)∈Ω̂

F(Nr,S). Then, x is a weak hybrid equilibrium of G. The proof is completed. �

Based on the above analysis and methods of weak hybrid equilibria for normal form games,
we can introduce the notion of the weak hybrid equilibria for MLMF games with infinitely
many players and give their existence results.



HYBRID EQUILIBRIA AND WEAK HYBRID EQUILIBRIA 233

Give a MLMF game

Γ = 〈I,J, p, p̄,{Xi}i∈I,{Yj} j∈J,{ fi}i∈I,{g j} j∈J〉 (4.4)

with a partition p = {Nr ⊆ I | r ∈ R} of the set I of leaders and a partition p̄ = {N′r ⊆ J | r ∈ R′}
of the set J of followers, where R and R′ are index sets. Note that ∪r∈RNr = I and ∪r∈R′N′r = J,
where Nr∩Nr′ = /0 and N′r∩N′r′ = /0, ∀r 6= r′. We define the set Ω and Ω′ by

Ω = {(Nr,S) | S⊆ Nr, Nr ∈ p}, Ω
′ = {(N′r,S′) | S′ ⊆ N′r, N′r ∈ p̄}.

Given a point x∈ X , we say that ȳ∈Y is strongly hybrid-blocked by (N′r,S
′) of Ω′, if there exists

yS′ ∈ YS′ and ε ′ > 0 such that

g j(x,yS′,wN′r−S′, ȳ−N′r)−g j(x, ȳN′r , ȳ−N′r)> ε
′, ∀ j ∈ S′, ∀wN′r−S′ ∈ YN′r−S′.

Let hs(x) be the set of weak hybrid equilibria of the followers’ normal form game 〈J, p̄,{Y j} j∈J,
{g j(x, ·)} j∈J〉 with the parameter x ∈ X , which yields a correspondence hs : X ⇒ Y . That is,
ȳ ∈ hS(x) means that ȳ cannot be strongly hybrid-blocked by any (N′r,S

′) in Ω′.

Definition 4.2. A point x̄ ∈ X is strongly hybrid-blocked by (Nr,S) of Ω if there exists xS ∈ XS
and ε > 0 such that

fi(xS,wNr−S, x̄−Nr , ȳ)− fi(x̄Nr , x̄−Nr , ȳ)> ε, ∀i ∈ S, ∀ȳ ∈ hs(x̄), ∀wNr−S ∈ XNr−S.

A point x̄ ∈ X is a weak hybrid equilibrium of a MLMF game Γ, if x̄ cannot be strongly hybrid-
blocked by any (Nr,S) in Ω.

We need the following assumptions and lemmas.

Assumption 4.4. I and J are nonempty and compact subsets of Hausdorff topological space.

Assumption 4.5. For each leader i ∈ I (each follower j ∈ J), the strategy set Xi(Y j) is a
nonempty, convex, and compact subset of Rmi (Rm j).

Assumption 4.6. For each i ∈ I, fi is continuous on X ×Y , and fi( · ,x−Nr ,y) is quasi-concave
on XNr .

Assumption 4.7. For each j ∈ J, g j is continuous on X×Y , and g j(x, · ,y−N′r) is quasi-concave
on YN′r .

Lemma 4.4. Under Assumptions 4.4-4.7, hs : X ⇒ Y is an upper semi-continuous correspon-
dence with nonempty compact values.

Proof. Given a fixed x ∈ X , Assumptions 4.4, 4.5, and 4.7 imply that the parametric followers’
normal form game G = 〈J, p̄,{Yj} j∈J,{g j(x, ·)} j∈J〉 satisfies the conditions of Theorem 4.1.
Then hs(x) 6= /0. Since Y is compact, it suffices to prove that Graph(hs) is closed. Suppose that
{(xn,yn)} is a sequence in X ×Y with (xn,yn) −→ (x,y) ∈ X ×Y and yn ∈ hs(xn). It needs to
show that y ∈ hs(x). If y /∈ hs(x), then there exists (N′r,S

′) ∈Ω′, zS′ ∈ YS′ and ε ′ > 0 such that

g j(x,zS′,wN′r−S′,y−N′r)−g j(x,yN′r ,y−N′r)> ε
′ > 0, ∀ j ∈ S′, ∀wN′r−S′ ∈ YN′r−S′i

.

From Assumption 4.5 and Assumption 4.7, we have

min
wN′r−S′∈YN′r−S′

[g j(x,zS′,wN′r−S′,y−N′r)−g j(x,yN′r ,y−N′r)]>
ε ′

2
> 0, ∀ j ∈ S′. (4.5)
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Then, (x,zS′,yN′r ,y−N′r)−→ min
wN′r−S′∈YN′r−S′

[g j(x,zS′,wN′r−S′,y−N′r)−g j(x,yN′r ,y−N′r)] is continuous.

Therefore, from (4.5), there exists n0 > 0 such that, when n > n0, it holds that, for each j ∈ S′,

min
wN′r−S′∈YN′r−S′

[g j(xn,zS′,wN′r−S′,yn
−N′r

)−g j(xn,yn
N′r
,yn
−N′r

)]> ε ′

2 > 0,

which contradicts yn ∈ hs(xn). �

Similar to Lemma 4.2, one can obtain the following result. For completeness, we give the
proof.

Lemma 4.5. Give a MLMF game Γ as (4.4). For each (Nr,S) ∈ Ω, let T (Nr,S) = {x̄ ∈ X | x̄
cannot be strongly hybrid-blocked by (Nr,S)}. Then, under Assumptions 4.4-4.7, T (Nr,S) is
closed in X.

Proof. It suffices to prove that T (Nr,S)c is open on X . Take an x̄ ∈ T (Nr,S)c. According the
notion of strong hybrid-blocking, there exists xS ∈ XS and ε > 0 such that

fi(xS,wNr−S, x̄−Nr , ȳ)− fi(x̄Nr , x̄−Nr , ȳ)> ε, ∀i ∈ S, ∀ȳ ∈ hs(x̄), ∀wNr−S ∈ XNr−S.

By Lemma 4.4, hs(x̄) is compact valued and upper semi-continuous. From Assumption 4.5 and
Assumption 4.6, we have

minȳ∈hs(x̄) min
i∈clS

min
wNr−S∈XNr−S

[ fi(xS,wNr−S, x̄−Nr , ȳ)− fi(x̄Nr , x̄−Nr , ȳ)]≥ ε >
ε

2
,

and

(x̄Nr , x̄−Nr)−→ min
ȳ∈hs(x̄)

min
i∈clS

min
wNr−S∈XNr−S

[ fi(xS,wNr−S, x̄−Nr , ȳ)− fi(x̄Nr , x̄−Nr , ȳ)]

is lower semi-continuous on X . Therefore, there exists an open neighborhood V (x̄) of x̄ in X
such that, for any x′ ∈V (x̄), it holds that

min
ȳ∈hs(x′)

min
i∈clS

min
wNr−S∈XNr−S

[ fi(xS,wNr−S,x′−Nr , ȳ)− fi(x′Nr ,x
′
−Nr , ȳ)]>

ε

2
.

That is, for any x′ ∈V (x̄),

fi(xS,wNr−S,x′−Nr , ȳ)− fi(x′Nr ,x
′
−Nr , ȳ)>

ε

2
,∀i ∈ S,∀ȳ ∈ hs(x′),∀wNr−S ∈ XNr−S.

Then, V (x̄)⊂ T (Nr,S)c. Hence, T (Nr,S) is closed on X . �

Using partially the methods in Lemma 4.3, we have the following lemma.

Lemma 4.6. Give a MLMF game Γ as (4.4). Under Assumptions 4.4-4.7, for any finite set

{(Nr,Sr,i)
n(r)
i=1 | Sr,i ⊆ Nr,∀i = 1, . . . ,n(r)}r0

r=1

of Ω, there exists x̄ ∈ X such that x̄ cannot be hybrid-blocked by (Nr,Sr,i), ∀r = 1, . . . ,r0, ∀i =
1, . . . ,n(r).

Proof. Without loss of generality, we assume that

Nr−
n(r)⋃
i=1

Sr,i 6= /0, I−
r0⋃

r=1

Nr 6= /0.
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Let

Sr,n(r)+1 = Nr−
n(r)⋃
i=1

Sr,i, ∀r = 1, . . . ,r0, Nr0+1 = I−
r0⋃

r=1

Nr, Sr0+1,1 = Nr0+1,

n̄(r) = n(r) + 1, and n̄(r0 + 1) = 1. Thus, we obtain a family {(Nr,Sr,i)
n̄(r)
i=1 | Sr,i ⊆ Nr, ∀i =

1, . . . , n̄(r)}r0+1
r=1 . For any r = 1, . . . ,r0, there must exist a family {Kr, j ⊆ Nr | j = 1, . . . ,m(r)}

such that

n̄(r)⋃
i=1

Sr,i =

m(r)⋃
j=1

Kr, j, Kr,a∩Kr,b = /0, ∀a 6= b.

Obviously, each Sr,i is a union of some sets Kr, j. Then, it holds that {Kr, j | j = 1, . . . ,m(r)}
is a partition of Nr for each r = 1, . . . ,r0. It will construct a finite-player normal form game
〈M, p̃,{Uq}q∈M,{ϕq}q∈M〉 with a partition p̃ of the set M of players and a correspondence H :
∏l∈M Ul ⇒ Y as follows.

(1) M = ∪r0
r=1{(r, j) | j = 1, . . . ,m(r)}; for convenience, let KM = ∪q∈MKq; then I −KM =

Nr0+1 6= /0; for each r ∈ {1, . . . ,r0} and B ⊆ {1, . . . ,m(r)}, let Kr,B = ∪l∈BKr,l , and (r,B) =
{(r, j) : j ∈ B};

(2) p̃ = {M1,M2, . . . ,Mr0}, Mr = {(r, j) | j = 1, . . . ,m(r)},∀r = 1, . . . ,r0; it is clear that M =
∪r0

r=1Mr;
(3) for any player q = (r, j(r)) ∈M, the strategy set of the player, Uq with Uq = ∏i∈Kq Xi, is a

nonempty convex compact subset of ∏i∈Kq R
mi;

(4) Y is the joint strategy set of followers of Γ with Y = ∏ j∈J Yj, a nonempty convex compact
subset of ∏ j∈J Rm j ;

(5) for each player q = (r, j(r)) ∈M, the payoff function ϕq : ∏l∈M Ul×Y (clearly, ∏l∈M Ul×
Y = XKM ×Y )−→ R is defined by

ϕq(u,y) = ft(q)(u,z
′
Nr0+1,y),∀u = (uM1,uM2, . . . ,uMr0

) ∈∏
l∈M

Ul, ∀y ∈ Y,

where t(q) is picked and fixed in Kq, and z′Nr0+1 is picked and fixed in XNr0+1 with XNr0+1 =

XI−KM . It is true that (u,z′Nr0+1) ∈ X = XI;
(6) the correspondence H : ∏l∈M Ul ⇒ Y is defined by

H(u) = hs(u,z′Nr0+1), ∀u = (uM1 ,uM2, . . . ,uMr0
) ∈∏

l∈M
Ul.

where hs is from Definition 4.2 and z′Nr0+1 is the same as that in (5).

It can be checked that ϕq is continuous on ∏l∈M Ul×Y and quasi-concave on UMr by Assump-
tion 4.6 (note that UMr = ∏l∈Mr Ul = ∏l∈Mr ∏i∈Kl

Xi = XNr). And H is upper semi-continuous
and has nonempty compact values by Lemma 4.4.

Obviously, the game 〈M, p̃,{Uq}q∈M,{ϕq}q∈M〉with Y and the correspondence H satisfies all
conditions of Corollary 3.1. Thus, there exists x̄∈∏l∈M Ul such that x̄ cannot be hybrid-blocked
by any Mr ∈ p̃ and any coalitions in Mr. That is, for any Mr ∈ p̃ and any B ⊆ {1, . . . ,m(r)},
there exists no z(r,B) ∈∏l∈(r,B)Ul , such that, for any q=(r, j)∈ (r,B), wMr−(r,B) ∈∏l∈Mr−(r,B)Ul ,
and y ∈ H(x̄), it holds that ϕq(z(r,B),wMr−(r,B), x̄−Mr ,y) > ϕq(x̄Mr , x̄−Mr ,y). Hence, for any r =



236 H.B. HAN, Q.Q. SONG, X.Y. CHI

1, . . . ,r0 and any B ⊆ {1, . . . ,m(r)}, there exists no z(r,B) ∈ ∏l∈(r,B)Ul such that, for any q =
(r, j(r)) ∈ (r,B), wMr−(r,B) ∈∏l∈Mr−(r,B)Ul , and y ∈ H(x̄), it is true that

ft(q)(z(r,B),wMr−(r,B), x̄M−Mr ,z
′
Nr0+1,y)> ft(q)(x̄Mr , x̄M−Mr ,z

′
Nr0+1,y).

It means that, for any r = 1, . . . ,r0, B⊆ {1, . . . ,m(r)}, and z(r,B) ∈∏l∈(r,B)Ul , there exist some
wMr−(r,B) ∈∏l∈Mr−(r,B)Ul , y ∈ hs(x̄,z′Nr0+1), and q = (r, j) ∈ (r,B), such that

ft(q)(z(r,B),wMr−(r,B), x̄M−Mr ,z
′
Nr0+1,y)≤ ft(q)(x̄Mr , x̄M−Mr ,z

′
Nr0+1,y). (4.6)

Since ∏l∈(r,B)Ul =∏l∈(r,B)∏i∈Kl
Xi =XKr,B , we can write z(r,B) ∈∏l∈(r,B)Ul as zKr,B ∈XKr,B . Note

that ∏l∈Mr−Kr,B Ul = XNr−Kr,B . Then, wMr−(r,B) ∈ ∏l∈Mr−(r,B)Ul will be written as wNr−Kr,B ∈
XNr−Kr,B . Since ∏l∈Mr Ul = XNr , it can be written x̄Mr ∈ ∏l∈Mr Ul as x̄Nr ∈ XNr for each r =
1,2, . . . ,r0. Therefore, (4.6) can be expressed as: for any r ∈ {1, . . . ,r0}, B ⊆ {1, . . . ,m(r)},
and zKr,B ∈ XKr,B , there exist some wNr−Kr,B ∈ XNr−Kr,B , y ∈ hs(x̄,z′Nr0+1), and q = (r, j) ∈ (r,B),

such that ft(q)(zKr,B,wNr−Kr,B , x̄I−Nr0+1−Nr ,z
′
Nr0+1

,y) ≤ ft(q)(x̄Nr , x̄I−Nr0+1−Nr ,z
′
Nr0+1

,y). Note that,
for any r = {1, . . . ,r0} and i∈ {1, . . . ,n(r)}, there exists B⊆ {1, . . . ,m(r)}, such that Sr,i = Kr,B.
Thus, for any zSr,i = zKr,B ∈ XSr,i = XKr,B with r ∈ {1, . . . ,r0} and i ∈ {1, . . . ,n(r)}, there exists
wNr−Sr,i ∈ XNr−Sr,i , y ∈ hs(x̄,z′Nr0+1), and q = (r, j) ∈ (r,B) with t(q) ∈ Kr, j ⊂ Sr,i, such that

ft(q)(zSr,i,wNr−Sr,i, x̄I−Nr0+1−Nr ,z
′
Nr0+1

,y)≤ ft(q)(x̄Nr , x̄I−Nr0+1−Nr ,z
′
Nr0+1

,y). (4.7)

Let x′−Nr
= (x̄I−Nr0+1−Nr ,z

′
Nr0+1

) ∈ X−Nr . Then, (4.7) is reduced to ft(q)(zSr,i,wNr−Sr,i,x
′
−Nr

,y) ≤
ft(q)(x̄Nr ,x

′
−Nr

,y), which implies that x̂ = (x̄,z′Nr0+1
) cannot be hybrid-blocked by (Nr,Sr,i) for

any r = {1, . . . ,r0} and i ∈ {1, . . . ,n(r)}. The proof is finished. �

Based on the above lemmas, we can establish the following existence theorem for weak
hybrid equilibria in MLMF games with infinitely many leaders and many followers.

Theorem 4.2. If a MLMF game Γ as (4.4) satisfies Assumptions 4.4-4.7, then the game has at
least a weak hybrid equilibrium.

Proof. The proof is divided into two steps.
Step 1. By Lemma 4.4, we know that, for any x ∈ X , hs(x) 6= /0. That is, for each strategy

profile x in X , there exists ȳ ∈ hs(x) such that, for any (N′r,S
′) ∈Ω′, there exists no yS′ ∈YS′ and

ε ′ > 0 for which g j(x,yS′,wN′r−S′, ȳ−N′r)−g j(x, ȳN′r , ȳ−N′r)> ε ′, ∀ j ∈ S′, ∀wN′r−S′ ∈ YN′r−S′.
Step 2. From Lemma 4.6 and Lemma 4.5, any finite members of {T (Nr,S) |(Nr,S)∈Ω} have

a nonempty intersection. Since X is compact, and T (Nr,S) is closed by Lemma 4.5, there exists
x̄ ∈ X such that x̄ ∈

⋂
(Nr,S)∈Ω T (Nr,S) That is, x̄ is a weak hybrid equilibrium of the MLMF

game Γ. �

Remark 4.2. For a MLMF game Γ as (4.4), if | p |=| p̄ |= 1, the existence of weak hybrid
equilibria of Γ is reduced to the existence of a weak α-core in the MLMF game Γ.

5. CONCLUDING REMARKS

Hybrid equilibria and weak hybrid equilibria were introduced for MLMF games. By con-
structing nonordered preferences for each player, the results of Yang and Yuan in [15] and
Lemma 3.1 were employed to prove the existence of hybrid equilibria of MLMF games. The-
orem 3.1 includes a hybrid equilibrium of a normal form game with partitions in Zhao [13]. If
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| p |=| p̄ |= 1, the existence of a hybrid equilibrium implies the existence of cooperative equilib-
ria in Yang and Ju [23]. If all partitions only have one player, a hybrid equilibrium in Theorem
3.1 can reduce to a noncooperative solution in [19] by Hu and Fukushima. For proposed weak
hybrid equilibria of MLMF games, the results in [15] cannot be directly used to prove their ex-
istence. In this paper, by proving the existence of weak hybrid equilibria of normal form games
with partitions in Theorem 4.1, and combing the existence of hybrid equilibria in Theorem 3.1,
the existence of weak hybrid equilibria for MLMF games was proved.
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