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Abstract. This paper focuses on the directional derivative and subdifferential of set-valued mappings
via nonlinear scalarizing functions. Firstly, we define the directional derivative and subdifferential of
set-valued mappings by using a generalized oriented distance function. Secondly, we systematically
investigated the operational rules, positive homogeneity, chain rule, and upper semicontinuity of the
directional derivative for set-valued mappings. Thirdly, we examine the convexity and weak™ closedness
of the subdifferential of set-valued mappings, as well as its relationship with the directional derivative.
Finally, the optimality conditions for set optimization problems are established by utilizing the introduced
subdifferential.
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1. INTRODUCTION

Scalarization methods play a pivotal role in both the theoretical analysis and solution ap-
proaches for set optimization problems. Among these methods, the Gerstewitz’s function and
oriented distance function are extensively utilized. Due to its superior mathematical properties,
the Gerstewitz’s function garnered significant attention, and numerous scholars conducted ex-
tensive and in-depth research based on this function; see, e.g., [7, 13, 16] and the references
therein. The generalized oriented distance function, introduction by Ha [4] in 2018, has gar-
nered significant attention due to its numerous advantageous mathematical properties. Recently,
ongoing research continues to uncover its potential characteristics. Han and Yu [10] investi-
gated the translation properties and triangular inequality properties of the generalized oriented
distance function, and, they, based on this function, proposed a weighted set order relation.
Das et al. [1] studied the existence and connectedness of /-minimal approximate solutions for
set-valued optimization problems by using the generalized oriented distance function. In 2021,
Han, Huang, and Wen [5] systematically investigated various properties of the generalized ori-
ented distance function, including but not limited to its calculation rules and subadditivity. They
further utilized this function to conduct an in-depth analysis of the Dini directional derivative
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of set-valued operators. In this paper, we establish the subadditivity of the generalized ori-
ented distance function. Compared to the approach presented in [5], our proof-process exhibits
generality. To the best of our knowledge, no prior research investigated the directional deriv-
ative of set-valued mappings by using the generalized oriented distance function. Therefore,
We introduce a novel directional derivative of set-valued mappings based on the generalized
oriented distance function proposed by Ha [4] and derived several key properties of the direc-
tional derivative of set-valued mappings, including its operation rules, positive homogeneity,
chain rule, and upper semicontinuity. In 2022, Han [6] conducted a systematic investigation
into the Clarke generalized directional derivative of set-valued mappings by using the Gerste-
witz’s function. Leveraging the operation rules and the positive homogeneity, Han established
optimality conditions for set optimization problems. Furthermore, Han highlighted in [6] that
further exploration of the Clarke generalized subdifferential for set-valued mappings holds sub-
stantial theoretical value. Han in [7] investigated directional derivatives and subdifferentials of
cone-convex set-valued mappings based on the Gerstewitz’s function. This study yielded sev-
eral interesting findings, which were subsequently applied to set optimization problems, further
perfecting the optimality conditions for set optimization problems. Inspired by the research
work of Han [7], we observe that the research on the subdifferential of set-valued mappings
based on the generalized oriented distance function remains relatively limited. In this paper, we
introduce the concept of the subdifferential of set-valued mappings grounded in the generalized
oriented distance function and derive convexity and weak™® closedness of the subdifferential of
set-valued mappings, as well as its relationship with the directional derivative of set-valued
mappings.

The structure of this paper is organized as follows. Section 2 reviews some properties of the
generalized oriented distance function and introduces the concepts of semicontinuity and cone-
convex set-valued mappings. In Section 3, we employ generalized oriented distance function to
examine the directional derivatives of set-valued mappings, thereby deriving several key prop-
erties. Section 4 provides an in-depth analysis of subdifferential based on generalized oriented
distance function. In Section 5, we investigate the optimality conditions for set optimization
problems. Finally, Section 6 ends this paper.

2. PRELIMINARIES

Let X and Y be real-normed linear spaces. K is called a cone in Y if Ax € K for all x € K
and A > 0. The cone K induces a partial order on Y as, forany x,y €Y, x g y<—=y—x € K.
Assume that Y* is the dual space of Y, and the dual cone K* of K is defined by K* = {y* €
Y : (y*,k) >0,V k € K}. Assume that K is a convex, pointed, and closed cone with nonempty
interior and Uy is an unit open ball, while Uy is a closed unit ball in Y. We denote the family
of nonempty subsets of ¥ by Py(Y). R” denotes the n dimensional Euclidean space. Let R", =
{xeR": x;>20,i=1,....n}.Let A,B€ Py(Y), € >0, and e € intK. We consider the following
set relations on Y, the weak lower relation “ < ” and the weak €-lower relation <é. x > which
are defined as (see [8, 19]): /

A<kB<+=BCA+intK, A<}y B<=BCA+intK +e¢e.

It is said that a nonempty set A C Y is K-proper if A+ K # Y, K-bounded if, for each neighbour-
hood O of zero in Y, there exists some positive number ¢ such that A CtO+ K, K-closed if A+ K
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is a closed set, and K-compact if, any cover of A of the form {Oq+K : a €1, Oy are open} ad-
mits a finite subcover. It was documented if A is K-compact, then A is K-bounded and K-closed
(see [20]).

Let ACY. A function Ay : Y — RU{+teo} defined by Au(y) := da(y) — dac(y), for all
y €7, is said to be an oriented distance function [21], where d4(y) := infseq || y —a || is the
distance function from y € Y to the set A. Let A, B be nonempty subsets of Y. Recall from [4]
that the generalized oriented distance function Dk : Py(Y) X Py(Y) — RU {+eo} is defined by
Dk (A,B) 1= supycginf,ca A_g(a—b). Let S be a nonempty convex subset of X. A set-valued
mapping F : X =2 Y is said to be K-convex [3] on S if, for any xj,x; € S and for any ¢ € [0, 1],
tF(x1)+ (1—1)F(x2) C F(tx; + (1 —t)x2) + K. It is clear that if F is K-convex on S, then F(x)
is K-convex for any x € §; see [7]. Recall from [3] that a set-valued mapping F' : X == Y is said
to be

(i) K-upper semicontinuous (K-u.s.c.) at xg € X if, for any neighborhood V of F(xp), there
exists a neighborhood U (xg) of x¢ such that, for every x € U(xg), F(x) CV +K.

(i) K-lower semicontinuous (K-I.s.c.) at xo € X if, for any y € F(x() and any neighborhood V
of y, there exists a neighborhood U (xg) of x¢ such that, for every x € U(xp), F (x)N(V —K) # 0.

We define F as (K-u.s.c.) and (K-l.s.c.) on § C X if it satisfies (K-u.s.c.) and (K-I.s.c.) at
each point x € S, respectively. We consider that F is K-continuous on S if it is both (K-u.s.c.)
and (K-l.s.c.) on S.

Finally, we present two essential lemmas.

Lemma 2.1. [10, 21] Let A C Y be nonempty and A # Y. Then the following assertions hold:

(i) Aa() is real-valued and 1-Lipschitzian.

(ii) If A is a closed convex cone, then /\_ 4 nondecreasing with respect to the ordering induced
by A, ie., ify;, y2 €Y andyy —y; €A, then A_p(y1) < A_a(y2)-

(iii) Ap(—y) = A_a(y) forally €Y.

(iv) If A'is a convex cone and intA # 0, then Na(y) = supy,cga+)(—Y", ) forally €Y, where
S(A%) = {y* € A* | |y*] =1},

Lemma 2.2. [10, 17] Let A,B € Py(Y). Then the following assertions hold:

(i)Ife € K, € €R, d_k(e) =dy\_g(—e) =1, A and B are K-proper and K-bounded, then
DK(A + 86,3) = DK(A,B) + €.

(ii) If A is K-proper, then Dg(A,A) = 0.

(iii) If B is K-compact and K is solid, then A %5( B < Dg(A,B) <O.

(iv) If A,B,C € Py(Y) is K-proper and K-compact, then Dk (A,B) < Dg(A,C) + Dk(C,B).

3. DIRECTIONAL DERIVATIVE OF SET-VALUED MAPPINGS

In this section, we investigate directional derivative of the generalized oriented distance func-
tion. Let S be a nonempty and convex subset of X and x € S. Recall that the directional derivative
of f at x in the direction p € X, denoted by f’(x; ), where f : X — R is a function, is defined
by f'(x; ) = lim,_,g+ JM Inspired by the results in [7, 11], we define the directional
derivative of the set-valued mapping under study by using the generalized oriented distance
function introduced by Ha [4].

Let F : X == Y be a set-valued mapping, S a nonempty and convex subset of x, and x € § and

u € X. The directional derivative of the generalized oriented distance function at x in direction
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U is defined by

Dk (F ), F
F’(x;u): lim k(Fxto), (x))
t—0t t
Remark 3.1. It should be noted that if the limit exists, then the directional derivative F’'(-,-) is
a generalized real-valued function. Furthermore, it is evident that the directional derivative of

the set-valued mapping introduced in this paper differs from the definition presented in [2, 4,
11, 15].

Lemma 3.1. [18] Let A, B € Py(Y). If A is K-proper and B is K-bounded, then Dg(A,B) € R.

Remark 3.2. Assume that F(y) is nonempty and K-bounded for any y € S. For each x € S, there
exists a function &, : S — R such that the directional derivative &/ (x;-) coincides with F'(x;").

We define the function &, : § — RU {—o0, 4o} by &(y) = Dg(F(y),F(x)) for all y in S. It
follows from Lemma 3.1 that —oo < &(y) < oo for any y € S. In view of Lemma 2.2 (ii), we
have Dk (F (x),F(x)) = 0. Then, for any u € X,

) — tim S )~ &)

t—0t t

_ i De(F (et 1), F(x)) = Dk (F (x), F (x))
t—0t t

i PP 1), ()
t—0t t

=F'(x;p).

It is worth noting that &/(z; i) = F’(x; i) is only true when z = x.
We present the following example to demonstrate the calculation of the directional derivative
F'(--).
Example 3.1. Let Y = R?, K =R%, X =R, * € K*, and S(K*) := {7 € K* | ||| = 1}.
Clearly, K* = ]R%r, X* =R" and S(K*) is the set of points on the circumference of a quarter of
the unit circle. The set valued mapping F : X = Y is defined by F(x) = co{(|x,|x|), (x*,x*)}
for all x in X. Clearly, F(—x) = F(x). According to Lemma 2.1 (iii) and (iv), one has
A gla—b)=Ag(b—a)= sup (=y,b—a)= sup (y",a—b).
y*eS(K¥) y*eS(K)
Let x = 0. For any u € X and a sufficiently small 7, we can obtain X+t € domF = R. It is easy
to obtain F (%) = F (0) = c0{(0,0),(0,0)} and F (¥ +1u) = F (tpt) = co{(jru|, |t ), (21,7 pu?)},
SO
Dg(F(x+tu),F(x))= sup inf A_g(a—>b)
beF (x) 4€F (x+1p)
= sup inf sup (¥,a—Db)
beF (x) a€F (x+t) eS(K*)

) a—>b
= sup inf (————,a—D)
beF (x)aF (x+1p) a0

_ (epl, rpe]) — (0,0) B
= al ) =, 0y #-r1t) = (0.00)

= V2|tul.
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fltu\

Letting = 1, we obtain F'(0;1) = lim,_,+ = /2. Therefore, the directional derivative

of F at ¥ = 0 in the direction 4 =1 is V2.
Lemma 3.2. [18] Let A,B € Py(Y) and r > 0. Then Dx(A,B) < r< B C cl(rUp+A+K).

Remark 3.3. If Uj is a closed set, then the same conclusion holds, Dk (A, B) < r< B C cl(rUy +
A+K).

Theorem 3.1. Let x,u € X, and let F(-) be K-convex on X with nonempty K-compact values.
Then, for any t,r € Rwith0 <t <r DK(F(XHM)’F(X)) < DxlEbctri) Fx)

r

Proof. Lett,r € R with 0 <t <r. Since F(-) is K-convex on X, one has
r—t t
TF(x)+;F(x—l—r/.L) CF(x+tu)+K. (3.1)

Since F(x+ ru) and F(x) are nonempty, K-proper and K-bounded, we obtain from Lemma 3.1
that —eo < Dg(F(x+ru),F(x)) < 4oo. Let ) := Dg(F(x+ru),F(x)). By Remark 3.3, we
have F(x) C cl (nUp+ F (x+rp) +K) . For any y € F(x), there exist sequences

DYy Enlo, {#"y CFatr), (K"} CK, foralln e,

such that ) . .

For each n, by equation (3.1), there exist z,(n) € F(x+1tu) and k" ek satisfying
L+ k) + 2 =2 4, forallne N, (3.3)
Thanks to (3.2) and (3.3), we obtain
y= r—_ty+ y= hm (zt( )+ y%)+k( )+;k(()")> €cl <F(x+tu)+t7nUo+K> .
By the arbitrariness of y, one has
F(x) Ccl < nUo—I-F (x+1u) +K)
which together with Remark 3.3 implies that D (F (x+1u),F (x)) < tn = LDg(F (x+ru), F (x)),
N Di(F(x-+12), F()) _ Di(F(x+r), F(x))

! h r
This completes the proof. U

Let F : X = Y be a nonempty set-valued mapping and S; and S, be two nonempty subsets of
X. We define 7: S; x S, = RU{+£e} by

t(A, 1) =Dg(F(A),F() = sup inf A_x(a—b), ¥ (A,u)€ Sy xS
beF (i) 4€F(3)

From [17, Proposition 3.6], we can draw the following corollary.

Corollary 3.1. If uy € Sy and F(+) is K-compact and K-convex, then T(-, o) is a convex func-
tion.

Based on the convexity of the 7(-, i), we can establish the following theorem.
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Theorem 3.2. Let x, 0 € X, and let F(-) be K-convex on X with nonempty K-compact values.
Then, for any 6, > 0,
Dg(F(x),F(x—pu)) _ D(F(x+6p),F(x))
B - 6 '

Proof. Let 8, > 0.Then

v g Bu) 5 s 64
We define the function 1) : S — R by, for all y in S, 71(y) = Dg(F(y),F(x— Bu)). It follows
from Lemma 3.1 that —eo < 7y (y) < +oo for any y € S. By Lemma 2.2 (ii), we have Dk (F (x —
Bu),F(x—pBu)) =0, so 71(x—Pu) =0. It follows from Corollary 3.1 that 7; is a convex
function on S. Combining this with (3.4) and 7 (x — Bu) = 0, we obtain
Dx(F(x),F(x—Bu)) ) —tx—Bu) Tls2p—Bu)+ %(H 5u))

p B P
_ 52T —Bu) + 5T+ O1) (vt Sp)
S B - 8+B

Further, we can also obtain
T] (x) < T] (X-l- 3[1) -7 (x)

B S 5 (3.5)
Thanks to Lemma 2.2 (iv), we have
Ti(x+6u) — 71 (x) = Dg(F(x+ ), F(x — Bu)) — Dg (F (x), F(x— B)) 3.6)
< Di(F(x+81),F(x)). |
We can derive the desired conclusion based on Inequalities (3.5) and (3.6) immediately. ]

Based on the above theorem, we derive the operational rule of the directional derivative of
set-valued mappings.

Theorem 3.3. Assume that F(-) is K-convex on X with nonempty K-compact values. If the
directional derivative F'(x; L) exists, for any positive number § > 0, then
Dk (F tu),F
F/(x;[l): lnf K( (x+ AI'L)7 ('x)).
0<t<o t

Proof. Together with Theorems 3.1 and 3.2, we have
Dg(F(x),F(x—pu)) _ Dx(F(x+11),F(x))
B h t

D (F(x+1pt),F(x))

, Vte(0,6],

which indicates that inf - exists and
0<r<6
D(F (), F(x—Bp)) _ . Dy(F(x+1) F(x))
ﬁ h 0<t<0o t '
Let 70 = inf 5 Dk (F(Htm LEW) For any € > 0, there exists 7 € (0, 8] such that
0<t<

Dk (F(x+1n),F(x))

F <T+E.
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Then, for any 7 € (0,7), we conclude from Theorem 3.1 that

THh—E<T< Di(F(x+tp),F(x)) < Di(F(x+1iu),F(x))
: ;

< T +E.

Hence, we have
Dg(F tu), F
Fl(xp) = fim 2KECH)FO)
t—07t t 0<t<é t

The proof is completed.

In addition to the operational properties of the directional derivative of set-valued mappings,
we can also establish its positive homogeneity.

Theorem 3.4. Let x,1t € X, and let F(-) be K-convex on X with nonempty and K-compact
values. Then the following assertions hold:

(i) F'(x;0) = 0.

(ii) F'(x;Ap) = AF (x; 1) for all A > 0.
Proof. (i) If u =0, then F(x+tu) = F(x). It follows from Lemma 2.2 (ii) that Dg(F (x +
tu),F(x)) =0. Thus, F'(x;0) = 0.

(ii) For A = 0, it is obvious from (i). For A > 0, we have
Di(F(x+1A1),F(x)) Di(F(x+1Au),F(x))

F'(x;Au) = 1i =2 li = AF (x;p0).
. t BT A k)
The proof is completed. 0J

Subsequently, we investigate the subadditivity property of the generalized oriented distance
function. Compared with the method presented in [5], our method is more intuitive.

Theorem 3.5. Assume that A,B,C and D are nonempty and K-bounded. Then, Dg(A+C,B +

Proof. Let o« = Dk(A,B) and B = Dg(C,D). For any € > 0, it is clear that Dx(A,B) < o+ &€
and Dg(C,D) < B + €. Thanks to Lemma 3.2, we have B C cl((a+€)Up+A+K) and D C
cl((B+¢€)Uyp+C+K). Then, B+D C cl((oc+ B +2€)Up+A+C+ K). Combining this with
Lemma 3.2, we find Dg(A+C,B+ D) < a+ 3 +2¢. By the arbitrariness of € > 0, we obtain
Dk(A+C,B+D) < oo+ 3 = Dx(A,B) + Dk(C,D). This completes the proof. O

Furthermore, based on the above subadditivity, we can derive the chain rule for directional
derivatives of set-valued mappings.

Theorem 3.6. Let x, it € X, and let F\(+), F>() be K-convex and K-compact on X with nonempty
values. Then (F1 + F>) (x; 1) < F{(x; 1) + Fy (x; ).

Proof. Note that (F] + F>)(x) = Fi(x) + F>(x) for any x € X. From Theorem 3.3, for any é > 0,
we obtain Du(F. F
F/(x;u) = inf k(Filxt14), l(x», i=1,2.

0<r<o t
Thus, for any € > 0, there exists #; € (0, 8] such that

Dk (Fi(x+15ip), Fi(x))
I

<F/(ou)+e, i=1.2. 3.7)
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Let 7 = min{¢1,#,} > 0. It follows from Theorem 3.1 and inequality (3.7) that

D(Filx+1u), Fi(x))  Dr(Filx+ 1), Fi(x))

- p <F/(x;u)+e, i=1,2. (3.8)
i

Furthermore, according to Theorem 3.5, one has
Dk (Fi(x+71u)+ F(x+iu),Fi(x) + F(x)) < Dx(Fi(x+7u), F(x))
+ D (F(x+1ip), Fa(x)).
In view of Theorem 3.3, (3.7), (3.8), and (3.9), we have

(F+P) (xu) = int Di (F(x+1tu) +F2();+ ti), Fi (x) + Fs (x))
<I<

< Dk (Fi(x+Tu) + F(x+Tu), Fi (x) + F(x))

(3.9

f
_ Dk(Fi(r+ 7). Fy () + Di (P +F10), ()

h i
< F](x; 1) + Fy (o, 1) +2€.

By the arbitrariness of € > 0, we see that (F} + F) (x; ) < F{(x; 1) + F; (x; u). The proof is
completed. 0

The following corollary establishes the continuity of the generalized oriented distance func-
tion.

Corollary 3.2. [14] Let F : X =2 Y be a nonempty set-valued mapping. If F (-) is K-continuous
and K-compact values, then t(-,-) is continuous on Sy X S».

On account of the continuity of the generalized oriented distance function, it can be deduced
that the directional derivative exhibits upper semicontinuity.

Theorem 3.7. Let S C X be a nonempty and convex set with nonempty interior and F(-) be
K-convex on X with nonempty and K-compact values. Then, F'(-;-) is an upper semicontinuous
function on § x X.

Proof. Let {(xp, )} C intS x X with (x,,, 4,) — (x0, o) € intS x X. It suffices to show that
limsup F/ (x, tn) < F'(x0, lo). Suppose that limsup F” (x,,, ) > F’(xq, lo). Then, there exists

n—eo n—soo

0 € R such that
limsup F’ (xp, ) > 8 > F' (x0, Lo) (3.10)

n—yeo
Due to xo € intS, there exists a neighborhood O of 0 € X such that xo + O C S. In view of
(X, tn) — (X0, Ho), we can find & > 0 and ng € N such that

Vn>ny:x,+ou, €xo+0CS. 3.11)

Note that uy € X, there exists 11 > 0 such that xo +n o € S. It follows from (3.10) and Theorem
3.3 that F'(xo; 1) = info</<p DK(F(HZ“)’F(X)) < 8. Then, there exists 7y € (0,7n] such that

D (F (xo +topMo), F (x0))
Io

< 6. (3.12)
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Let B := min{zp, ¢} > 0. In view of (3.11), we have
Vn>=ny:x,+BU, €Exo+0CS. (3.13)
Thanks to (3.12) and Theorem 3.1, we have
D (F(xo + Bio), F(x0)) _ D (F(xo+toko), F(x0))
B h 1o
Due to x, + B, — xo + B Lo, xn» — xo and Corollary 3.2, we have
D (F (xn + Btin), F ()  Dx(F(x0 + B o), F (x0))

p B
This together with (3.13), (3.14), and Theorem 3.3 implies that

D (F (X + 1), F (xn)) _ Dk (F (%0 + Bln), F(xn))

< 6. (3.14)

F'(x,;1,) = inf < <34.
( " ,LLn) 0<t<p t ﬁ
for n large enough. This means that limsup,,_.., F'(x,, ;) < &, which contradicts (3.10). This
completes the proof. (]

4. SUBDIFFERENTIAL OF SET-VALUED MAPPINGS

In this section, we provide a rigorous characterization of the subdifferential of set-valued
mappings with respect to the generalized oriented distance function. Assume that f : X — R
is a real valued function. The Clarke generalized directional derivative is a classical directional

derivative, and it is expressed as f°(x; ) = limsup y—x JM The generalized subdif-
ot

—
ferential of f at x, denoted by dyf(x), is the subset of the dual space X* defined as follows:

oo f(x)={"eX™: flap) = (0, Y eX}.
Inspired by the work in [7, 6], we provide the formal definition of the subdifferential of
set-valued mappings for the generalized oriented distance function.

Definition 4.1. Let S be a nonempty and convex subset of X and F : X = Y be a set valued
mapping. Assume that § C domF and x € S. The subdifferential of the generalized oriented
distance function at x on S, denoted by dsF'(x), is the subset of the dual space X* defined as
OsF (x) ={y* € X* : Dg(F(z),F(x)) > (y*,z—x),Vz € S}.

In the following, we present several fundamental characteristics of subdifferential of the gen-
eralized oriented distance function.

Theorem 4.1. Let S be a nonempty and convex subset of X and F : X = Y be a set valued
mapping. Assume that S C domF and x € S. The following assertions hold:

(i) If D C S, then dsF (x) C dpF (x).

(ii) dsF (x) is convex.

(iii) dsF (x) is weak* closed

Proof. (i) Let y* € dsF (x). According to Definition 4.1, we have Dk (F(z),F(x)) > (y*,z—x)
forany z € S. Since D C S, any point in D is also in S. Therefore, for any z € D, Dk (F (z),F(x)) >
O,z —x).

(i) Let y* = Ay] + (1 — A)y3, where y], y; € dsF(x) and A € [0,1]. It suffices to show that
Dk (F(z),F(x)) > (y*,z—x) forall z € S. Due to y* = Ay} + (1 — 1 )y;, we obtain (7*,z —x) =
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Ay +(1=A)y5,z2—x) = Ay}, z2—x) + (1 —A)(y5,z—x). Because of y}, y5 € dsF(x), we can
obtain D (F(z),F(x)) > (y],z—x) and D (F(z),F(x)) > (y5,z—x) for all z € S. Further, we
obtain
ADg(F(z),F(x)) = A{y],z—x) (4.1)
and
(1—A)Dk(F(z),F(x)) = (1—-A)(1,2—x). 4.2)
By adding (4.1) and (4.2), we can obtain Dg (F(z),F(x)) > A(y],z—x)+ (1 —A)(y],z—x) =
<)_}* )< x> .
(iii) There exists a sequence y; € dsF(x) such that y} weak® converges to y*. According
to the properties of weak™ convergence, for any x,z € S, one has (y;,z—x) — (y*,z—x), so
Dk(F(z),F(x)) = (y;,z—x). Taking the limit of the aforementioned expression yields

DK(F(Z),F(X)) > r}gl;lo<yltaz_x> = (y*,z—x>.
This completes the proof. ]

Subsequently, we provide an illustrative example to elucidate the concept of the subdifferen-
tial of the generalized oriented distance function.

Example 4.1. Let ¥ =R?, K =R2, X = [0,2], 7* € K*, and S(K*) := {7* € K* | ||*|| = 1}.
Clearly, K* = Ri, X* =R", and S(K*) is the set of points on the circumference of a quarter of
the unit circle. The set valued mapping F : X =2 Y is defined by F(x) = (x,x+ 1)+ U for all
xin X, where U = {(x1,x) € R?: 0 < x; < 1,0 <x < 1}. According to Lemma 2.1 (iii) and
(iv), one has

A_gla—b)=NAg(b—a)= sup (—y".b—a)= sup (y",a—b).
Y*ES(K*) y*EeS(K¥)

Let S =X and x € S. For any z € S, we obtain

Dk (F(z),F(x))= sup inf A_g(a—D>)
beF (x) a€F (2)
= sup inf sup (7",a—D)
beF (x) 4€F (2) S (K*)
a—b

= e
_(OD=GD o) (349 = 3v2.
[OD B

Because 3v2 > (y*,z—x) is satisfied for any z — x € [—2,2],we can see that 0 < y* < % for
any y* € dgF (x). Then, it is easy to obtain that dsF (x) = [0, 37\5]

The following theorem elucidates the intrinsic relationship between the directional derivative
and the subdifferential of set-valued mappings.

Theorem 4.2. Let S C X be a nonempty and convex set with nonempty interior and F(-) be K-
convex on X with nonempty and K-compact values. Then, y* € dsF (x) if and only if F'(x; 1) >

(", ) for any u € X.
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Proof. Let y* € dsF(x). Then, Dk (F(z),F(x)) > (y*,z—x) for all z in S. There exists § > 0
such that x4+t € S for all # € (0, §]. Consequently, it follows that

C
Dg(F(x+1u),F(x)) = (y', x+1u—x) =1(y", u), Vi € (0,8],
SO DK(F(H:I“)’F(X)) > (y*,u) for all ¢ in (0, 8]. Theorem 3.3 yields

F/<X"LL) — inf DK(F(X+I[.L),F(X))
’ 0<t<o t

> (", u).

Conversely, suppose that F/(x; i) > (y*,u) for all u € X. For any z € S, let 4 = z— x. It then

follows from Theorems 3.1 and 3.3 that

Dk (F(x+1tu),F

DK(F(Z)aF(x)):DK(F(X—l—‘LL),F(x))2 K( ()C t'u) ()C))
> inf PKEEt),FE)

0<r<1 t

F'(xp) > (v",2—x).
This completes the proof. 0

Theorem 4.3. Let x € S and U, be a convex neighborhood of x such that U, C S. Let S C X be
a nonempty and convex set with nonempty interior and F(-) be K-convex on X with nonempty
and K-compact values. Then, dsF (x) = dy F (x).

Proof. By Uy C S and Theorem 4.1 (i), we obtain that dsF (x) C dy F(x). All we need to do is
to prove that dy F (x) C dsF (x) holds. Letting y* € dy F(x), one has

Dg(F(z2),F(x)) > (¥,2—x),¥ z € Ur. (4.3)

Due to the convexity of Uy, there exists A € [0, 1] such that (1 —A)x+ Ay € U, holds for any
y € §. From inequality (4.3) we have

Dg(F((1=A)x+Ay),F(x)) 2 (7",(1 = A)x+Ay—x) = A",y — x). (4.4)
Thanks to (4.4) and Theorem 3.1, we have

Di(FW). Fl) > PREUZAREAD L) o e

This means that §* € dsF (x). This completes the proof. O

5. APPLICATIONS TO SET OPTIMIZATION PROBLEMS

In this section, we leverage the results established in the preceding sections to derive neces-
sary and sufficient optimality conditions for set optimization problems. We consistently assume
that F possesses a directional derivative F'(x; i) at x € S in the direction € X. Moreover, the
solution set of the optimization problem is nonempty. Let F : X = Y be a set-valued mapping
and S be a nonempty subset in X. We consider the following set optimization problems (SOP):

min  F(x)

(SOF) {s.t. x€ES.

In the following, we review the concept of the solutions for the problem (SOP) with regard
to the set order relation “<l ” and “41,(”.
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Definition 5.1. [8] For € > 0, an element x( € S is said to be
(i) weak [-minimal solution of (SOP) if, for x € S, F (x) <k F(xo) implies F (xg) <k F(x).
(ii) weak /-minimal approximate solution of (SOP) if, for x € S, F(x) 42’1{ F(xp) implies

F(x0) <¢  F(x).

W (F,S) and W;(g,F,S) are defined as the weak /-minimal solution set and weak /-minimal
approximate solution set of (SOP), respectively.

Lemma 5.1. [9, 12] Assume that xo € S and F (xg) is K-compact.

(i) x0 € W,(F,S) if and only if there does not exist y € S satisfying F (y) <% F(xo).

(ii) If € > 0, then xo € W(€,F,S) if and only if there does not exist'y € S satisfying F(y) %é’K
F(xo).

In the following, we present the optimality conditions for the set optimization problem.

Theorem 5.1. Assume that S is convex and F () is K-convex on S with nonempty and K-compact
values. Then xy € W;(F,S) if and only if 0 € dsF (x).

Proof. Let xo € W;(F,S). It follows from Lemma 5.1 that F(y) AL F(%) for any y € S. By
considering the converse of statement (iii) in Lemma 2.2, we can infer Dg (F(z),F (xp)) > 0 =
(0,z— xq) for all zin S. This means that 0 € dgF (x).

Conversely, due to the existence of 0 € dsF (xg), we have Dg(F(z),F (xp)) = 0= (0,z—xo)
for all zin S. In view of Lemma 2.2 (iii) and Lemma 5.1, we have xo € W;(F,S). This completes
the proof. 0

Theorem 5.2. Let S C X be a nonempty and convex set and xy € S. Suppose that F(-) is K-
convex on S with nonempty and K -compact values. Then xo € W;(F,S) if and only if F' (xp; L) =
Oforallpe{ueX:3t>0,xo+tu €5}.

Proof. Let xg € Wi(F,S). It follows from Lemma 5.1 that F(y) A% F(xo) for any y € S. By
considering the converse of statement (iii) in Lemma 2.2, we can deduce that Dg (F (y), F (xo)) >
0.Sincepe{ueX:3t>0,xo+ru €S}, then Dg(F(xo+1tu),F(xp)) > 0, which implies
that
Dg(F tu),F
i 2K E (o +10), F (x0))

t—0t t

= 0.

i.e., F'(xo; i) = 0. Conversely, due to the presence of F’'(xp; i) > 0, one has

Dk (F tu),F
P i) — i DRG0 1). F0) o
1—0t t
Thus, Dg(F (xo+tu),F(xp)) = 0. Putting y = xo +tu, we obtain D (F(y),F(xp)) = 0. By
considering the converse of statement (iii) in Lemma 2.2 and Lemma 5.1 we can infer that

xo € W(F,S). This completes the proof. O

Remark 5.1. We aimed to investigate whether weak /-minimal approximate solution set of
(SOP) defined in Definition 5.1 (ii) can yield similar results by using Lemma 2.2 (iii). Regret-
tably, this investigation is only meaningful under condition € = 0, which effectively returns us
to the context of Theorem 5.2.
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6. CONCLUSIONS

In this paper, We defined the directional derivative and subdifferential by using the general-
ized oriented distance function and derived several key properties of the directional derivative
of set-valued mappings, including its operation rules, positive homogeneity, chain rule, and up-
per semicontinuity. Additionally, we investigated the convexity and weak™ closedness of the
subdifferential of set-valued mappings, as well as its relationship with the directional derivative
of set-valued mappings. As an application, we derived the necessary and sufficient optimality
conditions for set optimization problems. However, the conditions under which the directional
derivative exists have not yet been fully explored, and this will be a key focus of our future
research.
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