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WITH DOUBLE INERTIAL EFFECTS FOR SOLVING NON-MONOTONE
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Abstract. In this paper, we investigate inclusion problems involving operators that may not be mono-
tone in the classical sense. Specifically, we consider a generalized notion of monotonicity, allowing the
modulus of monotonicity to take negative values. This broader assumption extends the applicability of
our results to a wider class of operators. To address these non-monotone inclusion problems, we employ
the two-step inertial forward–reflected–anchored–backward splitting algorithm proposed in [I. Chinedu,
A. Maggie, O.A. Kazeem, Two-step inertial forward–reflected–anchored–backward splitting algorithm
for solving monotone inclusion problems, Comput. Appl. Math. 42 (2023), 351] and establish the
strong convergence of the generated sequence. Our findings relaxed the assumptions on the operators.
We demonstrate the applicability of our approach to various optimization settings, including constrained
optimization problems, mixed variational inequalities, and variational inequalities. Finally, we provide a
numerical example to illustrate the practical effectiveness of the proposed algorithm.
Keywords. Forward-reflected-anchored-backward algorithm; Monotone inclusion, Two-step inertial.
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1. INTRODUCTION

Let H be a real Hilbert space with the inner product denoted by 〈·, ·〉 and the norm denoted
by ‖ · ‖. In this paper, we study the following inclusion problem: Find u∗ ∈ K such that

0 ∈ F(u∗)+G(u∗) (1.1)

where F : H −→ 2H is a set-valued mapping and G : H −→ H is a single-valued mapping, K is
a nonempty closed subset of H. We denote by zer (F +G) the set of solutions of problem (1.1).

Problem (1.1) serves as a broad mathematical model that encompasses numerous known
problems, including constrained optimization problems (COPs), variational inequalities prob-
lems (VIPs), mixed variational inequalities (MVIs), saddle point problems, Nash equilibrium
problems in noncooperative games, and fixed point problems. Many of these can be reformu-
lated as special cases of (1.1); see, for instance, [6, 8, 26] and the references therein. For exam-
ple, we consider a variational inequality problem of finding u∗ ∈K such that 〈T (u∗),u−u∗〉≥ 0,
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for all u∈K, where K is a nonempty, closed, convex subset of H and T : H −→H. This problem
can be rewritten as the inclusion problem 0 ∈ F(u), where

F(x) =

{
T (u)+NK(u) if u ∈ K
/0 if u 6= K,

with NK(u) the normal cone to K at u.
In addition, a constrained minimization problem can also be formulated as an inclusion prob-

lem. Indeed, given a proper and convex function g : H −→ (−∞,+∞] and K, a nonempty,
convex, and closed subset of H, u∗ ∈ K is a solution to the constrained optimization problem
(COP): minu∈K g(u) if and only if it is a solution to the inclusion problem 0 ∈ ∂g(u)+NK(u),
(see, e.g., [3, 21]). Recently, numerous numerical methods were developed to solve the inclu-
sion problems of the form (1.1); see, e.g., [11, 12, 18, 20, 27]. The forward-backward splitting
method, introduced in seminal works by Passty [19] and Lions and Mercier [15], has become
a standard approach for such problems [1, 3, 9, 16, 24]. Lions and Mercier [15] obtained the
weak convergence of the following forward-backward splitting method

uk+1 = (id + γF)−1(uk− γGuk), k ≥ 1,

which was also proved to strongly convergent under restrictive assumptions [23, 29].
To address these limitations, Tseng [24] introduced an improved algorithm in 2000{

vk = (id + γF)−1(uk− γBuk),

uk+1 = vk− γGvk + γGuk.

However, this method incurs additional computational costs due to requiring two forward eval-
uations of G. To overcome this disadvantage, Malitsky and Tam [16] employed a reflection
technique and proposed the following scheme

uk+1 = (id + γF)−1(uk−2γGuk + γGuk−1), γ ∈
(

0,
1

2L

)
.

Originating from the discretization of the heavy ball method, the inertial technique has be-
come popular in algorithm design due to its role in accelerating convergence. For example,
Tan and Cho [25] introduced the following one-step inertial viscosity-type forward-backward-
forward splitting algorithm: 

tk = uk +θk(uk−uk−1)

vk = (id + γF)−1(tk− γGtk),
wk = vk− γGvk + γGuk,

uk+1 = αk f uk +(1−αk)wk.

They obtain the strong convergence of the algorithm in Hilbert spaces.
More recently, two-step inertial method were also successfully incorporated into various al-

gorithms [7, 13], demonstrating significant improvements in convergence rates [13]. In addi-
tion, classical assumptions of monotonicity in inclusion problems have been deeply ingrained
[4, 5, 28]. Relaxing these conditions is challenging since fundamental results may no longer
hold. For instance, if (G+F) lacks strong monotonicity, the inclusion 0 ∈ (G+F)(x) may
have no solution. Consequently, the number of algorithms for non-monotone inclusion prob-
lems is very limited. Moreover, the monotonicity assumption may restrict the applicability of
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the results, as operators in real-world applications are often not monotone. Hence, reducing this
assumption is a crucial aspect of developing algorithms for these inclusion problems, which
serves as the motivation for this research.

In this paper, we extend the concept of monotonicity by allowing a generalized monotonicity
framework, where operators may have a negative modulus of monotonicity. This broader per-
spective enables the study of a wider class of operators beyond the traditional monotone setting.
The remainder of the paper is structured as follows. Section 2 revisits fundamental definitions
and concepts, and presents several technical lemmas. Specifically, we provide some characteri-
zations for an operator to be maximal generalized monotone and for the sum of two generalized
monotone operators to be maximal. Section 3 presents the main results, including an analysis of
the strong convergence of the two-step inertial forward-reflected-anchored-backward (FRAB)
splitting algorithm. Section 4 discusses some applications of the algorithm to COPs, MVIs, and
VIPs. Section 5 presents a numerical example illustrating the effectiveness of the algorithm.
Section 6 concludes this paper with some concluding remarks.

2. PRELIMINARIES

In this section, we review essential definitions that are useful in the subsequent discussion.

2.1. Some notions on convex analysis. Let f : H→ (−∞,+∞] be a convex and lower semicon-
tinuous (l.s.c.) function. Its domain is defined as dom f = {x∈H : f (x)<+∞}, and f is said to
be proper if dom f 6= /0. A proper, convex, and lower semicontinuous function f : H→ (−∞,+∞]
is said to be subdifferentiable at u if its subdifferential at u, given by

∂ f (u) = {w ∈ H : f (v)− f (u)≥ 〈w,v−u〉 ∀v ∈ H}

is non-empty. Any w ∈ ∂ f (u) is called a subgradient of f at u.
For a nonempty, closed, convex subset K of H, the normal cone at u ∈ K, NK(u), is defined

as NK(u) =
{

w ∈ H : 〈w,u− v〉 ≥ 0,∀v ∈ K
}
, and NK(u) = /0 if u 6∈ K. Recall that the indicator

function of K,

iK(u) =

{
0 if u ∈ K
+∞ otherwise

satisfies ∂ iK(u) = NK(u) for all u ∈ H. A fundamental tool in inclusion problems is the metric
projection, defined by, for any u ∈ H, PK(u) = argmin

{
‖v−u‖ : v ∈ K

}
. Note that when K is

nonempty, closed, and convex, PK(u) exists and is unique.
We now review some useful identities, which are needed for the convergence analysis in the

sequel.

Lemma 2.1. [7] Let x,y,z ∈ H and a,b,β ∈ R. Then
(a)

‖(1+a)x− (a−b)y−bz‖2 = (1+a)‖x‖2− (a−b)‖y‖2−b‖z‖2 +(1+a)(a−b)‖x− y‖2

+b(1+a)‖x− z‖2−b(a−b)‖y− z‖2.
(2.1)

(b)

〈x− z,y− x〉= 1
2
‖z− y‖2− 1

2
‖x− z‖2− 1

2
‖y− x‖2. (2.2)
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(c)

‖βx+(1−β )y‖2 = β‖x‖2 +(1−β )‖y‖2−β (1−β )‖x− y‖2.

The following lemmas are also essential.

Lemma 2.2. [22] Let {sk} be a sequence with sk ≥ 0 for all k, {λk} be a real sequence with
λk ∈ (0,1) for all k such that ∑

∞
k=1 λk = ∞, and {ak} be a real sequence satisfying sk+1 ≤

(1−λk)sk +λkak, for all k ≥ 1. Assume further that limsupi→∞ aki ≤ 0 for each subsequence
{aki} of {ak} satisfying liminfi→∞(aki+1−aki)≥ 0. Then limk→∞ ak = 0.

Lemma 2.3. [17] Let {sk} and {ak} be two nonnegative real sequences, {λk} be a sequence
in (0,1), and {bk} be a real sequence such that sk+1 ≤ (1− λk)sk + ak + bk, for all k ≥ 1,
∑

∞
k=1 bk < ∞, and ak ≤ λkC for some C ≥ 0. Then {ak} is bounded.

2.2. Monotone operators. In this subsection, we review some notions related to operators,
especially the definition of monotonicity. Let F : H −→ 2H be a set-valued mapping on H. The
graph of F is defined as gr(F) = {(x,u) ∈ H ×H : u ∈ F(x)}. The domain and range of F
are given by dom F = {u ∈ H : F(u) 6= /0} and ran F = {y ∈ H : there exists x ∈ H,y ∈ F(x)}.
We now recall the notion of generalized monotonicity, which extends classical monotonicity by
allowing the modulus to be negative. This weaker condition enables the study of a broader class
of operators.

Definition 2.1. [10] An operator F : H −→ 2H is said to be µF -monotone if there exists µF ∈R
such that 〈x− y,u− v〉 ≥ µF‖x− y‖2 for all x,y ∈ H,u ∈ F(x), and v ∈ F(y).

Remark 2.1. Note that, in the definition above, unlike the classical definition, we do not require
that µF ≥ 0. In fact, if µF < 0, F is said to be weakly-monotone. When µF = 0, µF -monotonicity
reduces to the classical monotonicity. If µF > 0, an µF -monotone operator F becomes strongly
monotone.

Definition 2.2. [10] A µF -monotone operator F is said to be maximal if there exists no µF -
monotone operator whose graph strictly contains the graph of F .

Here, we recall an important notion of Lipschitz continuity, which frequently appears in the
study of algorithms.

Definition 2.3. An operator G : H −→H is said to be Lipschitz continuous with constant L≥ 0
if ‖G(x)−G(y)‖ ≤ L‖x− y‖ for all x,y ∈ H.

The resolvent of an operator is a fundamental tool in the study of inclusion problems. We
now recall its definition. The resolvent of an operator F with the parameter γ is given by
JγF = (Id + γF)−1, where Id is the identity mapping.

In the absence of monotonicity, the resolvent may not always return a unique value at a given
point. However, the following lemma establishes that for generalized monotone operators, the
resolvent remains single-valued under suitable parameter choices. Furthermore, it demonstrates
that the resolvent is cocoercive, a property that plays a crucial role in the subsequent analysis.

Lemma 2.4. [3, 10] Let F : H −→ 2H be an µF -monotone operator, and let γ > 0 be such that
1+ γµF > 0. Then,

(1) JγF is a singleton;
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(2) ran JγF = dom F;
(3) F is (maximal) µF -monotone if and only if F ′ = F−µF id is (maximal) monotone.

It is known that the sum of two maximal monotone operators is not always maximal. The
following lemma provides a criterion for determining when the sum of two operators remains
maximal. We begin by recalling a classical result and then extend it to the setting of generalized
monotonicity.

Lemma 2.5. [14] Let F : H −→ 2H be maximal monotone and G : H −→ H be monotone and
Lipschitz continuous on H. Then F +G is maximally monotone.

Lemma 2.6. Let F : H −→ 2H be maximally µF -monotone and G : H −→ H be µG-monotone
and Lipschitz continuous on H. Then F +G is maximally (µF +µG)-monotone.

Proof. Let γ > 0 such that 1+ γ.µF > 0. Because F is maximally µF -monotone, it holds that
F ′ :=F−µF id is maximally monotone [10]. Since G is µG monotone and Lipschitz continuous,
it follows that G′ = G−µGid is monotone, and Lipschit continuous. By Lemma 2.5, F ′+G′ =
F +G−(µF +µG)id is maximally monotone. It follows from Part (3) of Lemma 2.4 that F +G
is maximal (µF +µG)-monotone. �

The next lemma provides a characterization when a generalized monotone operator is maxi-
mal. This extends the classical result.

Lemma 2.7. Let F : H −→ 2H be a µF -monotone operator. Then F is the maximal monotone
if and only if

∀(y,v) ∈ gr(F),〈u− v,x− y〉 ≥ µF‖x− y‖2 =⇒ u ∈ F(x). (2.3)

Proof. Suppose that F is maximal µF -monotone and u0,x0 ∈H such that, for all (y,v)∈ grF,〈u0−
v,x0− y〉 ≥ 0. We now suppose contradiction that u0 6∈ F(x0). Let

T (x) =

{
F(x) if x 6= x0

F(x)∪{u0} otherwise

Then T is µF -monotone and gr F ⊂ gr T , a contradiction to the maximality of F . Hence,
u0 ∈ F(x0).

Assume now that u,x ∈H satisfies condition (2.3). Let A : H −→ 2H be a µF -monotone such
that grF ⊆ grA. Then, for all (x,u)∈ grA, by the µF -monotone of A, we have that 〈u−v,x−y〉 ≥
µF‖x− y‖2 for all (y,v) ∈ grA. Since gr F ⊆ gr A, this also holds for all (y,v) ∈ grF . By
condition (2.3), we derive that u ∈ F(x) or (x,u) ∈ grF . This implies that F is maximal µF -
monotone. �

For a comprehensive discussion on monotone operators, their applications in optimization
problems, and the properties of their resolvent, we refer readers to [2, 3, 10].

3. ALGORITHM AND CONVERGENCE ANALYSIS

In this section, we first present an algorithm, proposed in [7], and we then analyze the prop-
erty of strong convergence for the sequence generated by the algorithm. We emphasize that our
operators are assumed to be generalized monotone, which is weaker than classical monotonicity.
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Algorithm 3.1. Let γ ∈
(

0, 1
2L

)
,θ1 ∈ [0,1), θ2≤ 0 and take {λk}⊆ (0,1). For any w∗,u−1,u0,u1 ∈

H, let uk,uk−1,uk−2 be given. Set

uk+1 =JγF(λkw∗+(1−λk)
(

uk−θ1(uk−uk−1)+θ2(uk−1−uk−2)
)

− γGuk− γ(1−λk)(Guk−Guk−1)
)
, ∀k ≥ 1. (3.1)

To achieve strong convergence of algorithm, we impose the following assumptions on the
operators and parameters:

Assumption 3.1. (1) F is maximal −µF monotone;
(2) G is µG-monotone and Lipschitz continuous with constant L > 0;
(3) µF +µG ≥ 0;
(4) zer(F +G) 6= /0;
(5) θ1,θ2 satisfy 0≤ θ1 <

1
3(1−2γL), 1

3+4θ1
(3θ1−1+2γL)< θ2 ≤ 0;

(6) 1+ γµF > 0.

Remark 3.1. It is worth noting that the condition (3) in this assumption is weaker than the
monotonicity assumption. Indeed, it may happen that F or G is weakly monotone, while the
sum of the two operators is monotone or strongly monotone.

Lemma 3.1. Assume that Assumption 3.1 holds. Then the sequence {uk} generated by the
Algorithm 3.1 is bounded whenever limk→∞ λk = 0.

Proof. Let u∗ ∈ zer(F +G) and set zk = λw∗+ (1− λk)wk with wk = uk + θ1(uk − uk−1) +
θ2(uk−1−uk−2). Then

− γGu∗ ∈ γFu∗ (3.2)
and

zk− γGuk− γ(1−λk)(Guk−Guk−1)−uk+1 ∈ γFuk+1. (3.3)
By the µF -monotonicity of F , it follows from (3.2) and (3.3) that

〈zk− γGuk− γ(1−λk)(Guk−Guk−1)−uk+1 + γGu∗,uk+1−u∗〉 ≥ γµF‖uk+1−u∗‖2.

Consequently,

2γµF‖uk+1−u∗‖2 ≤ 2〈uk+1− zk + γGuk + γ(1−λk)(Guk−Guk−1)− γGu∗,u∗−uk+1〉
= 2〈uk+1− zk,u∗−uk+1〉+2γ〈Guk−Gu∗,u∗−uk+1〉+2γ(1−λk)

〈Guk−Guk−1,u∗−uk〉+2γ(1−λk)〈Guk−Gk−1,uk−uk+1〉.

By (2.2), it follows that

2γµF‖uk+1−u∗‖2

≤ ‖zk−u∗‖2−‖uk+1−u∗‖−‖uk+1− zk‖2 +2γ〈Guk−Gu∗,u∗−uk+1〉
+2γ(1−λk)〈Guk−Guk−1,u∗−uk〉+2γ(1−λk)〈Guk−Guk−1,uk−uk+1〉. (3.4)

In view of the µG-monotonicity of G, one has

〈Guk−Gu∗,u∗−uk+1〉=〈Guk−Guk+1,u∗−uk+1〉+ 〈Guk+1−Gu∗,u∗−uk+1〉

≤〈Guk−Guk+1,u∗−uk+1〉−µG‖uk+1−u∗‖2. (3.5)
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Since G is Lipschit continuous with modulus L, we have

2γ〈Guk−Guk−1,uk−uk+1〉 ≤2γL‖uk−uk−1‖‖uk−uk+1‖

≤γL
(
‖uk−uk−1‖2 +‖uk−uk+1‖2

)
. (3.6)

Substituting (3.5) and (3.6) into (3.4), we arrive at

(2γµF +2γµG)‖uk+1−u∗‖2 +‖uk+1−u∗‖2 +2γ〈Guk+1−Guk,u∗−uk+1〉

≤‖zk−u∗‖2−‖uk+1− zk‖2 +2γ(1−λk)〈Guk−Guk−1,u∗−uk〉

+(1−λk)γL
(
‖uk−uk−1‖2 +‖uk−uk+1‖2

)
,∀k ≥ k0. (3.7)

By Lemma 2.2, one has

‖zk−u∗‖2

= ‖wk−u∗‖2 +λ
2
k ‖wk−w∗‖2−2λk〈wk−u∗,wk−w∗〉

= ‖wk−u∗‖2 +λ
2
k ‖wk−w∗‖2−λk‖wk−w∗‖2−λk‖wk−u∗‖2 +λk‖w∗−u∗‖2. (3.8)

Substituting u∗ by uk+1 into (3.8), one obtains

‖zk−uk+1‖2 =‖wk−uk+1‖2 +λ
2
k ‖wk−w∗‖2−λk‖wk−w∗‖2−λk‖wk−uk+1‖2

+λk‖w∗−uk+1‖2. (3.9)

Difference of (3.8) and (3.9) yields

‖zk−u∗‖2−‖wk−uk+1‖2

=(1−λk)‖wk−u∗‖2 +λk‖w∗−u∗‖2− (1−λk)‖uk+1−wk‖2−λk‖uk+1−w∗‖. (3.10)

Combining (3.10) and (3.7), we see that

(2γµF +2γµG)‖uk+1−u∗‖2 +‖uk+1−u∗‖2 +2γ〈Guk+1−Guk,u∗−uk+1〉

≤(1−λk)‖wk−u∗‖2 +λk‖w∗−u∗‖2− (1−λk)‖uk+1−wk‖2−λk‖uk+1−w∗‖2

+2γ(1−λ )〈Guk−Guk−1,u∗−uk〉+(1−λk)γL
(
‖uk−uk−1‖2 +‖uk−uk+1‖2

)
(3.11)

for all k ≥ k0. It follows from (2.1) that

‖wk−u∗‖2 =‖(1+θ1)(uk−u∗)− (θ1−θ2)(uk−1−u∗)−θ2(uk−2−u∗‖2

+(1+θ1)(θ1−θ2)‖uk−uk−1‖2 +θ2(1+θ1)‖uk−uk−2‖2. (3.12)

In addition, by (2.2), it holds that

‖uk+1−wk‖2 =‖uk+1−uk‖−2θ1〈uk+1−uk,uk−uk−1〉

−2θ2〈uk+1−uk,uk−1−uk−2〉+θ
2
1 ‖uk−uk−1‖2

+2θ2θ1〈uk−uk−1,uk−1−uk−2〉+θ
2
2 ‖uk−1−uk−2‖2. (3.13)

Moreover, note that

−2θ1〈uk+1−uk,uk−uk−1〉 ≥−2θ1‖uk+1−uk‖‖uk−uk−1‖

≥−θ1‖uk+1−uk‖2−θ1‖uk−uk−1‖2, (3.14)
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−2θ2〈uk+1−uk,uk−1−uk−2〉 ≥−2|θ2|‖uk+1−uk‖‖uk−1−uk−2‖

≥−|θ2|‖uk+1−uk‖2−|θ2|‖uk−1−uk−2‖2, (3.15)

and

2θ2θ1〈uk−uk−1,uk−1−uk−2〉 ≥−2|θ2||θ1|‖uk−uk−1‖uk−1−uk−2‖

≥−|θ2||θ1|‖uk−uk−1‖2−|θ2||θ1|‖uk−1−uk−2‖2. (3.16)

Plugging (3.14), (3.15), and (3.16) into (3.13) yields

‖uk+1−wk‖2 ≥(1−θ1−|θ2|)‖uk+1−uk‖2 +(θ 2
1 −θ1−θ1|θ2|)‖uk−uk−1‖2

+(θ 2
2 −|θ2|−θ1|θ2|)‖uk−1−uk−2‖2. (3.17)

Substituting (3.12) and (3.17) into (3.11) obtains

(2γµF +2γµG)‖uk+1−u∗‖2 +‖uk+1−u∗‖2 +2γ〈Guk+1−Guk,u∗−uk+1〉

≤(1−λk)
[
(1+θ1)‖uk−u∗‖2− (θ1−θ2)‖uk−1−u∗‖2−θ2‖uk−2−u∗‖2

(1+θ1)(θ1−θ2)‖uk−uk−1‖2 +θ2(1+θ1)‖uk−uk−2‖2−θ2(θ1−θ2)‖uk−1−uk−2‖2
]

+λk‖w∗−u∗‖2− (1−λk)
[
(1−θ1−|θ2|)‖uk−1−uk‖2 +(θ 2

1 −θ1−θ1|θ2|)‖uk−uk−1‖2

+(θ 2
2 −|θ2|−θ1|θ2|)‖uk−1−uk−2‖2

]
−λk‖uk+1−w∗‖2

+2γ(1−λk)〈Guk−Guk−1,u∗−uk〉+(1−λk)γL
(
‖uk−uk−1‖2 +‖uk+1−uk‖2

)
≤(1−λk)

[
(1+θ1)‖uk−u∗‖2− (θ1−θ2)‖uk−1−u∗‖2−θ2‖uk−2−u∗‖2

+(2θ1−θ2−θ1θ2 +θ1|θ2|)‖uk−uk−1‖2 +(|θ2|+ |θ2|θ1−θ2θ1)‖uk−1−uk−2‖2

−(1−θ1−|θ2|)‖uk+1−uk‖2 +2γ〈Guk−Guk−1,u∗−uk〉
]

+λk‖w∗−u∗‖2 +(1−λk)γL
(
‖uk−uk−1‖2 +‖uk+1−uk‖2

)
,∀k ≥ k0.

It follows that
(1+2γµF +2γµG)‖uk+1−u∗‖2−θ1‖uk−u∗‖2−θ2‖uk−1−u∗‖2

+2γ〈Guk+1−Guk,u∗−uk+1〉+(1−|θ2|−θ1− γL)‖uk+1−uk‖2

≤ (1−λk)

[
‖uk−u∗‖2−θ1‖uk−1−u∗‖2−θ2‖uk−2−u∗‖2 +2γ〈Guk−Guk−1,u∗−uk〉

+(1−|θ2|−θ1− γL)‖uk−uk−1‖2− (2γL+3θ1−1+(1+θ1)(|θ2|−θ2)
(
‖uk−1−uk−2‖2

−‖uk−uk−1‖2
)]

+λk‖w∗−u∗‖2− (1−λk)

[
−
(

2γL+3θ1−1+(1+θ1)(|θ2|−θ2)

)
− (|θ2|+ |θ2|θ1−θ2θ1)

]
‖uk−1−uk−2‖2.

(3.18)
Set

a1 =−(2γL+3θ1−1+(1+θ1)(|θ2|−θ2)),
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a2 = 1−3θ1−2γL−2|θ2|−2θ1|θ2|+θ2 +2θ1θ2,

and

qk = (1+2γµF +2γµG)‖uk−u∗‖2−θ1‖uk−1−u∗‖2−θ2‖uk−2−u∗‖

+2γ〈Guk−Guk−1,u∗−uk〉+(1−|θ2|−θ1− γL)‖uk−uk−1‖2 +a1‖uk−1−uk−2‖2.

Then (3.18) reads as

qk+1 ≤ (1−λk)qk +λk‖u∗−w∗‖2− (1−λk)a2‖uk−1−uk−2‖2

− (1−λk)(2γµF +2γµG)‖uk−u∗‖2

≤ (1−λk)qk +λk‖u∗−w∗‖2− (1−λk)a2‖uk−1−uk−2‖2

(3.19)

for all k ≥ k0. The last inequality holds since λk ∈ (0,1),γ > 0, and the condition (3) in As-
sumption 3.1.

We now prove that a1 > 0,a2 > 0, and qk ≥ 0 for all k = 1,2, . . . . By condition (5) in As-
sumption 3.1, we have 3θ1−1+2γL < 0. Therefore,

1
2+2θ1

(3θ1−1+2γL)<
1

3+4θ1
(3θ1−1+2γL)< θ2,

which implies 3θ1−1+2γL−2θ2−2θ1θ2 < 0. Because |θ2|=−θ2, it holds that

3θ1−1+2γL+ |θ2|−θ2 +θ1|θ2|−θ1θ2 < 0. (3.20)

As a result, a1 > 0. From the assumption that
1

3+4θ1
(3θ1−1+2γL)< θ2, we see that

1−3θ1−2γL+3θ2 +4θ2θ1 > 0.

Again, because |θ2|=−θ2 it holds that

1−3θ1−2γL−2|θ2|+θ2−2|θ2|θ1 +2θ2θ1 > 0, (3.21)

which implies that a2 > 0. To show that qk ≥ 0 for all k, we see that θ2 ≤ 0 and a1 > 0. Hence,
for all k ≥ k0, we have

qk ≥(1+2γµF +2γµG)‖uk−u∗‖2−θ1‖uk−1−u∗‖2 +2γ〈Guk−Guk−1,u∗−uk〉

+(1−|θ2|−θ1− γL)‖uk−uk−1‖2

≥(1+2µF +2µG)‖uk−u∗‖2−θ1‖uk−1−u∗‖2− γL(‖uk−uk−1‖2 +‖uk−u∗‖2)

+(1−|θ2|−θ1− γL)‖uk−uk−1‖2

≥(1+2γµF +2γµG− γL)‖uk−u∗‖2−θ1(2‖uk−uk−1‖2 +2‖uk−u∗‖2)

+(1−|θ2|−θ1−2γL)‖uk−uk−1‖2

≥(1+2γµF +2γµG−3θ1− γL)‖uk−u∗‖2 +(1−|θ2|−θ1−2γL)‖uk−uk−1‖2. (3.22)

Because θ1 <
1
3
(1−2γL) and µF +µG > 0,γ > 0, one has 3θ1−1+2γL−2γµF −2γµG < 0.

It follows that 1+2γµF +2γµG−3θ1− γL > 1−3θ1− γL > 0 and

3θ1−1+2γL <
1

3+4θ1
(3θ1−1+2γL)< θ2.
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Thus −|θ2|− 3θ1 + 1− 2γL > 0. From (3.22), we derive qk ≥ 0 for all k ≥ k0. In addition, in
view of a2 > 0 and λk ∈ (0,1), we obtain from (3.19) that qk+1 ≤ (1−λk)qk +λk‖u∗−w∗‖2.
Thus Lemma 2.3 can be invoked with bk = 0 for all k and ak = λ‖u∗−w∗‖2. Hence {qk} is
bounded. Therefore, from (3.22), we derive that {uk} is also bounded as asserted. �

Theorem 3.1. Let Assumption 3.1 hold. Suppose that limk→∞ λk = 0 and ∑
∞
k=1 λk = ∞. Then

the sequence {uk} generated by Algorithm 3.1 converges strongly to Pzer(F+G)w∗.

Proof. Let u∗ = Pzer(F+G)(w∗). Using (2.2), we have

‖zk−u∗‖=‖λk(w∗−u∗)+(1−λk)(wk−u∗)‖2

=λ
2
k ‖w∗−u∗‖2 +(1−λk)

2‖wk−u∗‖2 +2λk(1−λk)〈w∗−u∗,wk−u∗〉. (3.23)

By (2.2), we have

‖zk−uk+1‖2

= λ
2
k ‖w∗−uk+1‖2 +(1−λk)

2‖wk−uk+1‖2 +2λK(1−λk)〈w∗−uk+1,wk−uk+1〉

≥ λ
2
k ‖uk+1−w∗‖2 +(1−λk)

2‖uk+1−wk‖2−2λk(1−λk)‖uk+1−w∗‖‖uk+1−wk‖

≥ λ
2
k ‖uk+1−w∗‖2 +(1−λk)

2‖uk+1−wk‖2−2λk(1−λk)Γ‖uk+1−wk‖,

where Γ = supk≥1 ‖uk+1−w∗‖. Note that this supremum exists because {uk} is bounded due to
Lemma 3.1. Putting (3.23) and (3.24) into (3.7), we have

(1+2γµF +2γµG)‖uk+1−u∗‖2 +2γ〈Guk+1−Guk,u∗−uk+1〉

≤λ
2
k ‖u∗−w∗‖2 +(1−λk)

2‖wk−u∗‖2 +2λk(1−λk)〈w∗−u∗,wk−u∗〉

− (λ 2
k ‖uk+1−w∗‖2 +(1−λk)

2‖uk+1−wk‖2−2λk(1−λk)Γ‖uk+1−wk‖)
+2γ(1−λk)〈Guk−Guk−1,u∗−uk〉

+(1−λk)γL(‖uk−uk−1‖2 +‖uk+1−uk‖2)

≤(1−λk)
(
‖wk−u∗‖2 +2γ〈Guk−Guk−1,u∗−uk〉

)
+λk(λk‖u∗−w∗‖2 +2(1−λk)〈w∗−u∗,wk−u∗〉+2(1−λk)Γ‖uk+1−wk‖)

− (1−λk)
2‖uk+1−wk‖2 +(1−λk)γL(‖uk−uk−1‖2 +‖uk+1−uk‖2),∀k ≥ k0. (3.24)

Now plugging (3.12) and (3.17) into (3.24), we obtain

(1+2γµF +2γµG)‖uk+1−u∗‖2 +2γ〈Guk+1−Guk,u∗−uk+1〉

≤(1−λk)
[
(1+θ1)‖uk−u∗‖2− (θ1−θ2)‖uk−1−u∗‖2−θ2‖uk−2−u∗‖2

+(1+θ1)(θ1−θ2)‖uk−uk−1‖2 +θ2(1+θ1)‖uk−uk−2‖2

−θ2(θ1−θ2)‖uk−1−uk−2‖2 +2γ〈Guk−Guk−1,u∗−uk〉
]

+λk(λk(‖u∗−w∗‖2 +2(1−λk)〈w∗−u∗,wk−u∗〉+2(1−λk)Γ‖uk+1−wk‖)

− (1−λk)
2
[
(1−θ1−|θ2|)‖uk+1−uk‖2 +(θ 2

1 −θ1−θ1|θ2|)‖uk−uk−1‖2

+(θ 2
2 −|θ2|−θ1|θ2|)‖uk−1− xk−2‖2

]
+(1−λk)γL(‖uk−uk−1‖2 +‖uk+1−uk‖2).
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It follows that

(1+2γµF +2γµG)‖uk+1−u∗‖2−θ1‖uk−u∗‖2−θ2‖uk1−u∗‖2

+2γ〈Guk+1−Guk,u∗−uk+1〉+(1−|θ2|−θ1− γL)‖uk+1−uk‖2

≤(1−λk)

[
‖uk−u∗‖2−θ1‖uk−1−u∗‖2−θ2‖uk−2−u∗‖2 +2γ〈Guk−Guk−1,u∗−uk〉

+(1−|θ2|−θ1− γL)‖uk−uk−1‖2
]

+λk

(
λk‖u∗−w∗‖2 +2(1−λk)〈w∗−u∗,wk−u∗〉+2(1−λk)Γ‖uk+1−wk‖

)
+(1−λk)

[
2γL+2θ1−θ2−θ1θ2−1+ |θ2|+θ

2
1 − (1−λk)(θ

2
1 −θ1−θ1|θ2|)

]
(3.25)

and

‖uk−uk−1‖2 +(1−λk)

[
θ

2
2 −θ2θ1− (1−λk)(θ

2
2 −|θ2|−θ1|θ2|

]
‖uk−1−uk−2‖2

=(1−λk)

‖uk−u∗‖2−θ1‖uk−1−u∗‖2−θ2‖uk−2−u∗‖2 +2γ〈Guk−Guk−1,u∗−uk〉

+(1−|θ2|−θ1− γL)‖uk−uk−1‖2

−
(

2γL+2θ1−θ2−θ1θ2−1+ |θ2|+θ
2
1 − (1−λk)(θ

2
1 −θ1−θ1|θ2|)

)
(
‖uk−1−uk−2‖2−‖uk−uk−1‖2

)
+λk

(
λk(‖u∗−w∗‖2 +2(1−λk)(w∗−u∗,wk−u∗〉+2(1−λk)Γ‖uk+1−wk‖

)
− (1−λk)

[
1−2θ1−2γL+θ2 +2θ1θ2−|θ2|−θ

2
2 −θ

2
1 +(1−λk)](θ

2
1 −θ1−θ1|θ2|)

+(1−λk)(θ
2
2 −|θ2|−θ1|θ2|)

]
‖uk−1−uk−2‖2, ∀k ≥ k0. (3.26)

Set

rk =−
(

2γL+2θ1−θ2−θ1θ2−1+ |θ2|+θ
2
1 − (1−λk)(θ

2
1 −θ1−θ1|θ2|)

)
,

ak =λk‖w∗−u∗‖2 +2(1−λk)〈w∗−u∗,wk−u∗〉+2(1−λk)Γ‖uk+1−wk‖,

sk+1 =(1+2γµF +2γµG)‖uk−u∗‖2−θ1‖uk−1−u∗‖2−θ2‖uk−2−u∗‖2

+2γ〈Guk−Guk−1,u∗−uk〉+(1−|θ2|−θ1− γL)‖uk−uk−1‖2 + rk‖uk−1−uk−2‖2,

qk =1−2θ1−2γL+θ2 +2θ1θ2−|θ2|−θ
2
2 −θ

2
1 +(1−λk)(θ

2
1 −θ1−θ1|θ2|)

+(1−λk)(θ
2
2 −|θ2|−θ1|θ2|).
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From (3.25) and (3.26), we derive

sk+1 ≤(1−λk)sk +λkak− (1−λk)qk‖uk−1−uk−2‖2− (1−λk)(2γµF +2γµG)‖uk+1−u∗‖2

≤(1−λk)sk +λkak− (1−λk)qk‖uk−1−uk−2‖2,∀k ≥ k0. (3.27)

By (3.20), one has 1−3θ1−2γL−|θ2|+θ2−θ1|θ2|+θ1θ2 > 0, which implies that

lim
k→∞

rk = lim
k→∞
−
(

2γL+2θ1−θ2−θ1θ2−1+ |θ2|+θ
2
1 − (1−λk)(θ

2
1 −θ1−θ1|θ2|)

)
=1−3θ1−2γL−|θ2|+θ2−θ1|θ2|+θ1θ2 > 0.

Thus there exists k1 ≥ k0 such that rk > 0 for all k ≥ k1. Moreover, from (3.21), one has

1−3θ1−2γL−2|θ2|+θ2−2|θ2|θ1 +2θ2θ1 > 0.

It follows that

lim
k→∞

qk = lim
k→∞

(
1−2θ1−2γL+θ2 +2θ1θ2−|θ2|−θ

2
2 −θ

2
1

+(1−λk)(θ
2
1 −θ1−θ1|θ2|)+(1−λk)(θ

2
2 −θ2−θ1|θ2|)

)
=1−3θ1−2γL−2|θ2|+θ2−2|θ2|θ1 +2θ2θ1 > 0.

Hence, there exists k2 ≥ k0 such that qk > 0 for all k ≥ k2. Then, it follows from(3.27) that

sk+1 ≤ (1−λk)sk +λkak,∀k ≥ k2. (3.28)

Let ski be the sequence satisfying that liminfi→∞(ski+1− ski)≥ 0. Then (3.27) implies that

limsup
i→∞

(
(1−λki)qki‖uki−1−uki−2‖2

)
≤ limsup

i→∞

(
(ski− ski+1)+λki(qki− ski)

)
≤− liminf

i→∞
(
(

ski+1− ski)≤ 0.

Because limi→∞(1−λki)qki > 0, it holds that

lim
i→∞
‖uki−1−uki−2‖= 0 = lim

i→∞
‖uki+1−uki‖. (3.29)

So,

lim
i→∞
‖wki−uki‖= lim

i→∞
‖θ1(uki−uki−1)+θ2(uki−1−uki−2)‖= 0. (3.30)

By (3.29) and (3.30), we have

lim
i→∞
‖uki+1−wki‖= 0. (3.31)

Since limk→∞ λk = 0, it follows that

lim
i→∞
‖zki−wki‖= lim

i→∞
λki‖w

∗−wki‖= 0. (3.32)

(3.31) and (3.32) imply
lim
i→∞
‖zki−uki+1‖= 0. (3.33)
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In view of (3.29) and the Lipschit continuity of G, we have

lim
i→∞
‖Guki+1−Guki‖= 0. (3.34)

Due to Lemma 3.1, we see that {uki} is bounded. Hence, there exists a subsequence {uki j
} of

{uki} which converges weakly to ū ∈ H, and

limsup
i→∞

〈w∗−u∗,uki−u∗〉= lim
j→∞
〈w∗−u∗,uki j

−u∗〉= 〈w∗−u∗, ū−u∗〉. (3.35)

Let (x,y)∈ gr(F +G). Then γ(y−Gx)∈ γFx. Due to (3.3) and the µF -monotone of F , we have
that

〈γ(y−Gx)− zki j
+ γGuki j

+ γ(1−λki j
)(Guki j

−Guki j−1)+uki j+1,x−uki j+1〉 ≥ γµF‖uki j+1− x‖2.

Combining this fact with the µG-monotonicity of G, we have

〈y,x−uki j+1〉 ≥
1
γ
〈γGx+ zki j

− γGuki j
− γ(1−λki j

)(Guki j
−GukiJ−1)−uki j+1,x−uki j+1〉

+µF‖uki j+1− x‖2

=〈Gx−Guki j+1,x−uki j+1〉+ 〈Guki j+1−Guki j
,x−uki j+1〉

+(1−λki j
)〈Guki j−1−Guki j

,x−uki j+1〉+
1
γ
〈zki j
−uki j+1,x−uki j+1〉+µF‖uki j+1− x‖2

≥ 〈Guki j+1−Guki j
,x−uki j+1〉+(1−λki j

)〈Guki j−1−Guki j
,x−uki j+1〉

+
1
γ
〈zki j
−uki j+1,x−uki j+1〉+µG‖x−uki j+1‖2 +µF‖uki j+1− x‖2

=〈Guki j+1−Guki j
,x−uki j+1〉+(1−λki j

)〈Guki j−1−Guki j
,x−uki j+1〉

+
1
γ
〈zki j
−uki j+1,x−uki j+1〉+(µG +µF)‖x−uki j+1‖2

≥〈Guki j+1−Guki j
,x−uki j+1〉+(1−λki j

)〈Guki j−1−Guki j
,x−uki j+1〉

+
1
γ
〈zki j
−uki j+1,x−uki j+1〉. (3.36)

The last inequality holds by condition (3) in Assumption 3.1. As j→ ∞ in (3.36), using (3.33)
and (3.34), we have 〈y,x− ū〉 ≥ 0. Due to Lemma 2.6, F +G is maximal (µF +µG)-monotone.
Hence ū ∈ zer(F +G) by Lemma 2.7. In view of u∗ = Pzer(F+G)w∗, (3.35) and the characteri-
zation of the metric projection imply that

limsup
i→∞

〈w∗−u∗,uki−u∗〉= 〈w∗−u∗, ū−u∗〉 ≤ 0. (3.37)

By (3.30), (3.31), and (3.37), we see limsupi→∞ aki ≤ 0. Hence, the condition ∑
∞
k=1 λk = 0,

Lemma 2.2, and (3.28) obtain limk→∞ sk = 0. From the fact and (3.22), we conclude that {uk}
converges strongly to u∗ = Pzer(F+G)w∗, as claimed. �

4. APPLICATIONS

In this section, we investigate special cases of problem (1.1).



266 N.V. TRAN

4.1. Application to COP. Consider the constrained optimization problem (COP)

min
u∈H

f (u)+g(u) (4.1)

where g : H −→ R is continuous differential and convex, and f : H −→ R is a proper, l.s.c.
convex real value function. Note that f may lack differentiability. when f ≡ 0, problem (4.1)
is reduced to an unconstrained optimization problem. As mentioned earlier, this problem can
be reformulated as the inclusion problem (1.1) with F = ∂ f and G = ∇g. If F = ∂ f , then
JγF(u) = proxγ f (u). Thus (3.1) is reduced to the following

uk+1 =proxγ f (λkw∗+(1−λk)
(

uk−θ1(uk−uk−1)+θ2(uk−1−uk−2)

− γ∇guk− γ(1−λk)(∇guk−∇guk−1)
)
, ∀k ≥ 1. (4.2)

We make the following assumption on function g: g is convex and ∇g is Lipschitz continuous

with constant L > 0, and γ ∈
(

0,
1

2L

)
. Observe that the conditions related to the operators in

Assumption 3.1 hold. Consequently, if θ1 and θ2 are chosen to satisfy condition (5), then the
sequence generated by (4.2) strongly converges to the solution of the COP.

4.2. Application to MVIP. Now we examine the mixed variational inequality problem (MVIP):

Find u∗ ∈ H such that 〈T (u∗),u−u∗〉+ f (u∗)− f (u)≥ 0 for all u ∈ H, (4.3)

where T : H −→ H is a vector-valued operator and f : H −→ R is a proper, l.s.c. convex
function. Once again, this problem can be rewritten as an inclusion problem of the form (1.1)
with G = T and F = ∂ f . Similarly to the previous case, since F = ∂ f , we have JγF(u) =
proxγ f (u). Hence (3.1) reduces to the following

uk+1 =proxγ f (λkw∗+(1−λk)
(

uk−θ1(uk−uk−1)+θ2(uk−1−uk−2)

− γTuk− γ(1−λk)(Tuk−Tuk−1)
)
, ∀k ≥ 1. (4.4)

If f is convex, T is monotone and L-Lipschitz continuous, and γ ∈ (0, 1
2L), then all the conditions

related to the operators in Assumption 3.1 hold. As a result, the sequence generated by (4.4)
converges strongly to the solution of problem (4.3) with appropriate values of the parameters.

4.3. Application to VIP. We now consider a special case of problem 4.3 where f = 0. This
problem is known as the variational inequality problem and can be stated as follows

Find u∗ ∈C such that 〈T (u∗),u−u∗〉 ≥ 0, ∀u ∈C, (4.5)

where C is a closed and convex subset of H, and T : C −→ H is an operator. We denote this
problem by VIP(T,C).

The variational inequality problems (VIPs) in (4.5) can be reformulated as an inclusion
problem of the form 0 ∈ (F +G)(u) with G = T and F = NC. Again, in this case, we have
JγF(u) = PC(u). Hence Algorithm 3.1 reads as

uk+1 =PC(λkw∗+(1−λk)
(

uk−θ1(uk−uk−1)+θ2(uk−1−uk−2)

− γTuk− γ(1−λk)(Tuk−Tuk−1)
)
, ∀k ≥ 1. (4.6)
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If T is monotone and Lipschitz continuous with constant L > 0, then all the conditions in As-
sumption 3.1 related to the operators also hold. Hence, the sequence generated by (4.6) con-
verges strongly to the solution of problem (4.5) for appropriate values of the parameters.

5. NUMERICAL EXAMPLE

In this section, we present an illustrative example of the algorithm’s effectiveness. The code
was written in Python and executed on Google Colab using an HP ProBook 430 G6 laptop
running Windows 11 Home Single Language, equipped with an Intel Core i5-8265U CPU at
1.60 GHz and 4 GB of RAM.

Example 5.1. Let A =

(
3 1
1 3

)
. Let F : R2 −→ R2 be defined by F(u) = Au for all u ∈ R2.

Note that the eigenvalues of A are λ = 2,λ = 4. Hence, F is maximally 2-monotone. We define
G : R2 −→ R2 by G(u) = −u for all u in R2. Then it is easy to see that G is −1-monotone
and 1-Lipschitz continuous. Observe also that 0 = (0,0) is the unique solution to the inclusion
problem 0 ∈ F(u)+G(u). We run the algorithm with the following values of parameters:

γ = 0.2,θ1 = 0.1,θ2 =−0.05,λk = 0.5 for all k = 1,2,3, . . .

and use initial iterates

u−1 = (500,−500),u0 = (300,200),u1 = (−500,600),w∗ = (0,0).

A straightforward verification shows that all the conditions in Assumption 3.1 are satisfied by
the chosen parameter values. After 200 iterations, Algorithm 3.1 produces an approximate
solution

u200 = (−6.20227189e−58,6.20227189e−58),

with residual
‖u200‖= 8.7713370294568e−58.

The results of running the algorithm with inertial terms and the chosen parameter values are
demonstrated in Figure 1.

FIGURE 1. Convergence rate of Algorithm 3.1.
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6. CONCLUSION

In this paper, We established the strong convergence of a sequence generated by a two-step in-
ertial forward–reflected–anchored–backward splitting algorithm for solving the non-monotone
inclusion problem (1.1) in a real Hilbert space. Our result improves the results in [7] by relaxing
the assumption on the operators from monotonicity to non-monotonicity. Additionally, we pro-
vided a characterization when a generalized monotone operator becomes maximal. Moreover,
we present the conditions that ensure the maximality of the sum of two generalized monotone
operators. Finally, we discussed some applications to related problems, including constrained
optimization, mixed variational inequality problems, and variational inequality problems.
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