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Abstract. The purpose of this paper is to introduce and study an iterative algorithm, which is based on an extragradient
algorithm and the Krasnoselskii-Mann iterative algorithm, for solving equilibrium problems, variational inequalities and fixed
point problems of multivalued quasi-nonexpansive mapping.
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1. INTRODUCTION

In 1994, Blum and Oettli [3] introduced and studied an equilibrium problem, which has a great impact
and influence on the development of several branches of pure and applied sciences, in the setting of
infinite dimensional Hilbert spaces. Let H be a Hilbert space and let K be a nonempty, closed and
convex subset of H. Let f : K×K→R, where R denotes the set of real numbers, be a bifunction. Recall
that the equilibrium problem is to find a point x∗ ∈ K such that

f (x∗,y)≥ 0, ∀y ∈ K. (1.1)

The solution set of the equilibrium problem is denoted by EP( f ) in this paper.
Recently, studies on solutions of the equilibrium problem were extensively carried out in Hilbert

spaces and in certain Banach spaces; see, for example, [1, 8, 11, 12, 13, 23, 27] and the references
therein. It has been shown that the equilibrium problem provides a novel and unified framework for a
wide class of problems which arise in economics, finance, image reconstruction, ecology, transportation,
and network. It also has been shown that the equilibrium problem includes variational inequalities,
minimax inequalities, the Nash equilibrium, and game theory as special cases. Recently, a lot of iterative
algorithms have been studied in infinite dimensional spaces, see [3, 9, 25, 27, 31] and the references
therein.

Recall that an operator A : K→ H is said to be monotone iff

〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈ K.
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A : K→ H is said to be α-inverse strongly monotone iff there exists a constant α > 0 such that

〈Ax−Ay,x− y〉 ≥ α‖Ax−Ay‖2, ∀x,y ∈ K.

It is obvious that if A is α-inverse strongly monotone, then it is monotone and Lipschitz continuous.
Recall the classical variational inequality problem is to find a point u ∈ K such that

〈Au,v−u〉 ≥ 0, ∀v ∈ K. (1.2)

We denote the set of solutions of the variational inequality problem by V I(K,A). Variational inequality
(1.2) was formulated in the late 1960’s by Lions and Stampacchia [15]. Since then, it has been ex-
tensively studied via numerical methods. For a lot of real-life problems, such as, in signal processing,
resource allocation, image recovery and so on, the constraints can be expressed as the variational in-
equality problem. Hence, the problem of finding solutions of variational inequality (1.2) has become a
flourishing area of contemporary research for numerous mathematicians working in nonlinear operator
theory; see, for example, [10, 17, 18, 28, 29, 30] and the references therein.

It is easy to see that u ∈ K is a solution of variational inequality (1.2) iff u is a fixed point of the
mapping PK(I−λA), where PK is the known metric projection from H onto K, I is the identity mapping
and λ is some real positive number.

A well known method for solving the variational inequality problem is the projection method which
starts with x1 ∈ K and generates a sequence {xn} in the following recursion formula,

xn+1 = PK(xn−λnAxn), n≥ 1, (1.3)

where {λn} a sequence of positive numbers satisfying appropriate conditions. In the case that A is
α-inverse strongly monotone, Iiduka and Takahashi [14] proved that the sequence {xn} generated by
(1.3) converges weakly to an element of V I(K,A). Spotlights have been shed on the modification of the
above projection algorithm so that the norm convergence is guaranteed under mild conditions recent; see
[1, 8, 10, 13, 25, 27, 29].

Let T : K → 2K be a multivalued mapping. An element x ∈ K is called a fixed point of T if x ∈ T x.
For single valued mapping, this reduces to T x = x. The fixed point set of T is denoted by F(T ) := {x ∈
D(T ) : x ∈ T x}. Let D be a nonempty subset of a normed space E. The set D is said to be proximinal
(see [20]) if for each x ∈ E, there exists u ∈ D such that

‖x−u‖= inf{‖x− y‖ : y ∈ D}= d(x,D),

Every nonempty, closed and convex subset of a real Hilbert space is proximinal. Let CB(D), K(D) and
P(D) denote the family of nonempty closed bounded subsets, nonempty compact subsets, and nonempty
proximinal bounded subsets of D respectively. The Pompeiu Hausdorff metric on CB(D) is defined by:

H(A,B) = max
{

sup
a∈A

d(a,B),sup
b∈B

d(b,A)
}

for all A,B ∈ CB(D) (see Berinde [4]). A multi-valued mapping T : D(T ) ⊆ E → CB(E) is called L-
Lipschitzian if there exists L > 0 such that

H(T x,Ty)≤ L‖x− y‖, ∀x,y ∈ D(T ).
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If L ∈ (0,1), we say that T is a contraction. T is said to be nonexpansive if L = 1. A multivalued map T
is said to be quasi-nonexpansive if F(T ) 6= /0 and

H(T x,T p)≤ ‖x− p‖, ∀x ∈ D(T ), p ∈ F(T ).

Remark 1.1. It is easy to see that the class of mulivalued quasi-nonexpansive mappings properly in-
cludes that of multivalued nonexpansive maps with fixed points.

Many problems arising in different areas of mathematics such as optimization, variational analysis,
differential equations, mathematical economics, and game theory can be modeled as fixed point equations
of the form x∈ T x, where T is a multivalued nonexpansive mapping. There are many effective algorithms
for solving the fixed point problem [5, 7, 20, 22]. One of the most efficient methods for approximating
fixed points of single-valued nonexpansive mappings dates back to 1953 and is the Mann’s method.
Recall Mann’s method generates a sequence in the following manner

x0 ∈C, xn+1 = αnxn +(1−αn)T xn,

where {αn} is a sequence in (0,1). But Mann’s iteration is only weakly convergent.
Recently, Zeng and Yao [32] introduced an extragradient method for finding a common element of the

set of fixed points of a nonexpansive mapping and the set of solutions of a variational inequality problem.
Indeed, they obtained the following strong convergence theorem.

Theorem 1.1. [32] Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C→ H
be a monotone k-Lipschitz continuous mapping and let T : C→C be a nonexpansive mapping such that
F(T )∩V I(C,A) 6= /0. Let the sequences {xn} and {yn} be generated by

x0 ∈ H,

yn = PC(xn−λnAxn),

xn+1 = αnx0 +(1−αn)SPC(xn−λnAyn),

(1.4)

where {λn} and {αn} satisfy the following conditions:
(a) {λnk} ⊂ (0,1−δ ) for some δ ∈ (0,1),

(b) {αn} ⊂ (0,1),
∞

∑
n=0

αn = ∞, lim
n→∞

αn = 0.

Then the sequences {xn} and {yn} converge strongly to the same point PF(T )∩V I(C,A)x0 provided that

lim
n→∞
‖xn+1− xn‖= 0. (1.5)

Remark 1.2. The iterative scheme (1.4) in Theorem 1.1 is strongly convergent with the assumption (1.5)
on the sequence {xn}.

Recently, Plubtieng and Kumam [21] further studied the common element problem and proved the
following result.

Theorem 1.2. Let K be a nonempty closed convex subset of a real Hilbert space H and let A : K→H be
an α-inverse strongly monotone operator. Let f : K×K→ R be a bifunction satisfying (A1)-(A4) such
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that G := EP( f )∩V I(K,A) 6= /0. Let {xn} be a sequence defined as follows:
x0 ∈ K,

yn = PK(I−θnA)xn,

f (un,y)+
1
rn
〈y−un,un− yn〉 ≥ 0, ∀y ∈ K

xn+1 = αnxn +(1−αn)un,

(1.6)

where {rn} and {θn} are positive real sequences and {αn} is real sequences in (0,1). If

(i) lim
n→∞

αn = 0, (ii)
∞

∑
n=0
|rn+1− rn|< ∞ and θn ∈ [a,b]⊂

(
0, min{1, 2α}

)
,

(iii) lim
n→∞
|θn+1−θn|, lim

n→∞
(1−αn)αn = ∞ and lim

n→∞
infrn > 0.

then, the sequences {xn} and {zn} generated by (1.6) converge weakly to x∗ ∈ G.

Motivated and inspired by the ongoing results in this field, we introduce a new iterative algorithm and
prove a strong convergence theorem for equilibrium problem (1.1), variational inequality problem (1.2)
and the fixed point problem of a multivalued quasi-nonexpansive mapping in Hilbert spaces.

2. PRELIMINARIES

Let K be a nonempty, closed convex subset of H. For any y ∈ H, there exists a unique point in C,
denoted by PK(u), such that

‖y−PK(u)‖ ≤ ‖y− x‖, ∀x ∈ K.

It is well known that the projection operator can be characterized by the following two properties

(i) 〈PKy− y,x−PKy〉 ≥ 0, ∀x ∈ K;
(ii) 〈PKx−PKy,x− y〉 ≥ ‖PKx−PKy‖2, ∀x,y ∈ H;

(iii) ‖PKy− x‖2 ≤ ‖y− x‖2−‖PKy− y‖2, ∀x ∈ K.

In the context of variational inequality problem (1.2), we have

u ∈V I(K,A)⇐⇒ u = PK(I−θA)u, θ > 0.

For solving equilibrium problem (1.1), let us assume that f satisfies the following conditions:
(A1) f (x,x) = 0 for all x ∈C;
(A2) f is monotone, i.e., f (x,y)+ f (y,x)≤ 0 for all x,y ∈C;
(A3) for each x,y,z ∈C,

lim
t→0

f (tz+(1− t)x,y)≤ f (x,y);

(A4) for each x ∈C, y→ f (x,y) is convex and lower semicontinuous.

Then, for any x,y ∈ H, the following inequalities hold:

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉

and

‖λx+(1−λ )y‖2 = λ‖x‖2 +(1−λ )‖y‖2− (1−λ )λ‖x− y‖2, λ ∈ (0,1).
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Lemma 2.1. [7] Let H be a real Hilbert space and let K be a nonempty closed and convex subset of
H. Let T : K → CB(K) be a multivalued nonexpansive mapping with convex-values. Then I − T is
demi-closed at zero.

Lemma 2.2. [16] Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1−αn)an +αnσn

for all n≥ 0, where {αn} is a sequence in (0,1) and {σn} is a sequence in R such that (a) ∑
∞
n=0 αn = ∞,

(b) limsupn→∞ σn ≤ 0 or ∑
∞
n=0 |σnαn|< ∞. Then lim

n→∞
an = 0.

Lemma 2.3. [19] Let tn be a sequence of real numbers that does not decrease at infinity in a sense that
there exists a subsequence tni of tn such that tni such that tni ≤ tni+1 for all i ≥ 0. For sufficiently large
numbers n ∈ N, an integer sequence {τ(n)} is defined as follows:

τ(n) = max{k ≤ n : tk ≤ tk+1}.

Then, τ(n)→ ∞ as n→ ∞ and

max{tτ(n), tn} ≤ tτ(n)+1.

The following lemma appears implicitly in [3].

Lemma 2.4. [3] Let C be a nonempty closed convex subset of H and let f be a bifunction of C×C into
R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there exists z ∈C such that

f (z,y)+
1
r
〈y− z,z− x〉 ≥ 0, ∀y ∈C.

The following lemma was given in [6].

Lemma 2.5. [6] Assume that f : C×C→ R is a bifunction satisfying conditions (A1)-(A4). For r > 0
and x ∈ H, define a mapping Tr : H→C as follows

Tr(x) = {z ∈C, f (z,y)+
1
r
〈y− z,z− x〉 ≥ 0, ∀y ∈C}, ∀x ∈ H.

Then, the following hold:
1.Tr is single-valued;
2.Tr is firmly nonexpansive, i.e., ‖Tr(x)−Tr(y)‖2 ≤ 〈Trx−Try,x− y〉, ∀x,y ∈ H;
3.F(Tr) = EP( f );
4. EP( f ) is closed and convex.

Lemma 2.6. [26] Let K be a nonempty closed and convex subset of a real Hilbert space H and let A be
a monotone, hemicontinuous map of K into H. Let B⊂ H×H be an operator defined as follows:

Bz =

{
Az+NK(z), if z ∈ K,

/0, if z /∈ K,

where NK(z) is the normal cone to K at z and defined by

NK(z) = {w ∈ H : 〈w,z− v〉 ≥ 0 ∀ v ∈ K}.

Then, B is maximal monotone and B−1(0) =V I(K,A).
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Lemma 2.7. [24] Let H be a real Hilbert space and let K be a nonempty, closed convex subset of H. Let
A : K → H be an α-inverse strongly monotone mapping. Then, I−θA is nonexpansive for all x,y ∈ K
and θ ∈ [0,2α].

3. MAIN RESULTS

Now, we are ready to present our main result.

Theorem 3.1. Let K be a nonempty, closed convex cone of a real Hilbert space H and let A : K → H
be an α-inverse strongly monotone operator. Let f be a bifunction from K×K → R satisfying (A1)-
(A4). Let T : K→CB(K) be a multivalued quasi-nonexpansive mapping such that G := EP( f )∩F(T )∩
V I(K,A) 6= /0 and T p = {p}, ∀p ∈ G. Let {xn} be a sequence defined as follows:

x0 ∈ K,

f (un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈ K

zn = PK(I−θnA)un,

yn = βnzn +(1−βn)vn, vn ∈ T zn,

xn+1 = αn(λnxn)+(1−αn)yn,

(3.1)

where {αn}, {βn}, {λn} and {θn} are real sequences in (0,1), and {rn} is a real positive sequence
satisfying the following conditions:
(i) lim

n→∞
αn = 0, (ii) lim

n→∞
infβn(1−βn)> 0 and θn ∈ [a,b]⊂

(
0, min{1, 2α}

)
,

(iii) lim
n→∞

λn = 1, ∑
∞
n=0(1−λn)αn = ∞ and lim

n→∞
infrn > 0.

If I − T is demiclosed at the origin, then, the sequences {xn} and {zn} generated by (3.1) converge
strongly to x∗ = PG(0), where PG is the metric projection from K onto G.

Proof. First, we prove that the sequence {xn} is bounded. Let p ∈ G. It follows from Lemma 2.7 that

‖zn− p‖= ‖PK(I−θnA)un− p‖ ≤ ‖un− p‖= ‖Trnxn−Trn p‖ ≤ ‖xn− p‖.

Since T is quasi-nonexpansive, we have

‖yn− p‖ ≤ βn‖zn− p‖+(1−βn)‖vn− p‖

≤ βn‖zn− p‖+(1−βn)H(T zn,T p)

≤ ‖zn− p‖.

Hence,

‖yn− p‖ ≤ ‖zn− p‖ ≤ ‖un− p‖ ≤ ‖xn− p‖. (3.2)
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Using (3.1) and (3.2), we have

‖xn+1− p‖ = ‖αn(λnxn)+(1−αn)yn− p‖

≤ αnλn‖xn− p‖+(1−αn)‖yn− p‖+(1−λn)αn‖p‖

≤ αnλn‖xn− p‖+(1−αn)‖xn− p‖+(1−λn)αn‖p‖

≤ [1− (1−λn)αn]‖xn− p‖+(1−λn)αn‖p‖

≤ max{‖xn− p‖, ‖p‖}.

By induction, it is easy to see that

‖xn− p‖ ≤max{‖x0− p‖, ‖p‖}.

Hence {xn} is bounded, so are {zn}, and {T xn}. From (3.1) and (3.2), we have

‖yn− p‖2 = ‖βnzn +(1−βn)vn− p‖2

= (1−βn)‖vn− p‖2 +βn‖zn− p‖2−βn(1−βn)‖vn− zn‖2.

≤ (1−βn)H(T zn,T p)2 +βn‖zn− p‖2−βn(1−βn)‖zn− vn‖2

Hence,

‖yn− p‖2 ≤ ‖xn− p‖2−βn(1−βn)‖zn− vn‖2. (3.3)

This implies that

‖xn+1− p‖2 = ‖αnλn
(
xn− p

)
+(1−αn)

(
yn− p

)
− (1−λn)αn p‖2

≤ ‖αn
(
λnxn−λn p

)
+(1−αn)

(
yn− p

)
‖2 +2(1−λn)αn〈p, p− xn+1〉

≤ αnλ
2
n ‖xn− p‖2 +(1−αn)‖yn− p‖2 +2(1−λn)αn〈p, p− xn+1〉

≤ αnλn‖xn− p‖2 +(1−αn)
[
‖xn− p‖2−βn(1−βn)‖zn− vn‖2]

+2(1−λn)αn〈p, p− xn+1〉

≤ [1− (1−λn)αn]‖xn− p‖2− (1−αn)βn(1−βn)‖zn− vn‖2

+2(1−λn)αn〈p, p− xn+1〉.

Therefore,

(1−αn)βn(1−βn)‖zn− vn‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +2(1−λn)αn〈p, p− xn+1〉. (3.4)

Since {xn} is bounded, there exists a constant B > 0 sucht that

(1−λn)〈p, p− xn+1〉 ≤ B, for all n≥ 0.

Hence,

(1−αn)βn(1−βn)‖zn− vn‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +2αnB. (3.5)

Now we prove that {xn} converges strongly to x∗.
We divide the proof into two cases.
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Case 1. Assume that the sequence {‖xn− p‖} is monotonically decreasing sequence. Then {‖xn− p‖}
is convergent. Clearly, we have

lim
n→∞
‖xn− p‖2−‖xn+1− p‖2 = 0. (3.6)

It then implies from (3.5) that

lim
n→∞

(1−αn)βn(1−βn)‖zn− vn‖2 = 0. (3.7)

Using the fact that lim
n→∞

infβn(1−βn)> 0, we have

lim
n→∞
‖zn− vn‖= 0. (3.8)

Hence,

lim
n→∞

d(zn,T zn) = 0. (3.9)

From (3.1), the convexity of ‖.‖2 and Lemma 2.7, we have

‖xn+1− p‖2 = ‖αn(λnxn)+(1−αn)yn− p‖2

≤ αn‖(λnxn)− p‖2 +(1−αn)‖yn− p‖2

≤ αn‖(λnxn)− p‖2 +(1−αn)‖zn− p‖2

= αn‖(λnxn)− p‖2 +(1−αn)‖PK(I−θnA)un−PK(I−θnA)p‖2

≤ αn‖(λnxn)− p‖2 +(1−αn)
[
‖un− p‖2 +θn(θn−2α)‖Aun−Ap‖2

]
≤ αn‖(λnxn)− p‖2 +(1−αn)‖xn− p‖2 +(1−αn)a(b−2α)‖Aun−Ap‖2.

Therefore,

(1−αn)a(2α−b)‖Aun−Ap‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +αn‖(λnxn)− p‖2.

Since αn→ 0 as n→ ∞, and {xn} is bounded, we obtain

lim
n→∞
‖Aun−Ap‖2 = 0. (3.10)

On the other hand, we have

‖zn− p‖2

= ‖PK(I−θnA)un−PK(I−θnA)p‖2

≤ 〈zn− p,(I−θnA)un− (I−θnA)p〉

=
1
2

[
‖(I−θnA)un− (I−θnA)p‖2 +‖zn− p‖2−‖(I−θnA)un− (I−θnA)p− (zn− p)‖2

]
≤ 1

2

[
‖un− p‖2 +‖zn− p‖2−‖un− zn‖2 +2θn〈zn− p,Aun−Ap〉−θn

2‖Aun−Ap‖2
]

≤ 1
2

[
‖xn− p‖2 +‖zn− p‖2−‖un− zn‖2 +2θn〈zn− p,Aun−Ap〉−θn

2‖Aun−Ap‖2
]
.

So,

‖zn− p‖2 ≤ ‖xn− p‖2−‖un− zn‖2 +2θn〈zn− p,Aun−Ap〉−θn
2‖Aun−Ap‖2,
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which implies

‖xn+1− p‖2 ≤ αn‖(λnxn)− p‖2 +(1−αn)‖yn− p‖2

≤ αn‖(λnxn)− p‖2 +(1−αn)‖zn− p‖2

≤ αn‖(λnxn)− p‖2 +‖xn− p‖2− (1−αn)‖un− zn‖2− (1−αn)θn
2‖Aun−Ap‖2

+ 2θn(1−αn)〈zn− p,Aun−Ap〉.

Since αn→ 0 as n→ ∞, and (3.10), we obtain

lim
n→∞
‖un− zn‖2 = 0. (3.11)

Letting p ∈ G, we have

‖un− p‖2 = ‖Trnxn−Trn p‖2

≤ 〈Trnxn−Trn p,xn− p〉

≤ 〈un− p,xn− p〉

=
1
2
(‖un− p‖2 +‖xn− p‖2−‖xn−un‖2)

and hence

‖un− p‖2 ≤ ‖xn− p‖2−‖xn−un‖2. (3.12)

Therefore, from (3.1), and (3.12), we get that

‖xn+1− p‖2 ≤ ‖αn((λnxn)− p)+(1−αn)(yn− p)‖2

≤ (1−αn)
2‖yn− p‖2 +2αn〈(λnxn)− p,xn+1− p〉

≤ (1−αn)
2‖un− p‖2 +2αnλn〈xn− p,xn+1− p〉+2(1−λn)αn〈p,xn+1− p〉

≤ (1−2αn +α
2
n )‖xn− p‖2− (1−αn)

2‖xn−un‖2 +2αnλn‖xn− p‖‖xn+1− p‖

+2αn(1−λn)‖p‖‖xn+1− p‖

≤ ‖xn− p‖2 +αn‖xn− p‖2− (1−αn)
2‖xn−un‖2 +2αnλn‖xn− p‖‖xn+1− p‖

+2αn(1−λn)‖p‖‖xn+1− p‖.

In view of (3.6), we have

lim
n→∞
‖xn−un‖= 0. (3.13)

Using (3.11) and (3.13), we have

lim
n→∞
‖xn− zn‖= 0. (3.14)

Since H is reflexive and {xn} is bounded, there exists a subsequence {xnk} of {xn} such that {xnk}
converges weakly to ω in K and

limsup
n→+∞

〈x∗,x∗− xn〉= lim
k→+∞

〈x∗,x∗− xnk〉.

From (3.9) and the fact that I−T is demiclosed, we obtain ω ∈ F(T ). Let us show ω ∈V I(K,A).
Now, let us introduce a multivalued map B : H→ 2H defined by

Bz =

{
Az+NK(z), z ∈ K,

/0, z /∈ K,
(3.15)
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where NK(z) is the normal K at z defined by

NK(z) = {w ∈ H : 〈w,z− v〉 ≥ 0, ∀,v ∈ K}.

From Lemma 2.6, we have that B is maximal monotone and B−1(0) =V I(K,A). Let (u,v)∈G(A). Since
v−Au ∈ NK(u) and zn ∈ K, we have

〈u− zn,v−Au〉 ≥ 0.

On other hand, from zn = PK(I−θnA)un, we have, 〈u− zn,zn− (I−θnA)un〉 ≥ 0. Hence

〈u− zn,
zn−un

θn
+Aun〉 ≥ 0.

Therefore,

〈u− znk ,v〉 ≥ 〈u− znk ,Au〉

≥ 〈u− znk ,Au〉−〈u− znk ,
znk −unk

θnk

+Aunk〉

≥ 〈u− znk ,Au−Aznk〉+ 〈u− znk ,Aznk −Aunk〉−〈u− znk ,
znk −unk

θnk

〉

≥ 〈u− znk ,Aznk −Aunk〉−〈u− znk ,
znk −unk

θnk

〉.

By using the fact that A is
1
α

-Lipschitz, we have

〈u− znk ,v〉 ≥ −N
(‖znk −unk‖

α
+
‖znk −unk‖

a

)
.

where N is a positive constant such that supk≥1{‖u− znk‖} ≤M. Since znk ⇀ ω , it follows from (3.11)
that 〈u−ω,v〉 ≥ 0 as k→ ∞. Since B is maximal monotone, we have ω ∈ B−1(0) and we obtain that
ω ∈V I(K,A). By using (3.13), we have unk ⇀ ω. Let us show ω ∈ EP( f ). It follows by Lemma 2.4 and

(A2) that
1
rn
〈y−un,un− xn〉 ≥ f (y,un). Hence

〈y−unk ,
unk − xnk

rnk

〉 ≥ f (y,unk).

Since
unk − xnk

rnk

→ 0 and unk ⇀ ω, it follows (A4) that f (y,ω)≤ 0 for all y ∈ K. For t with 0 < t < 1 and

y ∈ K, since y ∈ K and ω ∈ K, we have yt ∈ K, where yt = ty+(1− t)ω. Hence f (yt ,ω)≤ 0. So, from
(A1) and (A4), we have

0 = f (yt ,yt)≤ t f (yt ,y)+(1− t) f (yt ,ω)≤ t f (yt ,y).

It follows that 0≤ f (yt ,y). From (A3), we have f (ω,y)≥ 0 for all y ∈ K and hence ω ∈ EP( f ). There-
fore, ω ∈ G. From x∗ = PG(0), we have

limsup
n→+∞

〈x∗,x∗− xn〉 = lim
k→+∞

〈x∗,x∗− xnk〉

= 〈x∗,x∗−ω)〉 ≤ 0.
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Finally, we show that xn→ x∗. From (3.1), we get that

‖xn+1− x∗‖2

= 〈xn+1− x∗,xn+1− x∗〉= αnλn〈xn− x∗,xn+1− x∗〉+(1−λn)αn〈x∗,x∗− xn+1〉

+ (1−αn)〈yn− x∗,xn+1− x∗〉

≤ αnλn〈xn− x∗,xn+1− x∗〉+(1−λn)αn〈x∗,x∗− xn+1〉+(1−αn)‖yn− x∗‖‖xn+1− x∗‖

≤ [1− (1−λn)αn]‖xn− x∗‖‖xn+1− x∗‖+(1−λn)αn〈x∗,x∗− xn+1〉

≤ 1− (1−λn)αn

2
(‖xn− x∗‖2 +‖xn+1− x∗‖2)+(1−λn)αn〈x∗,x∗− xn+1〉,

which implies that

‖xn+1− x∗‖2 ≤ [1− (1−λn)αn]‖xn− x∗‖+2(1−λn)αn〈x∗,x∗− xn+1〉.

We can check that all the assumptions of Lemma 2.2 are satisfied. Therefore, we deduce xn→ x∗.

Case 2. Assume that the sequence {‖xn− x∗‖} is not monotonically decreasing sequence.
Let Bn = ‖xn− x∗‖ and τ : N→ N be a mapping for all n≥ n0 (for some n0 large enough) by τ(n) =

max{k ∈ N : k ≤ n, Bk ≤ Bk+1}. We have τ is a non-decreasing sequence such that τ(n)→ ∞ as n→ ∞

and Bτ(n) ≤ Bτ(n)+1 for n≥ n0. From (3.5), we have

(1−ατ(n))βτ(n)(1−βτ(n))‖zτ(n)− vτ(n)‖2 ≤ 2ατ(n)B→ 0 as n→ ∞.

Furthermore, we have ‖zτ(n)− vτ(n)‖→ 0 as n→ ∞. Hence,

lim
n→∞

d
(

zτ(n),T zτ(n)

)
= 0. (3.16)

By the same argument as in case 1, we can show that xτ(n) converges weakly in H and

limsup
n→+∞

〈x∗,x∗− xτ(n)〉 ≤ 0.

We have, for all n≥ n0,

0≤ ‖xτ(n)+1− x∗‖2−‖xτ(n)− x∗‖2 ≤
(

1−λτ(n)

)
ατ(n)[−‖xτ(n)− x∗‖2 +2〈x∗,x∗− xτ(n)+1〉],

which implies that

‖xτ(n)− x∗‖2 ≤ 2〈x∗,x∗− xτ(n)+1〉.

Then, limn→∞‖xτ(n)− x∗‖2 = 0 and limn→∞ Bτ(n) = limn→∞ Bτ(n)+1 = 0. Using Lemma 2.3, we conclude
that

0≤ Bn ≤max{Bτ(n), Bτ(n)+1}= Bτ(n)+1.

Hence, limn→∞ Bn = 0, that is, {xn} converges strongly to x∗. This completes the proof. �

If T is not multivalued quasi-nonexpansive, then the condition that I− T is demiclosed can be re-
moved.
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Theorem 3.2. Let K be a nonempty, closed convex cone of a real Hilbert space H and let A : K → H
be an α-inverse strongly monotone operator. Let f be a bifunction from K×K → R satisfying (A1)-
(A4). Let T : K → CB(K) be a multivalued nonexpansive mapping with convex-values such that G :=
EP( f )∩F(T )∩V I(K,A) 6= /0 and T p = {p}, ∀p ∈ G. Let {xn} be a sequence defined as follows:

x0 ∈ K,

f (un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈ K

zn = PK(I−θnA)un,

yn = βnzn +(1−βn)vn, vn ∈ T zn,

xn+1 = αn(λnxn)+(1−αn)yn,

(3.17)

where {αn}, {βn}, {λn} and {θn} are real sequences in (0,1), and {rn} is a real positive sequence
satisfying the following conditions:
(i) lim

n→∞
αn = 0, (ii) lim

n→∞
infβn(1−βn)> 0 and θn ∈ [a,b]⊂

(
0, min{1, 2α}

)
,

(iii) lim
n→∞

λn = 1,
∞

∑
n=0

(1−λn)αn = ∞ and lim
n→∞

infrn > 0.

Then, the sequences {xn} and {zn} generated by (3.17) converge strongly to x∗ = PG(0), where PG is the
metric projection from K onto G.

Proof. Since every multivalued nonexpansive mapping with fixed points is multivalued quasi-nonexpansive,
we can obtain from Lemma 2.1 and Theorem 3.1 the desired conclusion easily. �

Remark 3.1. In our theorems, we assume that K is a cone. In some cases, for example, if K is the closed
unit ball, we can weaken this assumption to the following: λx∈K for all λ ∈ (0,1) and x∈K. Therefore,
our results can be used to approximate a common element of the set of fixed points of multivalued quasi-
nonexpansive mapping, the set of solutions of variational inequality problems and the set of solutions of
equilibrium problems from the closed unit ball to itself.

Corollary 3.1. Let H be a real Hilbert space and let B be a closed unit ball of H. Let A : B→H be an α-
inverse strongly monotone operator and let f be a bifunction from B×B→ R satisfying (A1)-(A4). Let
T : B→CB(B) be a multivalued quasi-nonexpansive mapping such that G :=EP( f )∩F(T )∩V I(K,A) 6=
/0 and T p = {p}, ∀p ∈ G. Let {xn} be a sequence defined as follows:

x0 ∈ B,

f (un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈ B

zn = PK(I−θnA)un,

yn = βnzn +(1−βn)vn, vn ∈ T zn,

xn+1 = αn(λnxn)+(1−αn)yn,

(3.18)
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where {αn}, {βn}, {λn} and {θn} are real sequences in (0,1), and {rn} is a real positive sequence
satisfying the following conditions:
(i) lim

n→∞
αn = 0, (ii) lim

n→∞
infβn(1−βn)> 0 and θn ∈ [a,b]⊂

(
0, min{1, 2α}

)
,

(iii) lim
n→∞

λn = 1,
∞

∑
n=0

(1−λn)αn = ∞ and lim
n→∞

infrn > 0.

If I− T is demiclosed at the origin, then the sequences {xn} and {zn} generated by (3.18) converge
strongly to x∗ = PG(0), where PG is the metric projection from K onto G.

Finally, we consider the following optimization problem:

min
x∈K

g(x), (3.19)

where K is a nonempty, closed convex cone of a real Hilbert space H and g is a continuously Fréchet
differentiable, convex functional on K. We denote the set of solutions of Problem (3.19) by Ω.

Lemma 3.1. [2] Let H be a real Hilbert space. Let g be a continuously Fréchet differentiable, convex
functional on H and ∇g the gradient of g. If ∇g is 1

α
-Lipschitz continuous, then ∇g is α-inverse strongly

monotone.

Theorem 3.3. Let K be a nonempty, closed convex cone of a real Hilbert space H. Let g : K → R be
a continuously Fréchet differentiable, convex functional on K with a 1

α
-Lipschitz continuous ∇g. Let

f be a bifunction from K×K → R satisfying (A1)-(A4). Let T : K → CB(K) be a multivalued quasi-
nonexpansive mapping such that EP( f )∩F(T )∩Ω 6= /0 and T p = {p}, ∀p ∈ EP( f )∩F(T )∩Ω. Let
{xn} be a sequence defined as follows:

x0 ∈ K,

f (un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈ K

zn = PK(I−θn∇g)un,

yn = βnzn +(1−βn)vn, vn ∈ T zn,

xn+1 = αn(λnxn)+(1−αn)yn,

(3.20)

where {βn}, {λn}, {θn} and {αn} are sequences in (0,1) satisfying the following conditions:
(i) lim

n→∞
αn = 0, (ii) lim

n→∞
infβn(1−βn)> 0 and θn ∈ [a,b]⊂

(
0, min{1, 2α}

)
,

(iii) lim
n→∞

λn = 1 and
∞

∑
n=0

(1−λn)αn = ∞.

If I− T is demiclosed at the origin, then, the sequences {xn} and {zn} generated by (3.20) converge
strongly to an element of EP( f )∩F(T )∩Ω.

Proof. Using the properties of f , it follows from Lemma 3.1 that ∇ f is α-inverse strongly monotone
on K. It is known that a necessary condition of optimality for a point x∗ ∈ K to be a solution of the
minimization problem (3.19) is that x∗ solves variational inequality problem V I(K,∇g). This completes
the proof. �
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