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Abstract. In this paper, we introduce an iterative process, which converges strongly to the solution of a general
split fixed point problem governed by demicontractive mappings and prove strong convergence theorems in Banach
spaces.
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1. INTRODUCTION

Let C be a nonempty, closed and convex subset of a real Banach space E. Let T : C→C be
a nonlinear mapping and let the fixed point set of T be denoted by F(T ). Let f : E → R be
a nonnegative lower semicontinuous (l.s.c) convex function. Recall that the general split fixed
point problem (GSFPP) is to

find x∗ ∈ F(T ) such that f (x∗) = 0. (1.1)

The solution set of the general split fixed point problem is denoted by Ω. If, in (1.1), E =
E1×E2, where E1 and E2 are real Banach spaces, and f : E→ R and T : E→ E are defined by

f (x,y) =
1
2
||Ax−By||2 and T (x,y) = (T1x,T2y),

where A : E1→ E3 and B : E2→ E3 are two bounded linear mappings, where E3 the third real
Banach space, and T1 : E1→ E1 and T2 : E2→ E2 are nonlinear mappings. Then, we can easily
see that F(T ) = F(T1)×F(T2) and problem (1.1) coincides with the split equality fixed point
problem (SEFPP) given by

find x∗ ∈ F(T1) and y∗ ∈ F(T2) such that Ax∗ = By∗, (1.2)

which allows asymmetric and partial relations between the variables x and y. The interest in
SEFPP is to cover many situations, for instance, fully discretized models of inverse problems,
which arise from medical image reconstruction; see, e.g., [3, 5, 6]).
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If, in (1.2), E2 = E3 and B = I, the identity mapping, then split equality problem (1.2) is
reduced to the following split common fixed point problem (SCFPP) (originally introduced in
Censor and Segal [3]), which is to

find x∗ ∈ F(T1) such that Ax∗ ∈ F(T2). (1.3)

The problem SCFPP is a core for modelling many significant real-world inverse problems, such
as, radiation therapy treatment planning, data compression, magnetic resonance imaging, neural
networks and graph matching. For more details and other examples, we refer to [2, 12] and the
references therein.

Recently, many authors proposed various methods for solving the problems related to SEFPP
and SCFPP or their particular cases; see, e.g., [2, 4, 5, 7, 8, 9, 11]. However, most of them used
the iterative methods, which depend on the associated operator norms ||A|| and ||B||. This may
not be an easy task to compute in applications. To overcome this numerical drawback, many
authors further proposed some new iterative methods for solving the problems of SEFPP and
SCFPP governed by some type of nonlinear mappings without requiring any prior knowledge
of the associated operator norms; see, e.g., [12, 18, 19, 20].

Now, we give the definitions of the nonlinear mappings involved in this paper. Let C be a
nonempty subset of a real Banach space E whose dual is denoted by E∗. A mapping T : C→ E
is said to be L-Lipschitz if

||T x−Ty|| ≤ L||x− y||, ∀x,y ∈C.

If L = 1, then T is said to be nonexpansive. Recall that T is said to be quasi-nonexpansive if
F(T ) 6= /0 and

||T x−T x∗|| ≤ ||x− x∗||, ∀x ∈C,x∗ ∈ F(T ).
T is said to be firmly quasi-nonexpansive if F(T ) 6= /0 and

||T x−T x∗||2 ≤ ‖x− x∗‖2−||x−T x||2, ∀x ∈C,x∗ ∈ F(T ).

We observe that the class of quasi-nonexpansive mappings includes the class of nonexpansive
mappings with F(T ) 6= /0 and the class of firmly quasi-nonexpansive mappings.

Recall that a mapping T : C → E is said to be k-strictly pseudocontractive if there exists
k ∈ (0,1) such that

〈T x−Ty, jq(x− y)〉 ≤ ||x− y||q− k||x− y− (T x−Ty)||q, ∀x,y ∈C, (1.4)

for jq(x) ∈ Jq(x), where Jq is defined by

Jq (x) := {x∗ ∈ E∗ : 〈x,x∗〉= ‖x‖q ,‖x∗‖= ‖x‖q−1},
for q > 1. In particular, Jq = J2 = J is called the normalized duality mapping. It is known that
E is smooth if and only if Jq is single-valued. Furthermore, we have the following properties:

1. Jq(x) = ||x||q−2J(x) for all x ∈ E with x 6= 0.
2. Jq(tx) = tq−1Jq(x) for all x ∈ E and t ∈ [0,∞).
3. Jq(−x) =−Jq(x) for all x ∈ E.

It is known that if E is uniformly smooth and uniformly convex, then the duality mapping Jp

from E∗ into 2E , where p > 1 such that 1
q +

1
p = 1, is one-to-one, single-valued and satisfies

Jp = (Jq)
−1 (see [13]). If E := H is a real Hilbert space, then q = 2 and J2 = J = I, where I is

the identity mapping. The duality mapping Jq from a smooth Banach space E into E∗ is said to
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be weakly sequentially continuous generalized duality mapping if, for all {xn}⊂ E with xn ⇀ x,
Jq(xn)⇀

∗ Jq(x).
Recall that T is said to be demicontractive if F(T ) 6= /0 and there exists k ∈ (0,1) such that

〈T x− x∗, jq(x− x∗)〉 ≤ ||x− x∗||q− k||x−T x||q, for all x ∈C,x∗ ∈ F(T ).

(1.5)

We remark that in Hilbert spaces, (1.4) and (1.5) are equivalent to the inequalities

||T x−Ty||2 ≤ ||x− y||2 +κ||(x− y)− (T x−Ty)||2, for κ = (1−2k)< 1,

(1.6)

and

||T x−T x∗||2 ≤ ||x− x∗||2 +κ||x−T x||2, for κ = (1−2k)< 1, (1.7)

respectively. Clearly, every k-strictly pseudocontractive mapping T with a nonempty fixed point
set is demicontractive. In addition, we observe that, in Hilbert spaces, the class of demi-
contractive mappings includes the class of quasi-nonexpansive and hence the class of firmly
quasi-nonexpansive mappings. In [18, 19], the authors obtained weak convergence results to
a solution of the split equality fixed point problem (1.2) governed by quasi-nonexpansive op-
erators. On the other hand, Zhao and Zhang [20] proved a strong convergence result under
the assumption that the mapping T is firmly quasi-nonexpansive. More recently, Giang et al.
[10] constructed an iterative scheme for approximating solutions of the problem (1.1) governed
by quasi-nonexpansive mappings and proved the strong convergence of the scheme in Hilbert
spaces. These works lead to the following important question.

Question 1.1. Can we obtain an iterative scheme, which converges strongly to a solution of
the general split fixed point problem governed by a more general class of mappings in Banach
spaces?

In this paper, it is our purpose to construct an algorithm, which converges strongly to a
solution of the problem (1.1) governed by demicontractive self mappings without requiring any
prior knowledge of the associated operator norms in q-uniformly smooth Banach spaces. Our
theorems extend and complement the existing results in this research direction.

2. PRELIMINARIES

Let E be a real Banach Space. The modulus of smoothness of E is the function ρE : [0,∞)→
[0,∞) defined by

ρE(τ) := sup{1
2
(‖x+ y‖+‖x− y‖)−1 : ‖x‖= 1,‖y‖= τ}.

If ρE(τ)> 0 for all τ > 0, then E is said to be smooth. If there exists a constant c > 0 and a real
number 1 < q < ∞ such that ρE(τ)≤ cτq, then E is said to be q-uniformly smooth.

It is known (see, for example, [1]) that

Lp ( lp) or W p
m is

{
q−uni f ormly smooth i f 1 < q < 2;
2−uni f ormly smooth i f q≥ 2.
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If E is a q-uniformly smooth real Banach space, we have from [15] the following geometric
inequality

‖x+ y‖q ≤ ‖x‖q +q
〈
y,Jq(x)

〉
+ cq ‖y‖q , (2.1)

for all x,y ∈ E, where cq > 0 is the best q-uniformly smooth constant of the space. If E = H, a
real Hilbert space, then q = 2 and cq = 1.

A real Banach space E is called strictly convex if, for all x,y ∈ E, x 6= y, ||x|| = ||y|| = 1,
||λx + (1− λ )y|| < 1, ∀λ ∈ (0,1). The Banach space E is said to be uniformly convex if,
∀ε > 0, there exists δ > 0 such that, for all x,y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε ,∥∥1

2(x+ y)
∥∥ ≤ 1− δ . It is well known that Lp, `p and Sobolev spaces W p

m , (1 < p < ∞), are
uniformly convex. It is also known that E is q-uniformly smooth if and only if E∗ is p-uniformly
convex, where p > 1 satisfying 1

p +
1
q = 1 (see, e.g., [13]).

Let C be a nonempty, closed and convex subset of E. The metric projection

PCx = argmin
y∈C
||x− y||,x ∈ E,

is the unique minimizer of the norm distance, which can be characterized by the following
variational inequality:

〈x−PCx,Jq(z−PCx)〉 ≤ 0,∀z ∈C. (2.2)

We next state the following lemmas, which will be used in the sequel.

Lemma 2.1. [15] Let p > 1, and r > 0 be two fixed real numbers. Then E is uniformly convex
if and only if there exists a continuous, strictly increasing and convex function

g : R+→ R+,g(0) = 0,

such that, for all x,y ∈ Br = {x ∈ E : ||x|| ≤ r} and 0≤ λ ≤ 1,

||λx+(1−λ )y||p ≤ λ ||x||p +(1−λ )||y||p−Wp(λ )g(||x− y||), (2.3)

where Wp(λ ) := λ p(1−λ )+λ (1−λ )p.

Lemma 2.2. [17] Let E be a real q-uniformly smooth Banach space, and let C be a closed
convex subset of E. Let T : C→C be a demicontractive mapping with constant k and F(T ) 6= /0.
For α ∈ (0,1), we define Tαx := (1−α)x + αT x, for all x ∈ C. If α ∈ [0,µ], where µ =

min{1,(qk
cq
)

1
q−1}, then F(T ) = F(Tα) and

||Tαx−Tαx∗||q ≤ ||x− x∗||q−α(qk− cqα
q−1)||(x−T x)||q.

(2.4)

Lemma 2.3. [15] Let E be a real normed linear space, and Jq : E → 2E∗,1 < q < ∞, be the
generalized duality mapping. Then, for any x,y ∈ E, the following inequality holds.

||x+ y||q ≤ ||x||q +q〈y, jq(x+ y)〉,
for all jq(x+ y) ∈ Jq(x+ y).

Lemma 2.4. [17] Let C be a nonempty, closed and convex subset of a real q-uniformly smooth
space E. Let Ti : C → E, i = 1, ...,N, be λi−strictly pseudocontractive mappings such that
∩N

i=1F(Ti) 6= /0. Let T := θ1T1 + θ2T2 + ...+ θNTN with θ1 + θ2 + ...+ θN = 1. Then T is λ -
strictly pseudocontractive with λ := min{λi : i = 1,2, ...,N} and F(T ) = ∩N

i=1F(Ti).



A GENERAL SPLIT FIXED POINT PROBLEM 227

Lemma 2.5. [21] Let E be a real uniformly convex Banach space, and let K a be nonempty
closed convex subset of E. Let T : K→ K be a continuous pseudo-contractive mapping. Then,
(I−T ) is demiclosed at zero, that is, for any sequence {xn} ⊂C with {xn} converging weakly
to x∗, and xn−T xn→ 0, we have x∗ = T x∗.

Lemma 2.6. [16] Let {an} be a nonnegative real number sequences such that

an+1 ≤ (1−αn)an +αnδn,n≥ n0,

where {αn}⊂ (0,1) and {δn}⊂R satisfy the following conditions: limsup
n→∞

δn≤ 0 and ∑
∞
n=1 αn =

∞. Then, lim
n→∞

an = 0.

Lemma 2.7. [14] Let {an} be real number sequence such that there exists a subsequence {ni}
of {n}, which satisfies ani < ani+1 for all i ∈ N. Then there exists a nondecreasing sequence
{mk} ⊂ N such that mk→∞ and the following properties are satisfied by all (sufficiently large)
numbers k ∈ N: amk ≤ amk+1 and ak ≤ amk+1. Indeed, mk = max{ j ≤ k : a j < a j+1}.

3. MAIN RESULT

For the rest of this paper, let E be a q-uniformly smooth (1 < q < ∞) and uniformly convex real
Banach spaces E with cq ≤ 1, where cq is a constant in (2.1). Let f : E → R be nonnegative
l.s.c. convex function with dn a search direction and

λn =

{
ρn f (xn)
||dn||p , dn 6= 0;

0, otherwise,

where ρn ∈ (0,q) and p > 1 such that 1
q +

1
p = 1, with the following Assumptions:

A1. 〈dn,xn− x∗〉 ≥ f (xn) for all n ∈ N and for all x∗ ∈Ω = {x ∈ F(T ) : f (z) = 0};
A2. 0 < λ̄ ≤ λn ≤ ¯̄

λ for all n ∈ Γ := {n ∈ N : dn 6= 0} for some λ̄ , ¯̄
λ ∈ R and

A3. infn∈Γ[ρ
q−1
n (q−ρn)]> 0.

We remark that any vector dn ∈ ∂ f (xn), where ∂ f is the subdifferential of f , is an example
of direction vector satisfying Assumption (A1). Indeed, since f (x∗) = 0, we have from the
definition of the subdifferential of a convex function that

0≥ f (xn)+ 〈dn,x∗− xn〉. (3.1)

Thus, Assumption (A1) is satisfied.
Now, we are in a position to prove the following theorem.

Theorem 3.1. Let T : E → E be a demicontractive mapping. Assume that Ω := {x∗ ∈ F(T ) :
f (x∗) = 0} 6= /0. For arbitrary x0,u ∈ E, we define an iterative algorithm by{

un = xn−λnJ−1
q dn,

xn+1 = αnu+(1−αn)
(
(1−bn)un +bnTun)

)
,

(3.2)

where bn ∈ (c,µ] ⊂ (0,1) for some c > 0 and µ < min{1,{qk
cq
}

1
q−1} for all n ≥ 0, and {αn} ⊂

(0,1),∀n≥ 0. Then {xn} is bounded.
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Proof. Let x∗ ∈ Ω, that is, x∗ ∈ F(T ) and f (x∗) = 0. Now, from (3.2) and inequality (2.1), we
get

||un− x∗||q = ||(xn− x∗)−λnJ−1
q dn||q

≤ ||λnJ−1
q dn||q−qλ

q−1
n 〈xn− x∗,dn〉+ cq||xn− x∗||q

≤ λ
q
n ||dn||p−qλ

q−1
n 〈xn− x∗,dn〉+ cq||xn− x∗||q

≤ ||xn− x∗||q−qλ
q−1
n f (xn)+λ

q
n ||dn||p

= ||xn− x∗||q−qρ
q−1
n

f (xn)
q

||dn||q
+ρ

q
n

f (xn)
q

||dn||q

= ||xn− x∗||q−ρ
q−1
n (q−ρn)

f (xn)
q

||dn||q
(3.3)

≤ ||xn− x∗||q, (3.4)

Furthermore, from (3.2), Lemmas 2.1 and ??, and the definition of λn, we find

||xn+1− x∗||q = ||αn(u− x∗)+(1−αn)((1−bn)un +bnTun− x∗)||q

≤ αn||u− x∗||q +(1−αn)||(1−bn)un +bnTun− x∗||q

≤ αn||u− x∗||q +(1−αn)
[
||un− x∗||q

−bn(qk− cqbq−1
n )||Tun−un||q

]
≤ αn||u− x∗||q +(1−αn)||xn− x∗||q− (1−αn)ρ

q−1
n (q−ρn)

f (xn)
q

||dn||q

−(1−αn)bn(qk− cqbq−1
n )||Tun−un||q. (3.5)

From the hypothesis, we have

qk− cqbq−1
n > 0 and inf

n→∞
ρ

q−1
n (q−ρn)> 0. (3.6)

Thus, inequality (3.5) implies that

||xn+1− x∗||q ≤ αn||u− x∗||q +(1−αn)||xn− x∗||q. (3.7)

It follows that

||xn+1− x∗||q ≤ max{||u− x∗||q, ||x0− x∗||q},∀n≥ 0,

which shows that {xn} and {un} are bounded. This completes the proof. �

Theorem 3.2. Let E admit a weakly sequentially continuous generalized duality mapping. Let
T : E → E be a demicontractive mapping such that (I − T ) is demiclosed at zero. Assume
that Ω := {x∗ ∈ F(T ) : f (x∗) = 0} 6= /0 and {αn} ⊂ (0,d] ⊂ (0,1) for some d > 0, satisfying
lim
n→∞

αn = 0, ∑
∞
n=0 αn = ∞. Let the sequence {xn} be defined by (3.2). Then, {xn} converges

strongly to an element x∗ = PΩu ∈Ω, where PΩ is the metric projection onto Ω
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Proof. From Theorem 3.1, we have that {xn} is bounded. Let x∗ = PΩu. Now, from (3.2),
Lemmas ??, 2.3 and (3.3), we get that

||xn+1− x∗||q = ||αnu+(1−αn)((1−bn)un +bnTun)− x∗||q

= ||αn(u− x∗)+(1−αn)((1−bn)un +bnTun− x∗)||q

≤ (1−αn)||(1−bn)un +bnTun− x∗||q

+qαn〈u− x∗,Jq(xn+1− x∗)〉
≤ (1−αn)||un− x∗||q +qαn〈u− x∗,Jq(xn+1− x∗)〉
−(1−αn)(qk− cqbq−1

n )bn||(I−T )un||q

≤ (1−αn)||xn− x∗||q +qαn〈u− x∗,Jq(xn+1− x∗)〉

−ρ
q−1
n (q−ρn)(1−αn)

f (xn)
q

||dn||q
− (1−αn)(qk− cqbq−1

n )bn

×||(I−T )un||q. (3.8)

Next, we show that the sequence {||xn− x∗||} converges strongly to zero. For this, we consider
two possible cases on {||xn− x∗||}.
Case 1. Suppose that there exists n0 ∈ N such that {||xn− x∗||} is decreasing for all n ≥ n0.
In this situation, {||xn− x∗||)} is convergent. Thus, from (3.8), the hypothesis and the fact that
αn→ 0, as n→ ∞, we obtain

f (xn)
q

||dn||q
→ 0 and ||(I−T )un||q→ 0, as n→ ∞, (3.9)

which yields

f (xn)

||dn||
→ 0 and ||(I−T )un|| → 0, as n→ ∞. (3.10)

Since 0 < λ̄ ≤ λn = ρn
f (xn)
||dn||p ≤

¯̄
λ , we obtain

λn(||dn||p−1) = ρn
f (xn)

||dn||p
(||dn||p−1)

= ρn
f (xn)

||dn||p
(
||dn||q−1

||dn||q−p )

= ρn
f (xn)

||dn||
→ 0,

which implies ||dn|| → 0 as n→ ∞. Therefore, from this and (3.10), we derive f (xn)→ 0 as
n→ ∞. It follows from (3.2) that

||xn−un||= λn||J−1
q dn|| → 0, as n→ ∞, (3.11)

and

||xn+1−un|| ≤ αn||u−un||+(1−αn)bn||Tun−un|| → 0, (3.12)

as n→ ∞. Consequently, we have that

||xn+1− xn|| → ∞, as n→ ∞. (3.13)
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Next, we show that xn → x∗. Since, the sequence {xn} ⊂ E is bounded we can extract a
subsequence {xnk} of {xn}, which converges weakly to z ∈ E and

limsup
n→∞

〈u− x∗,Jq(xn− x∗)〉= lim
k→∞
〈u− x∗,Jq(xnk− x∗)〉. (3.14)

Thus, from (3.11), we have that {unk} converges weakly to z. Now, by demiclosedness of
(I−T ) and (3.9) we get that z ∈ F(T ). Furthermore, since f is nonnegative weakly l.s.c., we
obtain

0≤ f (z)≤ liminf
k→∞

f (xnk) = 0, (3.15)

where we have used the fact that f (xnk)→ 0 as n→ ∞. Therefore, from the above discussions,
we obtain z ∈Ω. From (3.14), (3.13) and inequality (2.2), we obtain that

limsup
n→∞

〈u− x∗,Jq(xn+1− x∗)〉= 〈u− x∗,Jq(z− x∗)〉 ≤ 0. (3.16)

Therefore, it follows from (3.8), (3.16) and Lemma 2.6 that ||xn− x∗|| → 0 as n→ ∞. Conse-
quently, xn→ x∗ ∈Ω.

Case 2. Suppose that, for each n0 ∈ N, {||xn− x∗||}n≥n0 is not decreasing. Then there exists a
subsequence {ni} of {n} such that

||xni− x∗||q < ||xni+1− x∗||q,

for all i ∈ N. Using Lemma 2.7, we have that there exists a nondecreasing sequence {mk} ⊂ N
such that mk→ ∞ and

||xmk− x∗||q ≤ ||xmk+1− x∗||q and ||xk− x∗||q ≤ ||xmk+1− x∗||q, (3.17)

for all k ∈ N. Thus, following the method in Case 1 and the fact that αn → 0, we have that
umk−Tumk → 0, f (xmk)→ 0, ||dmk || → 0 as k→ ∞. Hence,

limsup
k→∞

〈u− x∗,Jq(xmk+1− x∗)〉 ≤ 0. (3.18)

Furthermore, from (3.8), we get that

||xmk+1− x∗||q ≤ (1−αmk)||xmk− x∗||q +qαmk〈u− x∗,Jq(xmk+1− x∗)〉,
(3.19)

which implies from (3.17) and (3.19) that

αmk ||xmk− x∗||q ≤ ||xmk− x∗||q−||xmk+1− x∗||q +qαmk〈u− x∗,Jq(xmk+1− x∗)〉
≤ qαmk〈u− x∗,Jq(xmk+1− x∗)〉.

In particular, since αmk > 0, we get

||xmk− x∗||q ≤ q〈u− x∗,Jq(xmk+1− x∗)〉.

Then, using (3.18) we obtain that ||xmk−x∗|| → 0 as k→∞. This together with (3.19) gives that
||xmk+1− x∗|| → 0 as k→ ∞. But

||xk− x∗|| ≤ ||xmk+1− x∗||,

for all k ∈N. It follows that xk→ x∗. Therefore, from the both cases, we can conclude that {xn}
converges strongly to a point x∗ = PΩu. This completes the proof. �
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If, in Theorem 3.2, we assume that T is k-strictly pseudoconractive mapping with a nonempty
fixed point set F(T ), then I−T is demiclosed at zero. Hence we have the following result.

Corollary 3.1. Let E admit a weakly sequentially continuous duality mapping. Let T : E → E
be a k-strictly pseudocontractive mapping. Assume that Ω := {x∗ ∈ F(T ) : f (x∗) = 0} 6= /0
and let {αn} be a real sequence in (0,d] ⊂ (0,1) for some d > 0 such that ∑

∞
n=0 αn = ∞ and

limn→∞ αn = 0. Let {xn} be a sequence defined by (3.2). Then, {xn} converges strongly to an
element x∗ = PΩu ∈Ω.

If, in Theorem 3.2, T := ∑
N
i=1 aiTi with ∑

N
i=1 ai = 1, where Ti, i = 1,2, ...,N are ki-strictly

pseudocontractive, then we conclude from Lemma 2.4 that T is k-strictly pseudocontractive
with k = maxN

i=1{ki}. In fact, we have the following result.

Corollary 3.2. Let E admit a weakly sequentially continuous duality mapping. Let Ti : E→ E,
i = 1,2, ...,N be a ki-strictly pseudocontractive mapping for each i. Assume that Ω := {x∗ ∈
∩N

i=1F(Ti) : f (x∗) = 0} 6= /0. For arbitrary x0,u ∈ E, we define an iterative algorithm by{
un = xn−λnJ−1

q dn,

xn+1 = αnu+(1−αn)
(
(1−bn)un +bnTun

)
,∀n≥ 0,

(3.20)

where T :=∑
N
i=1 aiTi is k-strictly pseudocontractive with ∑

N
i=1 ai = 1, bn ∈ (c,µ] , for some c> 0

and µ < min{1,{qk
cq
}

1
q−1} for all n ≥ 0, and {αn} ⊂ (0,d] ⊂ (0,1) such that ∑

∞
n=0 αn = ∞ and

limn→∞ αn = 0. Then, {xn} converges strongly to an element x∗ = PΩu ∈Ω.

If, in Theorem 3.2, E = H, a real Hilbert space, then q = 2 and cq = 1. Hence we have the
following theorem in the framework of Hilbert spaces.

Theorem 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
T : C→ C be a demicontractive mapping such that I−T is demiclosed at zero. Assume that
Ω := {x∗ ∈ F(T ) : f (x∗) = 0} 6= /0. For arbitrary x0,u ∈C, we define an iterative algorithm by{

un = PC(xn−λndn),
xn+1 = αnu+(1−αn)

(
(1−bn)un +bnTun

)
,∀n≥ 0,

(3.21)

where bn ∈ (c,µ]⊂ (0,1) for some c > 0 and µ < min{1,2k} for all n≥ 0, and {αn} ⊂ (0,d]⊂
(0,1) such that ∑

∞
n=0 αn = ∞ and limn→∞ αn = 0. Then, {xn} converges strongly to an element

x∗ = PΩu ∈Ω, where PΩ is the metric projection onto Ω.

Proof. Using the fact that PC is nonexpansive and following the method in proof of Theorem
3.2, we get the desired conclusion immediately. �

Observe that every quasi-nonexpansive mapping is demicontractive. If, in Theorem 3.3, T is
quasi-nonexpansive, then we have the following result.

Corollary 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
T : C→C be quasi-nonexpansive mapping such that I−T is demiclosed at zero. Assume that
Ω := {x∗ ∈ F(T ) : f (x∗) = 0} 6= /0. Let {xn} be a sequence defined by (3.21). Then, {xn}
converges strongly to an element x∗ = PΩu ∈Ω.

If, in Theorem 3.2, the direction vector dk coincides with the gradient5 f , then we have the
following result.
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Corollary 3.4. Let E admit a weakly sequentially continuous duality mapping. Let f : E → R
be nonnegative differentiable convex function. Let T : E → E be a demicontractive mapping
such that I− T is demiclosed at zero. Assume that Ω := {x∗ ∈ F(T ) : f (x∗) = 0} 6= /0. For
arbitrary x0,u ∈ E, define an iterative algorithm by{

un = xn−λnJ−1
q (5 f (xn)),

xn+1 = αnu+(1−αn)
(
(1−bn)un +bnTun

)
,∀n≥ 0,

(3.22)

where bn ∈ (c,µ] for some c > 0 and µ < min{1,{qk
cq
}

1
q−1} for all n ≥ 0, and {αn} ⊂ (0,d] ⊂

(0,1) such that ∑
∞
n=0 αn = ∞, limn→∞ αn = 0,

λn =

{
ρn f (xn)
||5 f (xn)||p , 5 f (xn) 6= 0;
0, otherwise,

for infΓ[ρn(q−ρn)]> 0. Then, {xn} converges strongly to an element x∗ = PΩu ∈Ω.

If, in Theorem 3.2, we consider E = H1×H2, where H1 and H2 are real Hilbert spaces,
T : E→E given by T (x,y) = (T1(x),T2y) is a k-strictly pseudocontractive mapping, and f (x,y) :
E→R is a function defined by f (x,y) = 1

2 ||Ax−By||2, where A : H1→H3 and B : H2→H3 are
bounded linear mappings, then we observe that f is a convex and continuous function, and, for
every (x,y) ∈ H1×H2, we have 5 f (x,y) = (A∗(Ax−By),−B∗(Ax−By)). Moreover, letting
(x0,y0) ∈ H1×H2, xn = (zn,yn), un = (sn,vn), and dn = 5 f (zn,yn) in (3.21), we obtain the
following result.

Corollary 3.5. Let H1,H2 and H3 be real Hilbert spaces. Let T : H1→ H1 and S : H2→ H2 be
k-strictly pseudocontractive contractive mappings with constants k1 and k2, respectively. Let
A : H1→ H3 and B : H2→ H3 be two bounded linear operators with their adjoint operators A∗

and B∗, respectively. Assume that Ω := {(z,y) ∈ F(T )×F(S) : Az = By} 6= /0. Let s,z0 ∈ H1
and v,y0 ∈ H2 be chosen arbitrarily, and let {(zn,yn)} be a sequence defined by

x0,u ∈ H1,y0,v ∈ H2 chosen arbitrarily,
sn = zn−λnA∗(Azn−Byn),
zn+1 = αnu+(1−αn)

(
(1−bn)sn +bnT1sn

)
,

vn = yn−λnB∗(Byn−Azn),
yn+1 = αnv+(1−αn)

(
(1−bn)vn +bnT1vn

)
,∀n≥ 0,

(3.23)

where bn ∈ (c,µ] for µ =min{1,2k} for all n≥ 0, and {αn}⊂ (0,d]⊂ (0,1) such that ∑
∞
n=0 αn =

∞ and limn→∞ αn = 0. Then {xn}= {(zn,yn)} converges strongly to an element (z∗,y∗) ∈Ω.

Remark 3.1. Our main results provide an affirmative answer to Question 1.1. Theorems 3.2
extends the results of Zhao [18, 19] in the sense that our result provides strong convergence for
the class of demicontractive mappings, which is more general than quasi-nonexpansive map-
pings. In addition, Theorem 3.2 extends the results of Zhao and Zhang [20] and Giang et al.
[10] in the sense that our strong convergence result is for the general split fixed point problem
governed by demicontractive mappings in Banach spaces instead of Hilbert spaces.
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