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Abstract. In this paper, we construct and study an inertial algorithm for solving a split feasibility problem
in real Banach spaces. The sequence generated via the algorithm is proved to be convergent strongly to
a solution of the split feasibility problem.
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1. INTRODUCTION

Let H1 and H2 be two real Hilbert spaces, and let C and Q be nonempty closed convex subsets
of H1 and H2, respectively. The split feasibility problem is consists of finding a point q ∈ H1
such that

q ∈C and Aq ∈ Q, (1.1)
where A : H1→ H2 is a bounded linear operator.

The split feasibility problem was introduced in 1994 by Censor and Elfving [1] in finite di-
mensional Hilbert spaces. It is now known that the split feasibility problem is applicable in
many disciplines such as image restoration, computer tomograph and radiation therapy treat-
ment planning; see, e.g., [2, 3, 4, 5] and the references therein.

If problem (1.1) has a solution, it is known that x ∈C solves (1.1) if and only if it solves the
following fixed point equation:

x = PC((I− γA∗(I−PQ)A)x),x ∈C, (1.2)

where PC and PQ are the metric projections onto C and Q respectively, γ is a positive constant
and A∗ denotes the adjoint of A. Consequently, split feasibility problem (1.1) can be solved
via fixed point methods. Recently, the solutions of split feasibility problem (1.1) has been
extensively studied in Hilbert spaces by many authors; see, e.g., [6, 7, 8, 9] and the references
therein.

The iterative approximation of fixed points of nonlinear mappings is important in the field
of nonlinear analysis, and many convergence theorems of fixed points have been obtained in
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Hilbert and Banach spaces; see, e.g., [10, 11, 12, 13] and the references therein. For fixed points
of nonexpansive mappings, Mann [14] in 1953 introduced the following iteration process:

xn+1 = αnxn +(1−αn)T xn, (1.3)

where the initial guess x1 ∈C is arbitrary and {αn} is a real sequence in (0,1). It is known that
under appropriate conditions, the sequence {xn} generated by (1.3) converges weakly to a fixed
point of T. However, even in a Hilbert space, Mann iteration may fail to converge strongly (see
[15]). In general, the convergence rate of the Mann iteration is slow. Recently, fast iterative
algorithms is now under the spotlight due to their applications.

In particular, the inertial extrapolation was first proposed by Polyak [16] as an acceleration
process is popular. In recent years, some authors constructed various fast convergent itera-
tive algorithms via inertial extrapolation techniques such as, inertial Mann algorithms, inertial
forward-backward splitting algorithm, etc; see, e.g., [17, 18, 19, 20] and the references therein.

In this paper, we construct an inertial-type algorithm for finding a common solution of a split
feasibility problem in certain real Banach spaces. We prove that the sequence generated by our
new algorithm converges strongly to solution of the feasibility problem. Finally, we apply the
obtained result to hierarchical variational inequality problems (see in Section 4). This paper is
organized as follows. In Section 2, we present preliminary results and some important defini-
tions needed for the main results of this paper. Section 3 is devoted to the main convergence
theorem and its proof. The last section, Section 4, is devoted to theoretical application of the
main result.

2. PRELIMINARIES

Throughout this paper, we assume that the Banach spaces are real. Recall that a Banach space
E is said to be strictly convex if ||x+y||

2 < 1 for all x,y ∈ S(E) := {u ∈ E : ||u||= 1} with x 6= y.
The modulus of convexity of E is defined by

δE(ε) = inf{1− 1
2
||x+ y|| : ||x|| ≤ 1, ||y|| ≤ 1, ||x− y|| ≥ ε} (2.1)

for all ε ∈ [0,2]. The space E is said to have the Kadec-Klee property if whenever {xn} is a
sequence in E that converges weakly to x0 ∈E and ||xn||→ ||x0||, as n→∞, then {xn} converges
strongly to x0. E is said to be uniformly convex if δE(0) = 0, and δE(ε) > 0, ∀ε ∈ (0,2]. The
modulus of smoothness of E is a function: ρE : [0,∞)→ [0,∞) defined by

ρE(t) = sup{1
2
(||x+ y||+ ||x− y||)−1 : x ∈ S(E), ||y|| ≤ t}. (2.2)

E is called uniformly smooth if ρE(t)
t → 0 as t→ 0. The spaces of Lebesgue integrable functions

Lp, p > 1 are uniformly smooth (see, e.g., [21]).
Let E∗ be the topological dual of E. For all x ∈ E and x∗ ∈ E∗, we denote by 〈x∗,x〉 the value

of x∗ at x. A mapping J : E→ 2E∗ defined by

J(x) = {x∗ ∈ E∗ : 〈x∗,x〉= ||x||2 = ||x∗||2},x ∈ E (2.3)

is called the normalized duality mapping. The following properties of J are very well known
(see, e.g., [21, 22, 23]).

(1) If E is uniformly smooth, then J is uniformly continuous on each bounded subset of E.
(2) J(x) 6= /0.
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(3) If E is reflexive, then J is a surjective map from E to E∗.
(4) If E is strictly convex, then J is one to one and J is single valued if E is smooth.

Let C be a nonempty closed convex subset of E. A mapping T : C→C is said to be nonex-
pansive if

||T x−Ty|| ≤ ||x− y||, ∀x,y ∈C.

A point x ∈C is called a fixed point of T if T x = x. The set of fixed points of T is defined as

F(T ) := {x ∈C : T x = x}.
A mapping T : C→C is called quasi-nonexpansive if F(T ) 6= /0 and

||T x− x∗|| ≤ ||x− x∗||, ∀ x ∈C,x∗ ∈ F(T ).

It is clear that every nonexpansive mapping with nonempty set of fixed points is quasi- nonex-
pansive.

Recently, Chidume, Ikechukwu and Adam [12] introduced an inertial algorithm and proved
that their algorithm is strongly convergent to a common fixed point of a countable family of
relatively nonexpansive maps in a uniformly convex and uniformly smooth real Banach space.
To be more precise, they proved the following Theorem.

Theorem 2.1. [12] Let E be a uniformly convex and uniformly smooth real Banach space. Let
Ti : E→E, where i= 1,2,3, · · · , be a relatively nonexpansive mapping such that ∩∞

i=1F(Ti) 6= /0.
Suppose that {αi}⊂ (0,1) and {βi}⊂ (0,1) are sequences such that ∑

∞
i=1 αi = 1 and T : E→ E

is defined by T x = J−1(
∑

∞
i=1 αi[βiJx+(1−βi)JTix]

)
for each x ∈ E. Let {un} be a sequence

generated by the following algorithm: u0,u1 ∈ E and

C0 = E,
wn = un +αn(un−un−1),

vn = J−1((1−β )Jwn +βJTwn),
Cn+1 = {z ∈Cn : ψ(z,vn)≤ ψ(z,wn)},
un+1 = ΠCn+1uo, ∀ n≥ 0,

(2.4)

where αn ∈ (0,1) and β ∈ (0,1). Then, {un} converges strongly to a point p = ΠF(T )u0.

Let H be a Hilbert space, and let B : H → 2H be a set-valued operator. The variational
inclusion problem is defined as follows

find x ∈ H : x ∈ B−1(0). (2.5)

Problem (2.5) is a unified framework for many real problems in finance, economics, trans-
portation, etc. When B is a maximal monotone operator, Martinet [24] introduced the following
proximal point algorithm

xn+1 = JB
λn

xn, n≥ 1, (2.6)

where JB
λn

is the resolvent of B associated with {λn} ⊂ (0,∞). The proximal point algorithm
was further developed by Rockafellar and many others; see, e.g., [25, 26, 27, 28].

For solving split feasibility problems and the fixed point problem of nonexpansive mappings,
Takahashi, Xu and Yao [9] introduced the following problem, which consists of finding x ∈ H
such that

x ∈ B−1(0) and Ax ∈ F(T ), (2.7)
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where B : H1→ 2H1 is a maximal monotone operator, A : H1→H2 is a bounded linear operator
and T : H2→H2 is a nonexpansive mapping. They considered the following iterative algorithm:

x1 ∈ H, xn+1 = Jλn(I− γnA∗(I−T )Axn), ∀n≥ 1, (2.8)

where {λn} and {γn} satisfy suitable conditions. They showed that the sequence {xn} generated
by (2.8) converges weakly to a point p ∈ B−1(0)∩F(T ).

Let S : C→ C and T : Q→ Q be two mappings. The so-called split common fixed point
problem (SCFP) for mappings S and T is to find a point

q ∈C such that q ∈ F(S) and Aq ∈ F(T ), (2.9)

where F(S) and F(T ) denote the sets of fixed points of S and T , respectively. If F(S) and F(T )
stand for the zero sets of monotone mappings, the split common fixed point problem (SCFP)
is called split common null point problem (SCNPP). The split common fixed point problem
in Hilbert spaces was introduced by Moudafi [29] in 2010 and has been studied extensively
recently. In 2015, Takahashi [30] introduced and studied the split feasibility problem and the
split common null point problem in the setting of Banach spaces, which is more general than
the setting of Hilbert spaces. Motivated by the results of Takahashi [30], Tang et al. [31] proved
weak and strong convergence theorems for the split common fixed point problem involving a
quasi-strictly pseudo-contractive mapping and an asymptotical nonexpansive mapping in two
Banach spaces. Precisely, they proved the following theorem.

Theorem 2.2. [31] Assume that
(1) E1 is a real 2- uniformly convex and 2-uniformly smooth Banach space with the Opial’s

property satisfying 0 < k < 1√
2
, k is the best smoothness constant;

(2) E2 is a real Banach space;
(3) A : E1→ E2 is a bounded linear operator and A∗ is the adjoint of A;
(4) S : E1→ E2 is an {`n}− asymptotically nonexpansive mapping with {`n} ⊂ (1,∞) and

`n→ 1 and T : E2→E2 is a τ− quasi-strictly pseudocontractive mapping with F(S) 6= /0
and F(T ) 6= /0 and T is demiclosed.

Let E1,E2,T,S,A and {`n} be as stated in the assumptions above. For each x1 ∈ E1, let {xn} be
the sequence generated by{

zn = xn + γJ−1
1 A∗J2(T − I)Axn,

xn+1 = (1−αn)zn +αnSnzn,∀ n≥ 1,
(2.10)

where {αn} ⊂ (0,1) satisfying liminfn→∞ αn(1−αn) > 0, γ is a positive constant satisfying
0 < γ < min{1−2k2

||A||2 ,
1−τ

||A||2}, with L = supn≥1 `n and ∑
∞
n=1(`n−1)< ∞.

(I) If Γ := {v ∈ F(S) : Av ∈ F(T )} 6= /0, then {xn} converges weakly to x∗ ∈ Γ.
(II) If, in addition, Γ 6= /0 and S is semicompact, then {xn} converges strongly to x∗ ∈ Γ.

In order to prove that {xn} is bounded, we observe that the authors used the following known
Lemma.

Lemma 2.1. [32] For a given r > 0, a real Banach space E is uniformly convex if and only if
there exists a continuous strictly increasing function g : R+→ R+ with g(0) = 0 such that

||tx+(1− t)y||2 ≤ t||x||2 +(1− t)||y||2− t(1− t)g(||x− y||)
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for all x,y ∈ E with ||x|| ≤ r, ||y|| ≤ r and t ∈ [0,1].

Lemma 2.1 requires that x,y belong to a ball. Consequently, to use this Lemma, the authors
need to verify first that the sequences {zn− p} and {Snzn− p} of their work are bounded.
This was not done and so in our view, it makes the proof of their main result, Theorem 3.1
incomplete. As an appendage to the target of this manuscript,

We prove that the iterative sequence studied by Tang et al. [31] is bounded without applying
Lemma 2.1. We achieve this by using an inequality proved by Chidume (see Lemma 2.2 be-
low). Let E1 be a 2-uniformly convex and 2-uniformly smooth real Banach space with the best
smoothness constant k > 0, and let E2 be a smooth, strictly convex and reflexive Banach space.
Let B : E1 → 2E∗1 be a maximal monotone operator, and let A : E1 → E2 be a bounded linear
operator with adjoint A∗ : E∗2 → E∗1 . For i = 1,2,3, · · · , let Si : E1→ E1 be a countable family of
relatively nonexpansive mappings with Sx = J−1(

∑
∞
i=1 δi(σiJSix+(1−σi)JSix)

)
for each x ∈

E1,{δi} ⊂ (0,1) and {σi} ⊂ (0,1) are such ∑
∞
i=1 δi = 1, and let T : E2→ E2 be a closed rela-

tively quasi-nonexpansive mapping with F(T ) 6= /0.
Consider the following problem

Find x∗ ∈ E1 : x∗ ∈ B−1(0)∩F(S) and Ax∗ ∈ F(T ). (2.11)

Observe that problem (2.11) includes problems (2.5), (2.7) and (2.9) respectively.
In this paper, we construct an inertial algorithm and prove that the sequence generated by the

algorithm converges strongly to a solution of (2.11) provided that the solution set of (2.11) is
nonempty. Our result generalizes many recent results in the literature, such as, [12, 9]

Lemma 2.2. [13] Let E be a p-unifoprmly smooth Banach space iwth p > 1. Then there exists
a constant C > 0 such that

||tx+(1− t)y− z||p ≤ [1− t(p−1)]||y− z||p + tC||x− z||p− t(1− t(p−1)C)||x− y||p,
where t is a real number in (0,1), for any x,y,z ∈ E

Proposition 2.1. Assume that the hypotheses of Theorem 2.2 are satisfied with {αn} ⊂ (0, 1
C)

and liminfn→∞ αn(1−Cαn)> 0, where C is the constant appearing in Lemma 2.2 and ∑
∞
n=1(C`n−

1)< ∞.
(I) If Γ := {v ∈ F(S) : Av ∈ F(T )} 6= /0, then {xn} converges weakly to p ∈ Γ.
(II) If, in addition, Γ 6= /0 and S is semicompact, then {xn} converges strongly to p ∈ Γ.

Proof. Fix p ∈ Γ. Following the arguments that yield (3.4) in the proof of [31, Theorem 3.1],
we obtain

||zn− p|| ≤ ||xn− p||. (2.12)
Now, using Lemma 2.2, we get

||xn+1− p||2 = ||αnSnzn +(1−αn)zn− p||2

≤ (1−αn)||zn− p||2 +αnC||Snzn− p||2−αn(1−αnC)||zn−Snzn||2

≤ (1−αn)||zn− p||2 +αnC`n||zn− p||2−αn(1−αnC)||zn−Snzn||2

= [1+αn(C`n−1)]||xn− p||2−αn(1−αnC)||zn−Snzn||2

≤ [1+αn(C`n−1)]||xn− p||2.
From Lemma 2.3, we have that limn→∞ ||xn− p|| exists. Hence {xn} is bounded. The remaining
part of the convergence proof follows the same argument as that of Tang et al. [31]. �
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Let C be a nonempty, closed, and convex subset of a strictly convex and reflexive Banach E
Then the metric projection PCx = argminy∈C ||x− y||, ∀x ∈ E, is the unique minimizer of the
norm distance.

Let E be a smooth, reflexive, and strictly convex Banach space. Consider the functional [33]
defined by

φ(x,y) = ||x||2−2〈x,J(y)〉+ ||y||2, ∀x,y ∈ E (2.13)

where J is the normalized duality mapping. It is clear that, in a Hilbert space H, (2.13) reduces
to φ(x,y) = ||x− y||2, ∀x,y ∈ H. It is obvious from the definition of φ that

(||x||− ||y||)2 ≤ φ(x,y)≤ (||x||+ ||y||)2, ∀ x,y ∈ E. (2.14)

φ(x,J−1(αJy+(1−α)Jz)≤ αφ(x,y)+(1−α)φ(x,z), ∀x,y ∈ E. (2.15)

and
φ(x,y)≤ ||x||||x− Jy||+ ||y||||x− y||. (2.16)

Following Alber [33], the generalized projection ΠC : E→C is defined by

ΠCx = argmin
y∈C

φ(y,x), ∀ x ∈ E, (2.17)

that is, ΠC(x) = x, where x is the unique solution to the minimization problem φ(x̄;x) =
infy∈C φ(y,x). The existence and uniqueness of the operator ΠC follows from the properties
of the functional φ(x,y) and strict monotonicity of the mapping J (see, e.g., [33]). In Hilbert
space H, ΠC = PC.

Definition 2.1. A point p ∈ C is said to be an asymptotic fixed point of T if C contains a se-
quence {xn}∞

n=0 which converges weakly to p and limn→∞ ||xn−T xn||= 0. The set of asymptotic
fixed points of T is denoted by ˆF(T ). We say that a mapping T is relatively nonexpansive (see,
e.g., [34]) if the following conditions are satisfied
(1) F(T ) 6= /0;
(2) φ(p,T x)≤ φ(p,x), ∀ x ∈C, p ∈ F(T );
(3) F(T ) = ˆF(T ).
If T satisfies (1) and (2), then it is said to be relatively quasi-nonexpansive. It is easy to see that
the class of relatively quasi-nonexpansive mappings contains the class of relatively nonexpan-
sive mappings.

Recently, many authors studied various numerical methods for fixed points of relatively non-
expansive and relatively quasi-nonexpansive mappings; see, e.g., [35, 36, 37] and the refer-
ences therein. Clearly, in a Hilbert space H, relatively nonexpansive and relatively quasi-
nonexpansive mappings coincide with nonexpansive and quasi-nonexpansive mappings, respec-
tively due to φ(x,y) = ||x− y||2, ∀x,y ∈ H. This implies

φ(p,T x)≤ φ(p,x)⇔ ||T x− p|| ≤ ||x− p||, ∀x ∈C, p ∈ F(T ).

For the examples of relatively quasi-nonexpansive mappings, we refer to [35].
In order to prove our main results, we also need the following lemmas.

Lemma 2.3. Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfying
an+1 ≤ (1+δn)an +bn, ∀n≥ 1. If ∑

∞
n=1 δn < ∞ and ∑

∞
n=1 bn < ∞, then limn→∞ an exists.
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Lemma 2.4. [22] Let E be a strictly convex, smooth, reflexive real Banach space. Let C be a
nonempty, closed, convex subset of E. Let x1 ∈ E,z ∈C. Then the following holds

(1) z = PCx1;
(2) 〈z− y,J(x1− z)〉 ≥ 0, ∀ y ∈C.

Lemma 2.5. [32] Let E be a 2-uniformly smooth real Banach space with the best smoothness
constant k > 0. Then

||x+ y||2 ≤ ||x||2 + 〈x,Jy〉+2||ky||2 ∀x,y ∈ E. (2.18)

Lemma 2.6. [33] Let E be a smooth, strictly convex, and reflexive Banach space, and let C be
nonempty, closed and convex subset of E. Then, the following conclusions hold

(1) φ(x,ΠCy)+φ(ΠCy,y)≤ φ(x,y), x ∈C,y ∈ E;
(2) if x ∈ E and z ∈C, then z = ΠCx iff 〈z− y,Jx− Jz〉 ≥ 0, ∀y ∈C;
(3) for x,y ∈ E, φ(x,y) = 0 iff x = y.

Lemma 2.7. [38] Let E be a uniformly convex and smooth Banach space, and let {xn} and {yn}
be two sequences of E. If φ(xn,yn)→ 0 and either {xn} or {yn} is bounded, then ||xn−yn||→ 0.

Remark 2.1. Using (2.16), it is easy to see that the converse of Lemma 2.7 is also true whenever
{xn} and {yn} are both bounded.

Lemma 2.8. [39] Let C be a nonempty, closed convex subset of a uniformly convex and uni-
formly smooth real Banach space E. Let Ti : C→ E, i = 1,2,3 · · · be countably infinite family
of relatively nonexpansive mappings such that ∩∞

i=1F(Ti) 6= /0. Suppose that {αi} ⊂ (0,1) and
{βi} ⊂ (0,1) are such ∑

∞
i=1 αi = 1 and T : C→ E is defined by

T x = J−1( ∞

∑
i=1

αi(βiJx+(1−βi)JTix)
)

for each x ∈C.

Then, T is relatively nonexpansive and F(T ) = ∩∞
i=1F(Ti)

Lemma 2.9. [11] Let E be a strictly convex and reflexive smooth Banach space. Let B : E→ 2E∗

be a maximal monotone operator and JB
λ

be the resolvent of B for λ > 0. Then φ(u,JB
λ

x) ≤
φ(u,x), ∀u ∈ B−1(0),x ∈ E.

Lemma 2.10. [11] Let E be a smooth and strictly convex real Banach space, and let C be
a nonempty, closed and convex subset of E. Let T be a mapping from C into itself such that
F(T ) 6= /0 and φ(y,T x)≤ φ(y,x), ∀(y,x) ∈ F(T )×C. Then F(T ) is closed and convex.

Lemma 2.11. [35] Let C be a nonempty closed convex subset of a smooth, uniformly convex
Banach space E. Let T be a closed relatively quasi-nonexpansive mapping of C into itself. Then
F(T ) is closed and convex.

3. MAIN RESULTS

Now, we are ready to give our main results.

Theorem 3.1. Let E1 be a 2-uniformly convex and 2-uniformly smooth real Banach space with
the best smoothness constant k > 0, and let E2 be a smooth, strictly convex and reflexive Ba-
nach space. Let B : E1 → 2E∗1 be a maximal monotone operator, and let A : E1 → E2 be a
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bounded linear operator with the adjoint A∗ : E∗2 → E∗1 . For i = 1,2,3, · · · , let Si : E1→ E1 be
a countable family of relatively nonexpansive mappings with Sx = J−1

1
(

∑
∞
i=1 δi(σiJ1x+ (1−

σi)J1Six)
)

for each x ∈ E1,{δi} ⊂ (0,1) and {σi} ⊂ (0,1) are such that ∑
∞
i=1 δi = 1, and let

T : E2→ E2 be a closed relatively quasi-nonexpansive mapping. For arbitrary x0,x1 ∈ E1, let
the sequence {xn} be generated as follows

C0 = E1,

wn = xn +(xn− xn−1),

un = J−1
1
(
J1wn + γA∗J2(PF(T )− I)Awn

)
,

vn = J−1
1
(
(1−αn)J1un +αnJ1JB

λ
un
)
,

yn = J−1
1
(
(1−β )J1vn +βJ1Svn

)
,

Cn+1 = {w ∈Cn : φ(w,yn)≤ φ(w,vn)≤ φ(w,un)≤ φ(w,wn)},
xn+1 = ΠCn+1x1, ∀ n≥ 1,

(3.1)

where JA
λ
= (J1+λA)−1J1, J1 is the normalized duality mapping of E1, and J2 is the normalized

duality mapping of E2. Suppose that Γ := {x∗ ∈ B−1(0)∩F(S) : Ax∗ ∈ F(T )} 6= /0 and the
following conditions are satisfied:
(1) αn ∈ [a,1),a > 0, β ∈ (0,1);
(2) 0 < γ ≤ 1

k||A||2 .

Then {xn} converges strongly to x∗ = ΠΓx1.

Proof. We divide the proof into six steps. First, we note that by Lemma 2.8 that S is relatively
nonexpansive. In view of Lemma2.11, we have that F(T ) is closed and convex.

Step 1. Show that Cn is a closed and convex subset of E1 for each n> 1.
Set

An = {w ∈Cn : φ(w,yn)≤ φ(w,vn)},

Bn = {w ∈Cn : φ(w,vn)≤ φ(w,un)},
and

Dn = {w ∈Cn : φ(w,un)≤ φ(w,wn)}.
Then, Cn+1 = An∩Bn∩Dn, ∀n≥ 1. Note that

φ(w,yn) ≤ φ(w,vn)⇔ 2〈w,Jyn− Jvn〉 ≤ ‖yn‖2−‖vn‖2,

φ(w,vn) ≤ φ(w,un)⇔ 2〈w,Jvn− Jun〉 ≤ ‖vn‖2−‖un‖2,

φ(w,un) ≤ φ(w,wn)⇔ 2〈w,Jun− Jwn〉 ≤ ‖un‖2−‖wn‖2.

Consequently, An,Bn,Dn are closed and convex and so, Cn+1 is closed and convex for all n≥ 1.

Step 2. Show that Γ⊆Cn, for each n> 1.
Fix p ∈ Γ. Using inequality (2.15) and Lemma 2.5, we obtain

φ(p,yn) = φ
(

p,J−1
1
(
(1−β )J1vn +βJ1Svn

))
≤ (1−β )φ(p,vn)+βφ(p,Svn)

≤ (1−β )φ(p,vn)+βφ(p,vn) = φ(p,vn),
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φ(p,vn) = φ
(

p,J−1
1
(
(1−αn)J1un +αnJ1JB

λ
un
))

≤ (1−αn)φ(p,un)+αnφ(p,J1JB
λ

un)

≤ φ(p,un),

and
φ(p,un)

= ||p||2−2〈p,J1wn + γA∗J2(PF(T )− I)Awn〉+ ||J1wn + γA∗J2(PF(T )− I)Awn||2

= ||p||2−2〈p,J1wn〉−2γ〈p,A∗J2(PF(T )− I)Awn〉+ ||J1wn + γA∗J2(PF(T )− I)Awn||2

≤ ||p||2−2〈p,J1wn〉−2γ〈p,A∗J2(PF(T )− I)Awn〉+ ||wn||2

+2γ〈wn,A∗J2(PF(T )− I)Awn〉+2k2||γA∗J2(PF(T )− I)Awn||2

= ||p||2 + ||wn||2−2〈p,J1wn〉−2γ〈Ap−Awn,J2(PF(T )− I)Awn〉

+2k2
γ

2||A||2||(PF(T )− I)Awn||2.

It follows from Lemma 2.4 that
〈Ap−Awn,J2(PF(T )− I)Awn〉
= 〈Ap−PF(T )Awn +PF(T )Awn−Awn,J2(PF(T )− I)Awn〉

= 〈Ap−PF(T )Awn,J2(PF(T )− I)Awn〉+ ||(PF(T )− I)Awn||2

≥ ||(PF(T )− I)Awn||2.

So,
φ(p,un)≤ φ(p,wn)−2γ(1− k2

γ||A||2)||(PF(T )− I)Awn||2,
that is, φ(p,un)≤ φ(p,wn). Hence p ∈Cn+1 and Γ ∈Cn, ∀n≥ 1. Thus, {xn+1} is well defined.

Step 3. Show that {xn} is a Cauchy sequence.
Fix v∈ Γ. It follows from the definition of Cn that xn =ΠCnx1 for all n> 1. In view of Lemma

2.6 (1), we have

φ(xn,x1) = φ(ΠCnx1,x1)6 φ(v,x1)−φ(v,ΠCnx1)6 φ(v,x1),∀n> 1. (3.2)

This shows that {φ(xn,x1)} is bounded. Consequently, {wn},{un},{vn},{yn} are all bounded.
Since xn = ΠCnx1 and xn+1 = ΠCn+1x1 ∈Cn+1 ⊆Cn, we have

φ(xn,x1)6 φ(xn+1,x1), ∀n> 1, (3.3)

which implies that {φ(xn,x1)} is nondecreasing and bounded. So lim
n→∞

φ(xn,x1) exists. Again
by Lemma 2.6 (1), we have

φ(xn+1,xn) = φ(xn+1,ΠCn)6 φ(xn+1,x1)−φ(ΠCnx1,x1)

= φ(xn+1,x1)−φ(xn,x1), (3.4)

which implies that
lim
n→∞

φ(xn+1,xn) = 0, (3.5)

which together with Lemma 2.7 shows that

lim
n→∞
‖xn+1− xn‖= 0. (3.6)
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For arbitrary positive integers m,n with m 6 n, it follows from xn = ΠCnx1 ⊆ Cm and Lemma
2.6 (1) that

φ(xm,xn) = φ(xm,ΠCnx1)6 φ(xm,x1)−φ(ΠCnx1,x1)

= φ(xm,x1)−φ(xn,x1). (3.7)

Since lim
n→∞

φ(xn,x1) exists, it follows from (3.7) and Lemma 2.7 that

lim
m,n→∞

‖xn− xm‖= 0.

Hence, {xn} is a cauchy sequence. Consequently, there exists x∗ ∈ E1 such that xn → x∗ as
n→ ∞.

Step 4. Show that lim
n→∞
‖un− Jλ

Bun‖= 0, lim
n→∞
‖(PF(T )− I)Awn‖= 0 and lim

n→∞
‖vn−Svn‖= 0.

Since {xn} is a Cauchy sequence, we obtain that ||xn+1−xn|| → 0,n→∞. Now, ||xn−wn||=
||xn−xn+(xn−xn−1)||= ||xn−xn−1|| → 0 as n→∞. It follows from Remark 2.1 that ||xn+1−
wn|| ≤ ||xn+1−xn||+ ||xn−wn||→ 0 as n→∞. Hence, φ(xn+1,wn)→ 0 as n→∞. Furthermore,
since xn+1 ∈Cn+1, we obtain

φ(xn+1,yn)≤ φ(xn+1,vn)≤ φ(xn+1,un)≤ φ(xn+1,wn)→ 0, n→ ∞. (3.8)

Therefore,
lim
n→∞

φ(xn+1,yn) = lim
n→∞

φ(xn+1,vn) = lim
n→∞

φ(xn+1,un) = 0, (3.9)

and
lim
n→∞
||xn+1− yn||= lim

n→∞
||xn+1− vn||= lim

n→∞
||xn+1−un||= 0. (3.10)

Observe that

||xn− yn|| ≤ ||xn+1− xn||+ ||xn+1− yn|| → 0,

||xn− vn|| ≤ ||xn− xn+1||+ ||xn+1− vn|| → 0,

||xn−un|| ≤ ||xn− xn+1||+ ||xn+1−un|| → 0, (3.11)

and hence

||yn− vn|| ≤ ||yn− xn+1||+ ||xn+1− vn|| → 0,

||yn−un|| ≤ ||yn− xn+1||+ ||xn+1−un|| → 0,

||un− vn|| ≤ ||un− xn||+ ||xn− vn|| → 0,

||un−wn|| ≤ ||un− xn||+ ||xn−wn|| → 0. (3.12)

It follows that

2γ(1− k2
γ||A||2)||(PF(T )− I)Awn||2

≤ φ(p,wn)−φ(p,un)

= ||p||2 +2〈p,J1wn〉+ ||wn||2−||p||2−2〈p,J1un〉− ||un||2

= 2〈p,J1wn− J1un〉+ ||wn||2−||un||2

≤ 2||p||||J1wn− J1un||+ ||wn−un||
(
||wn||+ ||un||

)
. (3.13)

From (3.12) and the fact that J1 is uniformly continuous on bounded subsets of E1, we get

lim
n→∞
||(PF(T )− I)Awn||= 0 (3.14)
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and then

||J1vn− J1un||= αn||J1un− J1JB
λ

un||.

By the third conclusion in (3.12) and the uniform continuity of J1 on bounded subsets of E1, we
get limn→∞ ||J1vn− J1un||= 0. Hence

lim
n→∞
||J1un− J1JB

λ
un||= lim

n→∞
||un− JB

λ
un||= 0. (3.15)

Similarly, ||J1yn−J1vn||= αn||J1vn−J1Svn||. Using condition (1) , the first conclusion in (3.12)
and the uniform continuity of J1, we have limn→∞ ||J1yn− J1vn||= 0. Hence,

lim
n→∞
||J1vn− J1Svn||= lim

n→∞
||vn−Svn||= 0. (3.16)

Step 5. Show that xn→ΠΓx1.
Since {xn} is bounded, there exists {xnk} a subsequence of {xn} such that xnk ⇀ x∗. By the

third conclusion of (3.11), we have that there exists a subsequence {unk} of {un} such that
unk ⇀ x∗. From (3.15), we get

lim
n→∞
||unk− JB

λ
unk ||= 0. (3.17)

From Lemma 2.9, we have x∗ ∈ F(JB
λ
) = B−1(0). Again, from the second conclusion of (3.11),

we have that there exists a subsequence {vnk} of {vn} such that vnk ⇀ x∗. It follows from (3.16)
that

lim
n→∞
||vnk−Svnk ||= 0. (3.18)

Since S is relatively nonexpansive, we have x∗ ∈ F(S). Next, we show that Ax∗ ∈ F(T ). From
Lemma 2.4, we have

‖(1−PF(T ))Ax∗‖2 = 〈J2
(
Ax∗−PF(T ))(Ax∗)

)
,Ax∗−PF(T ))(Ax∗)〉

= 〈J2
(
Ax∗−PF(T ))(Ax∗)

)
,Ax∗−Awn +Awn−PF(T ))(Awn)

+PF(T ))(Awn)−PF(T ))(Ax∗)〉
= 〈J2

(
Ax∗−PF(T ))(Ax∗)

)
,Ax∗−Awn〉+ 〈Ax∗−PF(T ))(Ax∗),

Awn−PF(T ))(Awn)〉+ 〈Ax∗−PF(T ))(Ax∗),PF(T ))(Awn)

−PF(T ))(Ax∗)〉
6 〈Ax∗−PF(T ))(Ax∗),Ax∗−Awn〉+ 〈Ax∗−PF(T ))(Ax∗),

Awn−PF(T ))(Awn)〉.

Since A is a bounded linear operator, we have that

lim
n→∞
‖Awn−Ax∗‖= 0.

Hence, it follows from (3.14) that ‖(I−PF(T )Ax∗)‖= 0. This implies that Ax∗ ∈ F(T ). There-
fore, x∗ ∈ Γ.
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We now show that x∗ = PF(T )x1. Let z = PΓx1. Then, z ∈ Γ. Since xn = PCnx1 and Γ⊆Cn, we
have φ(xn,x1)≤ φ(z,x1). On the other hand, from lower semicontinuity of norm, we have

φ(x∗,x1) = ||x∗||2−2〈x∗,Jx1〉+ ||x1||2

≤ liminf
k→∞

(
||xnk ||

2−2〈xnk ,Jx1〉+ ||x1||2
)

≤ liminf
k→∞

(
φ(xnk ,x1)

)
≤ limsup

k→∞

(
φ(xnk ,x1)

)
≤ φ(z,x1). (3.19)

From the fact that z = PΓx1, we get φ(z,x1) ≤ φ(p,x1), ∀p ∈ Γ, which shows that φ(z,x1) ≤
φ(x∗,x1). From (3.19), we have φ(z,x1) = φ(x∗,x1). Uniqueness of PΓx1 gives us z = x∗. Next
we show that xnk → x∗. Using (3.19) again, we obtain

φ(x∗,x1) ≤ liminf
k→∞

(
φ(xnk ,x1)

)
≤ limsup

k→∞

(
φ(xnk ,x1)

)
≤ φ(z,x1.)

= φ(x∗,x1).

Thus limk→∞ φ(xnk ,x1) = φ(x∗,x1). Therefore, limk→∞ ||xnk ||= ||x∗||. By the Kadec Klee prop-
erty of E1, we get xnk → x∗, as k → ∞. Since {xn} is Cauchy, we conclude that xn → x∗ =
PΓx1, n→ ∞. This completes the proof. �

When T is nonexpansive, we have the following result.

Corollary 3.1. Let H1 and H2 be real Hilbert spaces. Let B : H1→ 2H1 be a maximal mono-
tone operator, and let A : H1 → H2 be a bounded linear operator with adjoint A∗ : H2 → H1.
Let S : H1 → H1 a nonexpansive mapping, and let T : H2 → H2 be a closed relatively quasi-
nonexpansive mapping. For arbitrary x0,x1 ∈ H1, let the sequence {xn} be a sequence gener-
ated as follows

C0 = H1,

wn = xn +(xn− xn−1),

un = wn + γA∗(PF(T )− I)Awn,

vn = (1−αn)un +αnJB
λ

un,

yn = (1−β )vn +βSvn,

Cn+1 = {p ∈Cn : ||p− yn|| ≤ ||p− vn|| ≤ ||p−un|| ≤ ||p−wn||},
xn+1 = PCn+1x1, ∀ n≥ 1

(3.20)

where JA
λ
= (I + λA)−1. Suppose that Γ := {v ∈ B−1(0)∩ F(S) : Av ∈ F(T )} 6= /0, and the

following conditions are satisfied: (1) αn ∈ [a,1),a > 0, β ∈ (0,1); (2) 0 < γ ≤ 1
||A||2 . Then

limn→∞ xn = x∗ = PΓx1.

4. THE APPLICATION

In this subsection, we consider the application to the hierarchical variational inequality prob-
lem.

Definition 4.1. Let E be a smooth, strictly convex and real reflexive Banach space, and let K
be a nonempty, closed and convex subset of E. Let S : K → K be a nonlinear mapping with
F(S), a nonempty closed and convex subset of K, and let V : K → K be a nonlinear mapping.



AN INERTIAL ALGORITHM 129

The so-called hierarchical variational inequality problem for the mapping S with respect to the
mapping V in Banach spaces is to find x∗ ∈ F(S) such that

〈x∗− x,J(V x∗− x∗)〉 ≥ 0, ∀x ∈ F(S). (4.1)

From Lemma 2.4, hierarchical variational inequality problem (4.1) is equivalent to the fol-
lowing fixed point equation:

x∗ = PF(T )V x∗. (4.2)

Set C = F(S) and Q = F(PF(S)oV ) and A = I, where I denotes the identity mapping on E.
Then, the hierarchical variational inequality problem (4.1) for a mapping S with respect to a
mapping V is equivalent to the following split common fixed point problem, which consists of
finding

x∗ ∈C such that x∗ ∈ Q. (4.3)

Therefore, the set of solutions Γ of hierarchical variational inequality problem(4.1) is just the
set of solutions of split common fixed point problem (4.3).

From Theorem 3.1, we have the following result.

Theorem 4.1. Let E be a 2-uniformly convex and 2-uniformly smooth real Banach space with
the best smoothness constant k > 0, and let B : E → 2E∗ be a maximal monotone operator.
For i = 1,2, · · · , let Si : E → E be a countable family of relatively nonexpansive mappings
with Sx = J−1(

∑
∞
i=1 δi(σiJx+(1−σi)JSix)

)
for each x ∈ C, {δi} ⊂ (0,1) and {σi} ⊂ (0,1)

are such that ∑
∞
i=1 δi = 1. Let T : E → E be a closed relatively quasi-nonexpansive mapping.

Suppose that V : E → E is a mapping such that H := PF(T )oV is a closed relatively quasi-
nonexpansive mapping with F(H) 6= /0. For arbitrary x0,x1 ∈ E1, let the sequence {xn} be a
sequence generated as follows

C0 = E1,

wn = xn +(xn− xn−1),

un = J−1(Jwn + γJ(PF(H)− I)wn
)
,

vn = J−1((1−αn)Jun +αnJJB
λ

un
)
,

yn = J−1((1−β )Jvn +βJSvn
)
,

Cn+1 = {p ∈Cn : φ(w,yn)≤ φ(p,vn)≤ φ(p,un)≤ φ(p,wn)},
xn+1 = ΠCn+1x1, ∀ n≥ 1,

(4.4)

where JA
λ
= (J +λA)−1J with J being the normalized duality map of E. Assume that the fol-

lowing conditions are satisfied (1) αn ∈ [a,1),a > 0, β ∈ (0,1); (2) 0 < γ ≤ 1
k||A||2 . If Γ, the

set of solutions of the hierarchical variational inequality problem (4.1), is nonempty, then {xn}
converges strongly to v = ΠΓx1.

Proof. Taking E1 =E2 =E,A= I,H =PF(S)oV in Theorem (3.1), and noticing that J1 = J2 = J,
we see that the conclusion of Theorem 4.1 follows from Theorem 3.1 immediately. �
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